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Daniel Baye‡

Physique Quantique, C.P. 165/82, and Physique Nucléaire Théorique et Physique Mathématique, C.P. 229,
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Relativistic dipolar to hexadecapolar polarizabilities of the ground state and some excited states of hydrogenic
atoms are calculated by using numerically exact energies and wave functions obtained from the Dirac equation
with the Lagrange-mesh method. This approach is an approximate variational method taking the form of equations
on a grid because of the use of a Gauss quadrature approximation. The partial polarizabilities conserving the
absolute value of the quantum number κ are also numerically exact with small numbers of mesh points. The ones
where |κ| changes are very accurate when using three different meshes for the initial and final wave functions and
for the calculation of matrix elements. The polarizabilities of the n = 2 excited states of hydrogenic atoms are
also studied with a separate treatment of the final states that are degenerate at the nonrelativistic approximation.
The method provides high accuracies for polarizabilities of a particle in a Yukawa potential and is applied to a
hydrogen atom embedded in a Debye plasma.

DOI: 10.1103/PhysRevA.90.052520 PACS number(s): 31.15.ap, 03.65.Pm, 32.10.Dk, 02.70.Hm

I. INTRODUCTION

Atomic polarizabilities are very useful in various domains
of physics [1]. They play a role in effects where an atom or
ion can be deformed by the effect of a field. Well known
examples are dielectric constants or refractive indexes. In
some cases, experiments have reached such a high accuracy
that relativistic effects must be precisely taken into account
[2]. The polarizabilities become a testing ground for accurate
numerical methods. Here we show that highly accurate values
can be obtained not only for the ground state of hydrogenic
ions but also for excited states and for other types of central
potentials.

In the nonrelativistic case, static polarizabilities for spher-
ical quantum numbers nl provide exact limits of dynamical
polarizabilities when the frequency tends to zero. They are
also the limit of relativistic polarizabilities when the fine
structure constant α is set to zero. For the hydrogen atom,
analytical expressions have been derived first for s states [3,4]
and later for all states [5,6]. They can also be derived from
exact numerical calculations [7].

In the relativistic case, exact static dipole polarizabilities are
known only for the ground state [8,9] and the 2s excited state
[8] of hydrogenic atoms. They are much more complicated
than in the nonrelativistic case, involving 3F2 hypergeometric
functions. Series expansions in powers of αZ have also been
established [10–12]. Accurate numerical values for the dipolar
to hexadecapolar polarizabilities of the hydrogenic ground
states are determined with B splines for atomic numbers Z = 1
to 100 in Ref. [2].
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In the present work, our aim is to calculate accurate
numerical polarizabilities for various states described by
the Dirac equation with the Lagrange-mesh method. The
Lagrange-mesh method is an approximate variational method
involving a basis of Lagrange functions related to a set of
mesh points associated with a Gauss quadrature [13–15].
Lagrange functions are continuous functions that vanish at
all points of the corresponding mesh but one. The principal
simplification appearing in the Lagrange-mesh method is that
matrix elements are calculated with the Gauss quadrature. The
potential matrix is then diagonal and only involves values of
the potential at mesh points. This method has provided numer-
ically exact (i.e., exact up to rounding errors) polarizabilities in
the nonrelativistic hydrogenic case [7] because the basis is able
to exactly reproduce the hydrogenic wave functions and the
Gauss quadrature is exact for the relevant matrix elements with
small numbers of mesh points. Recently, we have shown that
numerically exact solutions of the Coulomb-Dirac equation
can also be obtained with this method [16]. More generally, the
method is very accurate for central potentials as illustrated with
Yukawa potentials in Ref. [16]. Here we use the obtained wave
functions to study multipolar polarizabilities of the ground
state and some excited states in the hydrogenic and Yukawa
cases.

In Sec. II, the nonrelativistic expressions of polarizabilities
of a particle in a potential are recalled. The corresponding
relativistic expressions are derived. In Sec. III, the principle
of the Lagrange-mesh method is summarized and relativis-
tic polarizabilities are obtained with the associated Gauss
quadrature. A technique involving three different meshes is
established which gives better results. In Sec. IV, numerical
results are presented for hydrogenic atoms and for a par-
ticle in Yukawa potentials. Section V contains concluding
remarks.

For the fine-structure constant, we use the CODATA 2010

value 1/α = 137.035999074 [17].
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II. NONRELATIVISTIC AND RELATIVISTIC
POLARIZABILITIES

A. Nonrelativistic polarizabilities

Before considering polarizabilities in a relativistic context,
it is useful to summarize their nonrelativistic calculation.

We consider the polarizability induced by the multipole
operator

C(λ)
μ (�)rλ =

√
4π/(2λ + 1)Y (λ)

μ (�)rλ (1)

where r is the radial coordinate and � represents the angular
spherical coordinates. For a particle with mass m in a potential
V (r), the radial functions ψnl with radial or principal quantum
number n and orbital angular momentum quantum number l

are eigenfunctions of the radial Hamiltonian

Hl = 1

2

[
− d2

dr2
+ l(l + 1)

r2

]
+ V (r) (2)

with eigenvalues Enl , in units � = m = 1.
The polarizability of a level nl for the λ-multipole operator

is given by

α
(nl)
λ = 1

2λ + 1

l+λ∑
l′=|l−λ|

′ α
(nll′)
λ (3)

where the prime means that the sum runs by steps of two. The
reduced polarizabilities α

(nll′)
λ appearing in this expression read

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2

×
∑
n′

[ ∫ ∞
0 ψn′l′(r)rλψnl(r)dr

]2

En′l′ − Enl

. (4)

In the Coulomb case, the term with principal quantum number
n′ = n must be excluded. In this definition, the sum over n′
should be understood as representing a sum over discrete states
and an integral over the continuum. A direct calculation is thus
not easy. Hence it is useful to use a more compact expression.

For partial wave l, the radial functions ψ
(1)
nll′ at the first order

of perturbation theory are solutions of the inhomogeneous
radial equations [7,18,19]

(Hl′ − Enl) ψ
(1)
nll′ (r) = (1 − Pnl′)r

λψnl(r), (5)

where ψnl is the radial wave function of the studied state. In the
hydrogenic case, for n > 1, the operator Pnl′ is a projector on
the radial function of the nl′ state degenerate with the nl state
so that the function ψ̃

(1)
nll′ = (1 − Pnl′ )ψ

(1)
nll′ does not contain

the degenerate component. The reduced polarizabilities can
be rewritten as [7,18]

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2 ∫ ∞

0
ψ̃

(1)
nll′ (r)rλψnl(r)dr.

(6)

They simply involve a single integral but require solving the
inhomogeneous equation (5). When present, the projection
operator introduces a significant complication for numerical
calculations.

The equivalent Eqs. (4) and (6) are not redundant; they are
complementary. In the Coulomb case, analytical calculations
are simpler with Eq. (6). Moreover, Eq. (5) has an exact
solution ψ̃

(1)
nll′ , which contains the exponential exp(−Zr/n)

multiplied by a polynomial of degree n + λ + 1. This leads in
Eq. (6) to the exact values of the polarizabilities, a result not
easy to obtain with the equivalent expression (4).

In numerical calculations, the respective merits of Eqs. (4)
and (6) become different. The sum integral over n′ in Eq. (4) is
replaced by a finite sum over pseudostates where the optimal
way of choosing these pseudostates is not obvious but the
elimination of degenerate states in the Coulomb case is very
easy. Equations (5) and (6) indicate that an exact polarizability
can be obtained in the Coulomb case with pseudostates
containing the same exponential exp(−Zr/n) multiplied by
a polynomial. Equation (4) requires a diagonalization of the
matrix corresponding to the final orbital momentum l′ in the
pseudostate basis, while Eq. (6) requires the solution of an
algebraic system derived from Eq. (5), or the inversion of a
matrix.

With the Lagrange-mesh method described below, a striking
property, not emphasized enough in Ref. [7], is that both
approaches (4) and (6) lead for any level to the same exact
results, up to rounding errors. Indeed, when the matrix
representing the left-hand side of Eq. (5) is inverted by
using its spectral decomposition, the resulting expression is
then identical to a pseudostate expansion based on (4) (see
Appendix A). We now analyze the corresponding expressions
in the relativistic case and show that the same ideas can be
exploited but with some differences.

B. Relativistic polarizabilities

In atomic units, the coupled radial Dirac equations read
[20]

Hκ

(
Pnκ (r)

Qnκ (r)

)
= Enκ

(
Pnκ (r)

Qnκ (r)

)
(7)

with the Hamiltonian matrix

Hκ =
(

V (r) c
(− d

dr
+ κ

r

)
c
(

d
dr

+ κ
r

)
V (r) − 2c2

)
, (8)

where c = 1/α. The quantum number κ summarizes the
orbital and total angular momentum quantum numbers l and j

according to j = |κ| − 1
2 and l = j + 1

2 sgn κ .
The large and small radial functions, Pnκ and Qnκ ,

are normalized according to the condition
∫ ∞

0 {[Pnκ (r)]2 +
[Qnκ (r)]2}dr = 1. At the origin [20], they behave as

Pnκ (r), Qnκ (r) →
r→0

rγ . (9)

The parameter γ is defined by

γ =
√

κ2 − (V0/c)2, (10)

where V0 = − limr→0 rV (r) is positive or null. The Dirac
spinors are singular at the origin for γ < 1. This singularity can
be important for hydrogenic ions with high nuclear charges Z.
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For a system described with the Dirac equation, the
multipolar polarizability of a state nκm is given by

α
(nκm)
λμ = (2j + 1)

∑
κ ′

(
j ′ λ j

−m − μ μ m

)2

α
(nκκ ′)
λ . (11)

The reduced polarizabilities read [2]

α
(nκκ ′)
λ = 2(2j ′ + 1)

(
j ′ λ j

−1/2 0 1/2

)2

×
∑
n′

{∫ ∞
0 [Pn′κ ′(r)Pnκ (r)+Qn′κ ′(r)Qnκ (r)]rλdr

}2

En′κ ′ − Enκ

,

(12)

where Pnκ (r), Qnκ (r) and Pn′κ ′ (r), Qn′κ ′(r) are solutions
of (7) with respective energies Enκ and En′κ ′ . Like in the
nonrelativistic case, the sum over n′ represents a sum over
the discrete states and an integral over the continuum. Here,
however, the continuum also involves negative energies.
Degenerate states, i.e., states with n′ = n and |κ ′| = |κ|, must
be excluded in the hydrogenic case. Moreover, in this case,
we also exclude almost degenerate states with n′ = n but
|κ ′| �= |κ| because their small fine-structure energy differences
are significantly affected by the Lamb shift and require a
separate treatment [8,21] (see Sec. IV A). Expression (12) then
tends to the nonrelativistic polarizabilities (4) when c → ∞.
The average or scalar polarizabilities are defined by

α
(nκ)
λ = 1

2j + 1

j∑
m=−j

α
(nκm)
λμ = 1

2λ + 1

∑
κ ′

α
(nκκ ′)
λ . (13)

Here also a variant is possible. The inhomogeneous equa-
tion corresponding to Eq. (5) reads

(Hκ ′ − Enκ )

(
P

(1)
nκκ ′ (r)

Q
(1)
nκκ ′(r)

)
= (1 − Pnκ ′ )rλ

(
Pnκ (r)

Qnκ (r)

)
, (14)

where Hκ ′ is defined by (8) with κ ′ replacing κ and Pnκ ′ is
the projector on a state nκ ′ degenerate or almost degenerate
with the nκ state, if any. Let P̃

(1)
nκκ ′ and Q̃

(1)
nκκ ′ be the

radial components of the spinor obtained, if necessary, after
application of the projector (1 − Pnκ ′ ) on (P (1)

nκκ ′ ,Q
(1)
nκκ ′ )T ,

where T means transposition. The reduced polarizabilities are
given by the compact expressions

α
(nκκ ′)
λ = 2(2j ′ + 1)

(
j ′ λ j

−1/2 0 1/2

)2

×
∫ ∞

0

[
P̃

(1)
nκκ ′ (r)Pnκ (r) + Q̃

(1)
nκκ ′(r)Qnκ (r)

]
rλdr.

(15)

C. Coulomb case

In the Coulomb case, the potential is V (r) = −Z/r in
atomic units. Constant V0 is equal to Zαc. The energy of
state nκ is

Enκ = − Z2

N(N + n − |κ| + γ )
, (16)

with

N = [(n − |κ| + γ )2 + (αZ)2]1/2. (17)

Analytically solving Eq. (14) is quite complicated, especially
when projector Pnκ ′ is present, but we can easily use it to
make an optimal choice of pseudostates for an approximation
of Eq. (12). Two cases must be considered.

When |κ ′| = |κ|, P
(1)
nκκ ′ and Q

(1)
nκκ ′ have the same behavior

at the origin as in Eq. (9) because parameter γ given by
Eq. (10) is the same. Hence the solution of Eq. (14) is given by
rγ exp(−Zr/N) multiplied by polynomials. The pseudostates
in Eq. (12) should contain the same rγ factor and the same
exponential.

When |κ ′| �= |κ|, however, there is no simple analytical
solution of Eq. (14) because γ ′ corresponding to κ ′ differs from
γ . This is exemplified by the exact ground-state polarizabilities
which are the sum of a simple κ ′ = 1 term and a complicated
κ ′ = −2 term [9].

III. LAGRANGE-MESH METHOD

A. Mesh equations

The principles of the Lagrange-mesh method are described
in Refs. [13–15] and its application to the Dirac equation is
presented in Ref. [16]. The mesh points xj are defined by [13]

Lα
N (xj ) = 0, (18)

where j = 1 to N and Lα
N is a generalized Laguerre polyno-

mial depending on parameter α [22]. This mesh is associated
with a Gauss quadrature

∫ ∞

0
g(x) dx ≈

N∑
k=1

λkg(xk), (19)

with the weights λk . The Gauss quadrature is exact for the
Laguerre weight function xαe−x multiplied by any polynomial
of degree at most 2N − 1 [23].

The regularized Lagrange functions are defined by
[15,24,25]

f̂
(α)
j (x) = (−1)j

(
N !

	(N + α + 1)xj

)1/2
Lα

N (x)

x − xj

xα/2+1e−x/2.

(20)

The functions f̂
(α)
j (x) are polynomials of degree N − 1

multiplied by x and by the square root of the Laguerre weight
xα exp(−x). The Lagrange functions satisfy the Lagrange
conditions

f̂
(α)
j (xi) = λ

−1/2
i δij . (21)

They are orthonormal at the Gauss-quadrature approximation.
Condition (21) drastically simplifies the expressions calculated
with the Gauss quadrature.
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The radial functions Pnκ (r) and Qnκ (r) are expanded in
regularized Lagrange functions (20) as

Pnκ (r) = h−1/2
N∑

j=1

pnκj f̂
(α)
j (r/h), (22)

Qnκ (r) = h−1/2
N∑

j=1

qnκj f̂
(α)
j (r/h), (23)

where h is a scaling parameter aimed at adapting the mesh
points hxi to the physical extension of the problem and∑N

j=1(p2
nκj + q2

nκj ) = 1 ensures the normalization of Pnκ and
Qnκ .

The parameter α = 2(γ − 1) can be selected so that the
Lagrange functions behave as rγ near the origin [16]. Here,
another choice α = 2(γ − |κ|) is preferable as explained
below. The basis functions then behave as rγ−|κ|+1 but the
physical rγ behavior can be simulated by linear combinations.
In the Coulomb case, the correct exponential behavior of the
components is obtained with h = N/2Z. Expansions with
N = n + |κ| such functions are able to exactly reproduce
the large and small hydrogenic components. Moreover matrix
elements of rλ with λ � −2 are exactly obtained with 2N −
1 � 2n + 2|κ| + λ or N > n + |κ| + 1

2λ [15,25].
Let us introduce expansions (22) and (23) in the coupled

radial Dirac equations (7). Projecting on the Lagrange func-
tions and using the associated Gauss quadrature leads to the
2N × 2N Hamiltonian matrix

Hκ =
(

V (hxi)δij
c
h

(
DG

ij + κ
xi

δij

)
c
h

(
DG

ji + κ
xi

δij

)
[V (hxi) − 2c2]δij

)
(24)

with a 2 × 2 block structure, where

DG
i �=j = (−1)i−j

√
xi

xj

1

xi − xj

, DG
ii = 1

2xi

. (25)

Expressions (25) are the matrix elements 〈f̂ (α)
i |d/dx|f̂ (α)

j 〉
calculated at the Gauss-quadrature approximation. This corre-
sponds to choosing the Gauss quadrature named Gauss(2,1) in
Ref. [16].

In the Coulomb case, if N � n+ |κ| and h =
N/2Z, one of the eigenvalues of Hκ is the ex-
act energy Enκ and the corresponding eigenvector
(pnκ1,pnκ2, . . . ,pnκN ,qnκ1,qnκ2, . . . ,qnκN )T provides the co-
efficients of the exact eigenfunctions in the expansions (22)
and (23) [16]. For other potentials, if N is large enough and h

well chosen, some negative energies above −2c2 correspond
to physical energies. The corresponding eigenvectors provide
approximations of the wave functions.

B. Polarizabilities on a Lagrange mesh

As proven in Appendix A, the Lagrange-mesh approxima-
tions of Eqs. (12) and (15) are identical if the same scaling
parameter h is used. However, the calculation is simpler with
Eq. (12), specially when degenerate levels must be eliminated.

Let E
(k)
κ ′ , k = 1, . . . ,2N , be the eigenvalues of matrix Hκ ′

defined in Eq. (24) with κ ′ replacing κ . The corresponding

eigenvectors contain the coefficients p
(k)
κ ′j and q

(k)
κ ′j of the com-

ponents P
(k)
κ ′ and Q

(k)
κ ′ of the pseudostates. These pseudostates

are obtained with the same h value as for the nκ state. They
have no physical meaning.

Approximate reduced polarizabilities can be obtained from
Eq. (12) as

α
(nκκ ′)
λ = 2(2j ′ + 1)

(
j ′ λ j

−1/2 0 1/2

)2

×
N∑

k=1

{∫ ∞
0

[
P

(k)
κ ′ (r)Pnκ (r) +Q

(k)
κ ′ (r)Qnκ (r)

]
rλdr

}2

E
(k)
κ ′ − Enκ

.

(26)

The integral in (26) is calculated with the Gauss quadrature as

∫ ∞

0

[
P

(k)
κ ′ (r)Pnκ (r) + Q

(k)
κ ′ (r)Qnκ (r)

]
rλdr

≈ hλ

N∑
j=1

[
p

(k)
κ ′jpnκj + q

(k)
κ ′j qnκj

]
xλ

j . (27)

Contrary to the nonrelativistic case, the partial polarizabilities
of the hydrogenic atoms are not always exactly given by the
Lagrange-mesh method. For |κ ′| = |κ|, they are exact for N >

n + |κ| + 1
2λ, but they are not exact for |κ ′| �= |κ|. Indeed, the

eigenfunctions of Hκ ′ behave at the origin as rγ ′
where γ ′ =√

κ ′2 − (V0/c)2 �= γ . The solution of Eq. (14) does not involve
anymore a simple polynomial. In this case, we nevertheless
choose to keep Eqs. (26) and (27) as an approximation. As
shown in Sec. IV A, when N is large enough, accurate values
of the polarizabilities can be obtained for low Z values since
γ ′ is then close to γ .

C. Polarizabilities with three meshes

When |κ ′| �= |κ|, a better approximation than Eq. (27) is
possible. Let us calculate the pseudostates with α′ = 2(γ ′ −
|κ ′|) in place of α = 2(γ − |κ|), i.e., matrix Hκ ′ is calculated
on a different mesh hx ′

j . Hence the pseudostates have the

exact behavior rγ ′
at the origin. Notice that the values of α

and α′ are close to each other, much closer than with the
choices α′ = 2(γ ′ − 1) and α = 2(γ − 1). The integrand in
Eq. (27) explicitly contains rγ+γ ′

. In the Coulomb case with
h = N/2Z, it is even the product of rγ+γ ′

exp(−2Zr/N) and a
polynomial. An accurate calculation with a Gauss quadrature
is possible in Eq. (26) by choosing a third mesh hx̄i where
the x̄i correspond to the weight function xᾱ exp(−x) with the
average value

ᾱ = 1
2 (α + α′). (28)

The corresponding weights are denoted as λ̄i . For simplicity,
we keep the same number N of mesh points for the three
meshes but this is not at all mandatory.
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Approximation (27) is replaced by the expression∫ ∞

0

[
P

(k)
κ ′ (r)Pnκ (r) + Q

(k)
κ ′ (r)Qnκ (r)

]
rλdr

≈ hλ

N∑
j,j ′=1

[
p

(k)
κ ′j ′pnκj + q

(k)
κ ′j ′qnκj

]
I λ
j ′j , (29)

where

I λ
j ′j =

∫ ∞

0
f̂

(α′)
j ′ (x)xλf̂

(α)
j (x)dx ≈

N∑
i=1

λ̄i f̂
(α′)
j ′ (x̄i)x̄

λ
i f̂

(α)
j (x̄i).

(30)

Evaluating integral (30) requires the explicit computation
of Lagrange functions. Some remarks on their numerical
calculation can be found in Appendix B.

The Gauss quadrature in Eq. (29) is exact in the Coulomb
case if 2N − 1 � N + n + |κ| + λ or N � n + |κ| + λ + 1,
but the reduced polarizability (26) is not exact because the
corresponding solution of Eq. (14) is an approximation.

IV. NUMERICAL RESULTS

A. Hydrogenic atoms

We first calculate ground-state polarizabilities for the Dirac-
Coulomb problem, where V (r) = −Z/r in atomic units.
We consider static dipole to hexadecapole polarizabilities of
hydrogenic ions for Z values comprised between 1 and 100.

Before giving numerical values for the 1s1/2 ground-state
static dipole polarizabilities, we first compare the single-mesh
and three-mesh methods presented in the previous section. In
Fig. 1, the convergence of the two partial polarizabilities as
a function of the number of mesh points N is evaluated by
the relative difference |α(N ) − α(N − 5)|/|α(N − 5)|, where
N = 15–100 by steps of 5. The case Z = 100 is chosen in order

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

N

|(
α(

N
) 

−
 α

(N
−

5)
)/

α(
N

−
5)

|

FIG. 1. Convergence of the 1s1/2 partial static dipole polarizabil-
ities of the Z = 100 hydrogenic ion as a function of the number N

of mesh points. Contributions from the p1/2 (κ = +1) states (crosses
for one mesh, circles for three meshes) and the p3/2 (κ = −2) states
(triangles).

to emphasize the effect of using three different meshes instead
of a single mesh, as discussed in Sec. III. In this figure, crosses
correspond to the contribution of the p3/2 states (κ = −2)
computed with one mesh, while circles correspond to the
same contribution but computed with three meshes. Triangles
correspond to the contribution of the p1/2 states (κ = +1)
computed indifferently with one mesh or three meshes. Indeed,
the results of both approaches are exactly the same for
this contribution, for which |κ ′| = |κ|. Then ᾱ = α′ = α in
Eq. (28) and the three meshes are degenerate into a single one.
It is thus no longer required to explicitly compute the Lagrange
functions, and both computations use Eqs. (26) and (27). The
calculation of the partial polarizability is exactly given by the
Lagrange-mesh method. The polarizabilities represented by
triangles are numerically exact for all N values, and oscillate
below 10−13. This is not the case for the contribution from
the p3/2 states, for which |κ ′| �= |κ|. For Z = 100, the results
of both approaches are poor for low N values but the errors
progressively decrease when N increases. The results with
three meshes are significantly better than the ones with a single
mesh, as shown in Fig. 1. Indeed, the circles are from one to
three orders of magnitude lower than the crosses, reaching the
value of 10−13 for N = 100, while the result with a single
mesh only reaches 4 × 10−9 for the same number of mesh
points. In the following, all the results displayed in the tables
are obtained from computations performed with three meshes.

Table I displays the values of static multipole polarizabili-
ties for the 1s1/2 ground state of hydrogenic ions, with Z values
between 1–100 and given values of N . The optimal scaling
parameter h is used, i.e. h = N/2Z, where N is given by
Eq. (17). Four different multipoles are considered, for λ = 1–4.
The significant digits of the results can be estimated by a
comparison with N + 2 mesh points. In Ref. [2], Tang et al.
used the Galerkin method to provide very accurate numerical
values with a basis of 400 B splines. These results will be
used as benchmark values, in order to test the precision of the
Lagrange-mesh method. One observes a relative difference
better than 10−12 between Lagrange-mesh computations and
these benchmark values, some results agreeing with up to 15
figures. An important fact to mention is the use of significantly
fewer mesh points in the Lagrange-mesh computation than
in the B-spline Galerkin method, as reported in the table.
Indeed, only six mesh points are sufficient to obtain a 10−14

accuracy with λ = Z = 1. For high Z, up to Z = 100, the
number of mesh points does not go beyond 100. Moreover, for
values from quadrupole to hexadecapole, the Lagrange-mesh
computations provide more significant digits than the B-spline
Galerkin method when Z increases. Regarding the stability
of the Lagrange-mesh results, one can observe that at most
the last two digits are varying from N to N + 2 mesh
points.

Let us now consider relativistic polarizabilities of excited
states of hydrogenic ions, for which no values exist in the
literature. In this paper, we focus on the n = 2 states, although
other bound states can be treated as easily and accurately with
this method. Figure 2 shows the convergence of the 2p3/2 static
dipole polarizability of the hydrogen atom as a function of the
number of mesh points N , evaluated by the relative difference
|α(N ) − α(N − 2)|/|α(N − 2)|, where N = 8–40 by steps of
2. The case Z = 1 is sufficient to emphasize the improvement
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TABLE I. Static λ-multipole polarizabilities (in a.u.) of the 1s1/2 ground state of hydrogenic ions. Comparison between N and N + 2 mesh
points and with benchmark values [2]. Powers of 10 are indicated within brackets.

Lagrange-mesh Ref. [2]

λ Z N α
(1s1/2)
λ N α

(1s1/2)
λ α

(1s1/2)
λ (N = 400)

1 1 6 4.499 751 495 177 656 8 4.499 751 495 177 639 4.499 751 495 177 639 267 4
2 8 0.281 187 874 918 502 10 0.281 187 874 918 506 0.281 187 874 918 503 235 4

20 20 2.750 523 499 061 9 [−5] 22 2.750 523 499 064 3 [−5] 2.750 523 499 062 579 08 [−5]
40 40 1.604 002 839 548 4 [−6] 42 1.604 002 839 548 7 [−6] 1.604 002 839 548 263 7 [−6]
60 50 2.797 090 474 417 6 [−7] 52 2.797 090 474 417 0 [−7] 2.797 090 474 417 353 [−7]
80 70 7.256 230 363 582 9 [−8] 72 7.256 230 363 582 7 [−8] 7.256 230 363 582 21 [−8]

100 100 2.168 647 587 492 2 [−8] 102 2.168 647 587 492 9 [−8] 2.168 647 587 493 68 [−8]

2 1 8 14.998 829 822 856 73 10 14.998 829 822 856 48 14.998 829 822 856 441 699
2 8 0.234 301 867 935 799 10 0.234 301 867 935 789 0.234 301 867 935 791 100

20 20 2.271 146 583 055 3 [−7] 22 2.271 146 583 050 7 [−7] 2.271 146 583 050 793 [−7]
40 40 3.218 326 876 369 1 [−9] 40 3.218 326 876 369 6 [−9] 3.218 326 876 369 0 [−9]
60 50 2.371 147 053 044 9 [−10] 52 2.371 147 053 044 6 [−10] 2.371 147 053 044 [−10]
80 70 3.196 013 748 395 1 [−11] 72 3.196 013 748 395 1 [−11] 3.196 013 748 39 [−11]

100 100 5.405 559 183 469 5 [−12] 102 5.405 559 183 470 7 [−12] 5.405 559 183 5 [−12]

3 1 8 131.237 821 447 843 0 10 131.237 821 447 846 0 131.237 821 447 844 662
2 8 0.512 505 037 523 772 10 0.512 505 037 523 776 0.512 505 037 523 770 47

20 20 4.938 640 072 266 9 [−9] 22 4.938 640 072 274 8 [−9] 4.938 640 072 269 2 [−9]
40 40 1.717 671 116 720 7 [−11] 42 1.717 671 116 720 8 [−11] 1.717 671 116 72 [−11]
60 50 5.443 579 080 006 2 [−13] 52 5.443 579 080 006 2 [−13] 5.443 579 080 [−13]
80 70 3.921 694 887 294 4 [−14] 72 3.921 694 887 294 5 [−14] 3.921 694 89 [−14]

100 100 3.923 335 154 080 2 [−15] 102 3.923 335 154 081 2 [−15] 3.923 335 2 [−15]

4 1 8 2 126.028 674 498 991 10 2 126.028 674 499 147 2 126.028 674 499 128 83
2 8 2.075 551 546 061 163 10 2.075 551 546 061 205 2.075 551 546 061 205 19

20 20 1.991 062 443 016 7 [−10] 22 1.991 062 443 018 8 [−10] 1.991 062 443 017 [−10]
40 40 1.707 067 336 464 2 [−13] 42 1.707 067 336 464 5 [−13] 1.707 067 337 [−13]
60 50 2.345 208 224 082 4 [−15] 52 2.345 208 224 082 5 [−15] 2.345 208 2 [−15]
80 70 9.141 669 892 326 1 [−17] 72 9.141 669 892 323 9 [−17] 9.141 67 [−17]

100 100 5.514 202 246 345 4 [−18] 102 5.514 202 246 347 0 [−18] 5.514 2 [−18]

brought by using three different meshes instead of a single
one. Crosses and circles respectively correspond to the use of
one mesh and three meshes. One clearly observes the effect of
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FIG. 2. Convergence of the 2p3/2 static dipole polarizability of
the hydrogen atom as a function of the number N of mesh points.
Use of one mesh (crosses) and three meshes (circles).

using three meshes on the accuracy of the results. Indeed, all
the errors represented by circles progressively increase with
N because of larger rounding errors, but stay below 10−13

while the errors represented by crosses decrease from 3×10−11

when N = 8, to 10−13 when N = 40. The total static dipole
polarizability α

(2p3/2)
1 has three contributions: from the d3/2

states for which |κ ′| = |κ|, and from the s1/2 and d5/2 states for
which |κ ′| �= |κ|. For these last two contributions, the results
obtained with three meshes are thus significantly better than
the ones with a single mesh, while for the first contribution
both approaches give exactly the same results, as discussed
above for Fig. 1.

Table II presents the values of the static dipole and
quadrupole polarizabilities for the n = 2 states of hydrogenic
ions, with Z values between 1–100 and given values of N .
The optimal scaling parameter h is used, i.e., h = N/2Z. The
significant digits of the results are estimated by a comparison
with N + 2 mesh points. For each state and each Z value,
one observes an accuracy of at least 10−13. The results for
the hydrogen atom are obtained with only six mesh points for
λ = 1 and 8 mesh points for λ = 2. For low Z values, the dipole
polarizabilities are very close to the exact nonrelativistic ones
[5,7]. Indeed, the relativistic effects are very weak. When the
fine-structure constant tends to zero, the 2s1/2 polarizability
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TABLE II. Static λ-multipole polarizabilities (in a.u.) of the n = 2 states of hydrogenic ions. Significants digits
are estimated by comparison with N + 2 mesh points. Powers of 10 are indicated within brackets.

λ Z N α
(2s1/2)
λ α

(2p1/2)
λ α

(2p3/2)
λ

1 1 6 119.990 228 572 41 175.987 219 883 326 175.997 972 047 628
2 8 7.497 557 290 076 1 10.996 805 127 139 4 10.999 493 039 445 4

10 10 1.190 247 972 335 [−2] 1.747 240 513 459 [−2] 1.757 975 693 736 [−2]
20 20 7.257 668 813 803 [−4] 1.068 257 492 237 [−3] 1.094 967 210 025 [−3]
30 30 1.374 866 994 958 [−4] 2.032 917 604 564 [−4] 2.150 684 232 965 [−4]
40 40 4.096 360 848 269 [−5] 6.097 028 078 230 [−5] 6.752 120 183 672 [−5]
50 40 1.548 718 165 822 [−5] 2.325 561 392 593 [−5] 2.738 874 396 679 [−5]
60 50 6.740 709 021 419 [−6] 1.023 760 773 010 [−6] 1.305 852 703 883 [−6]
70 60 3.199 464 332 281 [−6] 4.929 154 351 302 [−6] 6.960 240 041 733 [−6]
80 70 1.598 609 255 742 [−6] 2.506 652 478 893 [−6] 4.026 825 704 514 [−6]
90 80 8.183 632 847 570 [−7] 1.310 940 334 525 [−6] 2.483 072 557 892 [−6]

100 100 4.186 326 200 652 [−7] 6.876 679 310 957 [−7] 1.613 980 660 494 [−6]

2 1 8 16 318.452 858 385 5 183.438 096 590 6 5 183.929 162 202 5
2 8 254.903 312 000 07 80.964 884 615 008 80.995 572 769 725

10 10 1.616 572 636 637 [−2] 5.127 998 385 845 [−3] 5.176 923 204 048 [−3]
20 20 2.454 410 134 238 [−4] 7.753 548 824 928 [−5] 8.055 903 187 452 [−5]
30 30 2.052 579 038 727 [−5] 6.438 377 827 643 [−6] 7.024 450 825 240 [−6]
40 40 3.407 420 115 360 [−6] 1.057 845 433 238 [−6] 1.238 406 423 891 [−6]
50 40 8.143 245 007 846 [−7] 2.492 961 933 659 [−7] 3.207 366 565 785 [−7]
60 50 2.423 645 144 952 [−7] 7.284 857 396 018 [−8] 1.058 546 736 480 [−7]
70 60 8.294 967 341 951 [−8] 2.434 930 605 774 [−8] 4.127 150 402 084 [−8]
80 70 3.102 550 674 083 [−8] 8.834 009 222 646 [−9] 1.817 222 002 459 [−8]
90 80 1.221 173 429 625 [−8] 3.342 226 882 557 [−9] 8.779 997 909 388 [−9]

100 100 4.890 097 303 991 [−9] 1.269 990 853 964 [−9] 2.137 848 312 143 [−9]

tends to 120Z−4 a.u. and the 2p1/2 and 2p3/2 states degenerate
into a single 2p state whose nonrelativistic polarizability is
176Z−4 a.u. When Z increases, the relativistic effects become
more important than for Z = 1 and the polarizabilities are no
longer close to the exact nonrelativistic values.

The limited Taylor expansion of the 2s polarizability

α
(2s1/2)
1 = 120

Z4

[
1 − 367

240
(αZ)2 + 0.575887(αZ)4

]
(31)

given by Eq. (19) of Ref. [8] is in perfect agreement with the
values in Table II for Z = 1 and 2. For Z = 10, its relative
accuracy is still better than 10−9. For Z = 50 and 100, it drops
to 10−5 and 4×10−4, respectively, still a fair approximation
despite that αZ progressively approaches unity.

As explained in Sec. II B, in the hydrogenic case, degenerate
states (n′ = n and |κ ′| = |κ|) and almost degenerate states
(n′ = n but |κ ′| �= |κ|) are excluded from the polarizability
of a nκ state. All values displayed up to now do not take
these states into account. However, in reality, these states
are not exactly degenerate and their effect must be included
in the polarizability. Their contributions to the total static
polarizability ᾱ(nκ) of a nκ state can be computed with
the reduced matrix elements appearing in the numerator of
Eq. (12) and with exact values for the differences of energies
appearing in the denominator of this expression. Let us
illustrate this consideration with the example of the n = 2
states of hydrogenic ions. The total static dipole polarizabilities

read

ᾱ
(2s1/2)
1 = α

(2s1/2)
1 + F (2p1/2,2s1/2)

E2p1/2 − E2s1/2

+ F (2p3/2,2s1/2)

E2p3/2 − E2s1/2

, (32)

ᾱ
(2p1/2)
1 = α

(2p1/2)
1 + F (2s1/2,2p1/2)

E2s1/2 − E2p1/2

, (33)

ᾱ
(2p3/2)
1 = α

(2p3/2)
1 + F (2s1/2,2p3/2)

E2s1/2 − E2p3/2

(34)

for each of the n = 2 states, where the quantities α
(2lj )
1 defined

in Eq. (13) are given in Table II, and

F (2p1/2,2s1/2) = F (2s1/2,2p1/2)

= 2

9

{∫ ∞

0
[P2p1/2 (r)P2s1/2 (r)

+Q2p1/2 (r)Q2s1/2 (r)]r dr

}2

(35)

and

F (2p3/2,2s1/2) = 2F (2s1/2,2p3/2)

= 4

9

{∫ ∞

0
[P2p3/2 (r)P2s1/2 (r)

+Q2p3/2 (r)Q2s1/2 (r)]r dr

}2

, (36)

according to Eqs. (12) and (13). Equations (35) and (36)
represent numerators that can be computed with the Gauss
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TABLE III. Numerators of the contributions of almost degenerate
states to the static dipole polarizabilities (in a.u.) of the n = 2 states
of hydrogenic ions. Significant digits are estimated by comparison
with N + 2 mesh points. Powers of 10 are indicated within brackets.

Z N F (2p1/2,2s1/2) F (2p3/2,2s1/2)

1 6 5.999 733 743 581 8 11.999 786 990 832 3
2 6 1.499 733 744 645 1 2.999 786 979 582 2
10 6 5.973 377 857 887 4 [−2] 1.197 866 185 513 [−1]
20 6 1.473 388 347 402 1 [−2] 2.978 547 730 953 [−2]
30 6 6.400 720 933 264 3 [−3] 1.311 686 338 414 [−2]
40 8 3.484 284 277 272 8 [−3] 7.280 703 963 583 [−3]
50 8 2.134 562 724 010 3 [−3] 4.576 885 897 117 [−3]
60 10 1.401 539 481 366 5 [−3] 3.105 241 297 212 [−3]
70 10 9.596 781 478 383 3 [−4] 2.214 502 500 495 [−3]
80 10 6.729 674 513 475 4 [−4] 1.632 360 617 365 [−3]
90 10 4.763 808 490 110 0 [−4] 1.228 327 956 418 [−3]
100 10 3.355 810 184 607 6 [−4] 9.330 331 402 487 [−4]

quadrature associated with the Lagrange-mesh method, while
the denominators of Eqs. (32)–(34) must take into account the
fine-structure interval and the Lamb shift between n = 2 states.
Table III displays the values of the numerators F (2pj ,2s1/2)
appearing in Eqs. (32)–(34), with Z values between 1–100
and given values of N . The significant digits of the results are
estimated by a comparison with N + 2 mesh points. For 2p3/2

one observes an accuracy of at least 10−13, with only 6–10
mesh points. The values for 2p1/2 are numerically exact.

Using Eqs. (32)–(34) requires information on energy differ-
ences. The corresponding transition frequencies are reviewed
for hydrogen in Ref. [26] and recent theoretical values are
available on the NIST website [27]. Values for hydrogenic
ions can be found in Ref. [28]. As examples of the use of
Eqs. (32)–(34), we consider two extreme cases.

For Z=1, we derive E2s1/2 − E2p1/2 from 0.035 285 878(80)
cm−1 and E2p3/2 − E2s1/2 from 0.330 601 966(80) cm−1 [27].
The n = 2 polarizabilities are then for hydrogen

ᾱ
(2s1/2)
1 ≈ −2.935 14×107, (37)

ᾱ
(2p1/2)
1 ≈ 3.731 79×107, (38)

ᾱ
(2p3/2)
1 ≈ −3.982 935×106. (39)

These polarizabilities are strongly amplified by the small
energy differences of the Lamb shift and the fine-structure
interval. Their accuracy is limited by the accuracy on these
energies.

For Z=100, we derive E2s1/2−E2p1/2 from 1.105×106 cm−1

and E2p3/2 − E2s1/2 from 5.454 0×107 cm−1 [28]. The n = 2
polarizabilities are then

ᾱ
(2s1/2)
1 ≈ −6.248×10−5, (40)

ᾱ
(2p1/2)
1 ≈ 6.734×10−5, (41)

ᾱ
(2p3/2)
1 ≈ −2.633 3×10−7. (42)

They are still significantly larger than the values in Table II
for 2s1/2 and 2p1/2 but they keep the same order of magnitude

for 2p3/2 where the two terms in Eq. (34) partially cancel each
other.

As already mentioned, accurate values of polarizabilities
can also easily be obtained for higher excited states. However,
the increasing number of almost degenerates states requires
a special treatment of energy differences also for higher
multipolarities.

B. Yukawa potential

Polarizabilities can also be accurately computed for
Yukawa potentials

V (r) = −V0
e−μr

r
, (43)

with different values of V0 and μ. Within the Lagrange-mesh
method, switching to Yukawa potentials only requires to
change the potential values V (hxi) in the Hamiltonian matrix
given by Eq. (24). Also for this kind of potentials, it has
recently been shown in Ref. [16] that the Lagrange-mesh
method is able to provide very accurate results with a number
of mesh points for which the computation seems instantaneous.
The approximate wave functions provide mean values of
powers of the coordinate that are also extremely precise.

Potentials (43) have the singular behavior

V (r) →
r→0

−V0

r
(44)

at the origin. Parameter γ is thus given by Eq. (10) and
parameter α is the same as in the Coulomb case, i.e., α =
2(γ − |κ|). The scaling parameter h and the number N of
mesh points are adjusted for each potential.

Table IV lists static dipole polarizabilities of the ground
state of a hydrogen atom in a Debye plasma [29]. Various
values of the Debye length δ are considered. This situation is
described by Yukawa potentials with parameter V0 = Z = 1
and parameter μ = 1/δ. The limit δ → ∞ corresponds to
the Coulomb case. All computations are performed with
N = 40 mesh points and the significant digits of the results
are estimated by a comparison with N = 50. The scaling
parameter h starts from the Coulomb optimal value 0.5 and
progressively increases with μ. In the nonrelativistic case, the
values are computed using Eqs. (5) and (6), and are compared
with results reported in Refs. [29,30]. One can observe a large
increase in the number of significant digits displayed with
the Lagrange-mesh method, in comparison with the previous
results. An accuracy of at least 10−12 is obtained with this
method, while Refs. [30] and [29] only provided up to seven
figures. At the limit of the Coulomb case, δ → ∞, the exact
nonrelativistic value of 4.5 a.u. [3] is recovered with 12 digits.
In fact, a numerically exact value can be reached with fewer
mesh points [7], due to the fact that the rounding errors are
increasing with N .

The value of the dipole polarizability increases with the
screening length δ, until reaching for δ = 1 a value two orders
of magnitude higher than in the Coulomb limit. For both
references [29] and [30], the relative error is quite high. From
μ = 0 to μ = 0.5, the Lagrange-mesh computations are closer
to the results from Ref. [30] than to the ones from Ref. [29]. For
larger μ values, the relative error with Ref. [29] stays constant,
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TABLE IV. Nonrelativistic and relativistic static dipole polarizabilities (in a.u.) of the ground state of Yukawa
potentials (43) for V0 = 1 and screening lengths δ = 1/μ. The number of mesh points is N = 40. Significant digits
are estimated by comparison with N = 50. Nonrelativistic values are compared with Refs. [29,30].

δ = 1/μ Ref. [29] Ref. [30] Lagrange-mesh (N = 40)

h Nonrelativistic Relativistic
∞ 4.496 2 4.500 0 0.5 4.500 000 000 000 4.499 751 495 177
50 4.507 6 4.508 2 4.508 675 748 210 4.508 426 624 858
40 4.511 9 4.512 99 4.513 460 836 744 4.513 211 373 377
20 4.550 1 4.551 76 4.552 195 439 883 4.551 943 236 436
16 4.581 7 4.580 03 4.580 489 160 539 4.580 234 962 937
10 4.706 2 4.699 33 4.699 777 471 480 4.699 514 889 588
5 5.297 6 5.276 61 5.276 368 793 394 5.276 065 498 754
4 5.770 0 5.726 35 5.726 702 088 012 5.726 366 480 682
3 6.807 2 6.801 56 6.801 959 817 157 6.801 544 911 434
2 11.229 1 11.147 01 0.6 11.147 655 952 84 11.146 892 173 589
1.9 12.390 4 12.335 9 12.316 122 276 08 12.315 257 969 840
1.7 16.123 5 16.069 9 16.024 746 558 53 16.023 547 511 631
1.5 24.176 1 24.098 7 23.952 788 792 35 23.950 808 437 16
1.3 47.555 7 47.405 2 47.259 844 401 24 47.255 206 306 67
1.2 82.219 1 82.994 6 81.791 951 912 13 81.782 728 920 69
1.1 188.89 192.910 0.75 187.766 926 629 2 187.740 828 417 7
1.08 235.905 244.785 234.213 472 197 0 234.179 068 350 3
1.06 299.589 316.994 299.883 800 557 7 299.836 950 194 1
1.04 400.199 409.154 0.8 396.221 960 931 396.155 620 903
1.02 539.916 598.717 543.995 546 849 543.897 020 777
1 778.723 788.280 0.85 783.476 574 642 783.321 287 554

between 10−3 and 10−2, while the one with Ref. [30] keeps
increasing, reaching 10−1 for μ = 0.9.

Relativistic values are also listed in Table IV. They are
computed using Eqs. (12) and (13). Relativistic values are all
smaller than nonrelativistic ones, due to the contraction of the
wave functions when relativistic effects are taken into account.
However, this effect is small since we consider V0 = Z = 1.
Here also, at the Coulomb limit, the relativistic value with
N = 40 is slightly less good than the result given in Table
I with only six mesh points. Figure 3 reports the relative
difference between nonrelativistic and relativistic Lagrange-
mesh computations, as a function of μ. This difference
continuously increases with μ, from 5×10−4 to 2×10−3.

Relativistic polarizabilities can also be computed for other
Yukawa potentials. These potentials were already considered
in Refs. [16,31] for the computation of the energies and
mean values 〈rk〉 of a set of bound states. The system of
units is now � = m = c = 1. Table V reports the static dipole
polarizabilities of Yukawa potentials for two cases: μ = 0.01
and V0 = 0.1 (corresponding to μ ≈ 1.37 and V0 ≈ 13.7 in
a.u.) and μ = 0.04 and V0 = 0.7 (corresponding to μ ≈ 5.48
and V0 ≈ 95.9 in a.u.).

For the shallower potential, the polarizability calculations
are performed with N = 40. The scaling parameter h = 16
is a good compromise for a simultaneous treatment of the
three κ = −1 lowest bound states and the κ = 1 and κ = −2
first bound states. A higher value of 22 is needed for a better
convergence of the results related to the highest two bound
states, with the weakest binding energy and thus the largest
spatial extension. For the deeper potential, the calculations
are performed with N = 50. The scaling parameter h = 2

is chosen for most bound states, except for the ground state
(h = 0.2), which is much lower than the others (see Ref. [16])
and the highest excited state (h = 5). The significant digits
of the results are estimated by a comparison with N + 10
mesh points. For both Yukawa potentials, an accuracy of at
least 10−12 is found, reaching 13 significant figures for several
bound states. One observes the presence of negative values of
the dipole polarizability. According to Eq. (12), the numerators
in this expression are always positive. Thus, the minus sign
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FIG. 3. Relative difference between nonrelativistic and relativis-
tic Lagrange-mesh computations of the ground-state polarizability of
Yukawa potentials (43) for V0 = 1 as a function of μ.

052520-9



LIVIO FILIPPIN, MICHEL GODEFROID, AND DANIEL BAYE PHYSICAL REVIEW A 90, 052520 (2014)

TABLE V. Static dipole polarizabilities (� = m = c = 1) of
Yukawa potentials. Significant digits are estimated by comparison
with N + 10 mesh points. Powers of 10 are indicated within brackets.

n κ h α
(nκ)
1

μ = 0.01, V0 = 0.1 (N = 40)
0 −1 16 4.650 527 416 87 [4]
1 16 6.358 097 228 01 [7]
2 16 1.797 115 776 56 [9]
0 1 16 −1.875 120 980 415 [7]
1 22 2.596 925 230 34 [8]
0 −2 16 −1.733 814 509 13 [7]
1 22 2.868 534 886 60 [8]

μ = 0.04, V0 = 0.7 (N = 50)
0 −1 0.2 9.883 392 685 690
1 2 1.358 955 847 171 [4]
2 2 1.779 393 944 896 [5]
3 2 2.242 455 317 301 [6]
0 1 2 −1.112 555 170 864 [4]
1 2 −9.103 079 287 97 [4]
2 2 −4.329 138 834 76 [5]
0 −2 2 −1.553 584 893 031 [2]
1 2 6.686 267 418 47 [4]
2 5 1.485 180 426 524 [6]

may only come from the denominators of Eq. (12), which
contain the difference of energies between the studied state
and all the states allowed in the calculation of the dipole
polarizability. Hence, for some bound states, the balance of
all contributions can be negative.

V. CONCLUSION

Numerically exact nonrelativistic polarizabilities can be
obtained with the Lagrange-mesh method [7]. This method can
also provide numerically exact energies and wave functions
for the Coulomb-Dirac problem. As shown in Ref. [16], some
matrix elements are then exactly given by the associated Gauss
quadrature. For the relativistic polarizabilities, however, the
situation is more complicated. Partial polarizabilities with the
same initial and final values of |κ| are also exact but this is
not the case when |κ| varies. The same simple calculation
then provides very accurate values with few mesh points
for small charges Z. For large Z values, the convergence is
much slower. We have thus devised an approximation, the
three-mesh method, involving different meshes for the initial
and final wave functions and for the calculation of matrix
elements. This less elegant approach significantly improves
the accuracy for high Z. The dipole polarizabilities have about
thirteen significant figures agreeing with the highly accurate
results of Ref. [2], but are obtained with much smaller bases.
For higher multipolarities, the high accuracies are maintained
and become better than those of Ref. [2] for high Z values.

The simplicity of the Lagrange-mesh method allows a
simple extension to the polarizabilities of excited states
or, more precisely, to the part of these polarizabilities that
does not involve almost degenerate states. We also provide
the numerators of corrections allowing to include the ef-

fect of these almost degenerate states. The evaluation of
polarizabilities then requires the knowledge of the correspond-
ing experimental or theoretical energy differences. As shown
by examples, for n = 2, these states lead to an increase of the
dipole polarizabilities by several orders of magnitude. This
effect decreases when Z increases.

The present approach is also valid for other potentials,
with or without a singularity at the origin. Its efficiency and
simplicity are illustrated with two Yukawa potentials. The first
potential corresponds to a hydrogen atom in a Debye plasma.
Relativistic and nonrelativistic polarizabilities are compared
with each other. The second Yukawa potential leads to stronger
relativistic effects. An excellent accuracy is still obtained, even
for weakly bound states. Properties of alkali-metal atoms can
easily be estimated by combining the present approach with
the use of model and parametric potentials such as Tietz’s or
Green’s potentials [32].

The Lagrange-mesh method is definitely accurate for
estimating relativistic polarizabilities of hydrogenic systems,
as it was already shown for nonrelativistic polarizabilities [7]
and for relativistic energies and wave functions [16]. As such,
Lagrange bases could find their room in the large family of
finite basis sets to which B splines and B polynomials belong, to
investigate two-photon processes in hydrogenic ions [33,34].

It will also be worthwhile to investigate their usefulness for
the study of many-electron systems. The most impressive fea-
ture of the Lagrange-mesh method is the striking accuracy of
the Gauss quadrature, which remains largely unexplained [25].
It leads in a simple way to accurate values for the nonrelativistic
polarizabilities of three-body systems [35]. A more general and
potentially promising route for the Lagrange-mesh method in
atomic physics could be the use of the underlying Lagrange
analytical basis, which could offer interesting properties in
comparison with, for instance, the B splines. The latter have
had a tremendous impact in atomic (relativistic) many-body
calculations in which the pseudospectrum is constructed from
B splines confined to a large but finite cavity [36,37]. The
replacement of B splines by a Sturmian basis [34,38,39] in
relativistic all-order calculations of atomic properties [40]
is seriously considered [41]. From this respect, we would
like to point out that some Lagrange-mesh bases are exactly
equivalent to Sturmian bases but can be simpler to use and
more flexible.
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APPENDIX A: EQUIVALENCE BETWEEN MESH
EXPRESSIONS FOR POLARIZABILITIES

Let us start with the nonrelativistic case and show that
the Lagrange-mesh approximations of Eqs. (4) and (6) are
identical. This property is valid because of a consistent use of
Lagrange functions and Gauss quadratures. The coefficients
cnlj and c

(1)
nll′j of the Lagrange functions in the expansions of
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ψnl and ψ
(1)
nll′ define the components of the column vectors cnl

and c(1)
nll′ , respectively.

Let us denote as E
(k)
l′ and c(k)

l′ , k = 1, . . . ,N , the eigenvalues
and eigenvectors of the N × N matrix H l′ with elements
〈fi |Hl′ |fj 〉G calculated with the Gauss quadrature associated
with the Lagrange mesh [7],

H l′ c
(k)
l′ = E

(k)
l′ c(k)

l′ . (A1)

The solution of the system corresponding to Eq. (5),

(H l′ − Enl I)c(1)
nll′ = hλ Xλcnl, (A2)

where I is the N×N identity matrix and X is the N×N

diagonal matrix with diagonal elements xj , is given by

c(1)
nll′ = hλ(H l′ − Enl I)−1 Xλcnl . (A3)

The spectral decomposition

(H l′ − Enl I)−1 =
N∑

k=1

c(k)
l′

(
E

(k)
l′ − Enl

)−1
c(k)T
l′ (A4)

exactly transforms the Lagrange-mesh approximation of
Eq. (6),

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2

hλ

N∑
j=1

c
(1)
nll′j x

λ
j cnlj , (A5)

into the Lagrange-mesh approximation of Eq. (4),

α
(nll′)
λ = 2(2l′ + 1)

(
l′ λ l

0 0 0

)2

h2λ

N∑
k=1

(∑N
j=1c

(k)
l′j x

λ
j cnlj

)2

E
(k)
l′ − Enl

.

(A6)

In the Coulomb case, this equivalence remains true in the
presence of a degenerate state by eliminating the k = n − l′
term in Eqs. (A4) and (A6).

The same proof holds in the relativistic case for the
equivalence of the Lagrange-mesh approximations of Eqs. (12)
and (15). Matrix H l′ must be replaced by the 2N×2N matrix
Hκ ′ and vectors cnl , c(1)

nll′ , and c(k)
l′ must be replaced by vectors

containing the 2N coefficients of the Lagrange functions in the
corresponding expansions of the large and small components.

APPENDIX B: COMPUTATION
OF LAGRANGE FUNCTIONS

Numerical values of a Lagrange function f̂
(α)
j (x) can be

computed with Eq. (20) but this expression becomes inaccurate
when x is close to xj because the numerator and denominator
simultaneously vanish. In a small interval (xj − ε,xj + ε),
expression (20) can be approximated by its second-order
Taylor expansion around xj ,

f̂
(α)
j (x) ≈ λ

−1/2
j

{
1 + x − xj

2xj

− [(4N + 2α + 2 − xj )xj + 4 − α2](x − xj )2

24x2
j

}
. (B1)

With ε ≈ 10−4, one obtains at least an eleven-digit accuracy
everywhere.

More precise values can be obtained with the alternative
expression of the Lagrange functions [13]

f̂
(α)
j (x) = √

λj

x

xj

N∑
k=1

ϕ
(α)
k (xj )ϕ(α)

k (x) (B2)

with

ϕ
(α)
k (x) =

(
k!

	(α + k + 1)

)1/2

xα/2e−x/2Lα
k (x). (B3)

This calculation provides a uniform accuracy over the whole
interval but requires many more evaluations of Laguerre
polynomials.
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