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Approach towards the critical charge of some excited states of the Be isoelectronic series
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A definitive determination of the nature of the approach to the critical charge is illustrated for the (1s22s3s)1,3S

and the (1s22s3p)1,3P states of the Be isoelectronic series. The features that conclusively indicate that the
outermost orbital becomes an infinitely diffuse hydrogenlike orbital upon approaching the critical charge Zc = 3
are the asymptotic proportionality of the ionization energy to (Z − 3)2 and the approach of the corresponding
quantum defect to an integer which is equal to the number of orbitals of the same symmetry in the atomic core.
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I. INTRODUCTION

An atomic isoelectronic series has two obvious limiting
cases. On the one hand, there is the high nuclear charge limit,
where (if one ignores relativistic effects) the system becomes
asymptotically hydrogenic, the interelectronic repulsions di-
minishing in significance. This limit is routinely considered
within 1

Z
-perturbation theory, where the leading term in the

energy expansion is the sum of the hydrogenlike energies of
the electrons, and the first order term is given by the expectation
value of the interelectronic repulsion with respect to the
zero-order wave function. The latter is an antisymmetrized
and symmetry-adapted product of hydrogenic wave functions,
unless, even after symmetry adaptation, zero order degener-
acy remains, in which case the appropriate modification is
required [1].

The other limit is the “critical charge”, i.e., the nuclear
charge below which the outermost electron is not bound.
This charge has been of interest for quite some time. Early
considerations of the critical charge in the He isoelectronic
series are due to Stillinger [2], and to Brändas and Goscin-
ski [3]. Since H− has a bound ground state (but no bound
singly excited states) [4,5], the ground state critical charge
of the He isoelectronic series satisfies Zc < 1 {in fact,
Zc = 0.911 028 224 077 255 73(4) [6], the leading six digits
in agreement with [7]} but it is equal to unity for all the singly
excited states. The doubly excited state of H−, (2p)2 3P has
been shown to be (nonrelativistically) bound as well [8–10].
A rigorously established significant distinction between the
1S ground state and the lowest 3S singly excited state has to
do with the fact that in the former the wave function remains
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bound (square integrable) at the critical charge [11] whereas
in the latter it does not [12]. This 3S state, as well as the
(1s2p)1,3P states, were studied by Ivanov et al. [13,14], who
confirmed that the critical charge is equal to 1 for all three
isoelectronic series. Expressing the binding energy of the
outermost electron in terms of the Rydberg-Bohr-like formula
− (Z−Zc)2

2(n−δ)2 , where n is the principal quantum number, Ivanov
noted that the quantum defect δ is asymptotically equal to unity
for the 3S state and to zero for the two P states, at the critical
charge. The asymptotic quantum defect, at the critical charge,
was found to approach unity for the (1s 2s)1S isoelectronic
series as well [15]. Hence, the 2s orbital becomes, at the
critical charge, 1s-like, although this state is not the lowest
of the 1S symmetry. This observation will be further discussed
below.

Critical charges for the ground states of the first 19 atoms
were determined by Hogreve [16], and estimated for atoms up
to Ac (Z = 89) by Sergeev and Kais [17]. A study of the ten-
electron (Ne) isoelectronic series by Hogreve [18] established a
complete analogy with the He isoelectronic series: the ground
state has a critical charge Zc ≈ 8.74, the ionization energy
approaching the critical charge linearly in Z − Zc, whereas
the lowest (3P ) excited state has Zc = 9, the ionization energy
approaching it quadratically in Z − Zc.

The present understanding consists of the mathematical
theorem according to which as long as the nuclear charge
is (even infinitesimally) larger than N − 1, where N is the
number of electrons, the system has an infinite number of
bound states below the lowest ionization limit [19]. For
Z < N − 1 there is at most a finite number of bound states.
Obviously, the critical charge may be different for different
states of any given isoelectronic series. If the critical charge
is equal to N − 1 then, upon approaching this critical charge,
the outermost electron becomes infinitely diffuse, a behavior
referred to as “expanding”. However, for N -electron states that
are bound at Z = N − 1 [i.e., the neutral (N − 1)-electron
atom has a positive electron affinity] the critical charge
is, of course, less than N − 1, and at the critical charge
the N -electron wave function is square integrable (bound)
although the binding energy vanishes [20]. This kind of
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confinement behavior at the critical charge has been referred
to as “absorbing.” As pointed out above, the ground state of the
He isoelectronic series is of the latter type, whereas all singly
excited states of this isoelectronic series are of the expanding
type, the outermost electron becoming infinitely diffuse (with
an effective charge that asymptotically approaches Z − 1), as
Z → 1. The same is true for the Li isoelectronic series, both
for the ground state and for all states involving excitation of
the outermost electron.

This dichotomy raises several questions that we do not deal
with in the present paper:

(i) Is the presence of two (or more) electrons in a common
outermost shell sufficient to yield an absorbing scenario?
Indeed, systems with such configurations remain bound as
singly negative ions.

(ii) Can a two-electron open shell with the two electrons
in distinct subshells, e.g., 1s22s2p 1,3P , be absorbing?

(iii) In an open shell, such as the 1s22s22p2 3P,1D,1S

states of the C isoelectronic series, will different multiplets
have distinct critical charges? Can some be absorbing while
the others are expanding? In other words, is it possible for
some of these states, but not all of them, to be bound for
the singly negative ion? Indeed, in the isoelectronic series
mentioned above, the negative ion B− has a bound 3P state
(with binding energy 280 meV) but the corresponding 1D and
1S are resonances [21].

(iv) Can a doubly excited state, e.g., 1s22p2, be absorbing?
Indeed, the (2p)2 3P state of the H− ion is (nonrelativistically)
bound, as pointed out above.

In the present paper we examine the approach to the
critical charge of several singly excited states of the Be
isoelectronic series. The results confirm the remarks made
above, based on earlier observations, concerning the values
of the asymptotic quantum defects for expanding series,
including the irrelevance of the existence of a lower energy
absorbing series of common symmetry. The nature of the
approach to the critical charge, which is much more abrupt
for an outermost p orbital than for an outermost s orbital, is
also confirmed.

We used the relativistic multiconfiguration Dirac-Fock
(MCDF) approach to obtain the bound-state wave functions
and energies. Details of the method and its implementation are
briefly described in Sec. II.

II. THEORETICAL CALCULATIONS

The calculations of the binding energy values were
carried out within the MCDF approach using the general
relativistic MCDF code (MDFGME) developed by Desclaux
et al. [22–24]. In that approach, the electrons are treated in
the independent-particle model, and their wave functions and
energies are evaluated in the Coulomb field of the nucleus
and the spherically averaged electronic field. To improve
the accuracy of this approach we went beyond the Coulomb
approximation for the two-electron interaction by including in
the calculation the Breit interaction, that accounts for magnetic
interactions and retardation effects. The code description and
the formulas implemented can be obtained in Ref. [25].

All calculations were done for a finite nucleus using a
uniformly charged sphere. The atomic masses and the nuclear

radii were taken from the tables by Audi et al. [26] and
Angeli [27], respectively. Quantum electrodynamics (QED)
radiative corrections to the electron-nucleus interaction,
namely the self-energy and vacuum polarization, were also
included. The one-electron self-energy was evaluated using
the one-electron values of Mohr and co-workers [28–30] and
corrected for finite nuclear size [31]. The self-energy screening
and vacuum polarization were included using the methods
developed by Indelicato and co-workers [23,24,32,33].

III. CONSIDERATIONS ON THE ASYMPTOTIC
BEHAVIOR AT THE CRITICAL CHARGE

Since the characterizing feature of the critical charge is the
vanishing of the ionization energy ε, it is plausible to expect a
behavior of the form ε = α(Z − Zc)ζ , where ζ > 0 and α is a
constant, upon approach of the critical charge. The value of ζ

is fixed by the nature of the scenario, as discussed below.

A. Absorbing isoelectronic series

For the absorbing case, Zc < N − 1, the wave function
remains localized (square integrable) at the critical charge.
Since at the critical charge the ionization energy vanishes,
the virial theorem implies that the contribution of the ki-
netic energy to the ionization energy (i.e., the difference
between the kinetic energy of the N -electron system and the
(N − 1)-electron system) vanishes as well. Considering the
paradigmatic absorbing isoelectronic series, i.e., the ground
state of the two-electron atom, we note that the contribution of
the interelectronic repulsion to the ionization energy is equal
to the total interelectronic repulsion in this system, since there
is no interelectronic repulsion in the ionized (one-electron)
system. Obviously, for a localized two-electron wave function
the expectation value of the inverse of the interelectronic
distance 1

r12
, that we shall denote by C, is larger than zero.

The Hellmann-Feynman theorem implies that, at the critical
charge, C = −Zc

dε
dZ

|Z=Zc
, which is only larger than zero if

ζ = 1 [7]. In order to extend this claim to absorbing systems
with more than two electrons we note that for Z → Zc, if
ζ > 1 then not only the ionization energy but also each of its
components (nuclear attraction and interelectronic repulsion,
the kinetic energy contribution vanishing by the virial theorem)
would have to vanish simultaneously, which is highly unlikely
for an absorbing scenario (with a bound wave function at the
critical charge). Of course, ζ cannot be less than unity because
that would imply a singular behavior of the contribution of
the interelectronic repulsion (as well as that of the nuclear
attraction) at the critical charge.

As an illustration of the kind of accuracy that a naive
treatment of the spectroscopic binding energies allows, we
examine the ground state of the two-electron isoelectronic
series. Fitting the NIST [34] ionization energies for 2 < Z <

6 we obtain (setting Zc = 0.911) the two-term expression
ε ≈ 0.285(Z − Zc) + 0.500(Z − Zc)2 (in a.u.), that yields
C ≈ 0.26,0.316,and 0.942 a.u. at Z = Zc,1,2, respectively.
The (crude) value at the critical charge is in agreement
with a recent 10-digit expectation value of the interelectronic
repulsion [0.245 1890 639(1)] [6]. The values at Z = 1,2
compare reasonably well with the highly accurate computed
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values, 0.3110 and 0.9458, respectively (cf. [35], where more
digits are presented). We note that the energy of the ground
state of the helium isoelectronic sequence has an essential
singularity at Z = Zc [7], so it is not surprising that taking just
the first two terms in a series expansion yields rather crude
results.

B. Expanding isoelectronic series

In the expanding case the outermost electronic orbital
becomes infinitely diffuse upon approaching the critical
charge. Hence, the core, consisting of the nucleus and the
inner electrons, appears more and more pointlike. As a con-
sequence, the outermost electron’s wave function approaches
a hydrogenlike shape, i.e., the quantum defect approaches an
integer. Therefore, the asymptotic behavior of the ionization
energy, upon approaching the critical charge, is expected to
be quadratic, the leading term being ε ≈ (Z−Zc)2

2(n−δ)2 , in a.u. This
heuristic argument was invoked to offer the conjecture that
the limiting quantum defect for a given orbital is equal to
the number of occupied shells of the same symmetry (orbital
angular momentum) in the core [15]. It was verified for several
isoelectronic series by extrapolating the quantum defects
evaluated from the NIST [34] data (or other sources) for integer
valued nuclear charges. However,´in examining such data for
the B isoelectronic series it turned out that the monotonically
decreasing trend of the 2p quantum defects for Z = 5,6,7, . . .

does not allow extrapolation to the value δ2p = 0 expected
at Zc = 4. Hence, a series of computations for nonintegral
values of the nuclear charge, in the range 4 < Z � 5 was
undertaken [36], indicating that limZ→4 δ2p = 0, but that δ2p

obtains a maximum at Z ≈ 4.25, only below which it decreases
to its (expected) critical value.

IV. RESULTS

A preliminary examination of several states of the Be iso-
electronic series, using the NIST [34] data for Z = 4,5,6, . . . ,

allows a crude graphical estimate of the corresponding critical
charges with error bars of at least ±0.1 atomic charge units.
The ground state, (1s22s2)1S, is absorbing, which is consistent
with the positive electron affinity of the Li atom [21]. The
critical charges estimated for the (1s22s3s)1,3S as well as
for the (1s22s3p)1,3P states appear to be consistent with an
expanding scenario.

Following the extrapolation of the binding energy to find
the nuclear charge at which it vanishes, it is useful to confirm
the expanding scenario by evaluating the quantum defect of
the outermost electronic orbital, δ = n − Z−3

(2ε)
1
2

, where n is

its principal quantum number and ε is its binding energy,
and extrapolate it to Z → Zc = N − 1 = 3. Using the data
referred to above, the asymptotic quantum defects can crudely
be estimated for the (1s22s3s)1,3S states, in which they are
consistent with limZ→3 δ3s = 2. However, just like the ground
state of the B series, the excited P states of the Be series do not
allow a credible estimate of the asymptotic quantum defect on
the basis of such integral Z data.

To overcome these difficulties, computations of the binding
energy were undertaken for fractional nuclear charges within
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FIG. 1. (Color online) Binding energy of the 1s22s3s 3S1 and
1s22s3s 1S0 levels as a function of (Z − 3)2.

the range 3 < Z � 4. The results are described below for each
state considered.

A. Be 1s22s3s 3S isoelectronic series

A plot of the binding energy, relative to the three-electron
ground state 1s22s 2S, vs (Z − 3)2, over the range 3 < Z � 4,
extrapolates to zero within the range 2.98 � Zc � 3.01 (see
Fig. 1). The plot of the quantum defect, δ3s = 3 − Z−3

(2ε)
1
2

, vs

Z, where ε is the first ionization energy (given in a.u.), Fig. 2,
suggests rather convincingly that limZ→3 δ3s = 2.

We interpret this combination of data as strong evidence
for the (expected) expanding scenario, since there is no reason
for the asymptotic quantum defect to be even close to 2 for an
absorbing scenario.

B. Be 1s22s3s 1S isoelectronic series

Extrapolating the binding energies as above, the critical
charge is estimated to be within 2.98 < Zc < 3.01 (see Fig. 1).
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FIG. 2. (Color online) Quantum defect of the 1s22s3s 3S1 and
1s22s3s 1S0 levels as a function of Z.
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FIG. 3. (Color online) 1s22s3p 3P0 level binding energy as a
function of Z.

The quantum defects for Z < 3.2, as illustrated in Fig. 2,
appear to be too large (consistent with the binding energies
being too low). This is probably due to the computation failing
to converge at such low nuclear charges. Ignoring these low Z
results the quantum defects are consistent with limZ→3 δ3s =
2, just like those for the triplet.

The 1s2 2s 3s 1S state is not the lowest state of its sym-
metry type. However, the lower state of the same symmetry,
(1s2 2s2)1S, is absorbing. Therefore, the requirement of orthog-
onality to this state cannot be translated into orthogonality of
the corresponding outermost orbitals, not even at the critical
charge. Just like the (1s 2s)1S state of the He series, in which
the 2s orbital becomes 1s-like upon approaching the critical
charge, the 3s orbital here becomes 1s-like (everywhere except
within a tiny volume consisting of the core orbitals, where a
nodal structure required by the demands of orthogonality must
show up) in the same limit.
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FIG. 4. (Color online) Quantum defect of the outermost electron
for the 1s22s3p 3P0 level.
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FIG. 5. (Color online) Plot of the average radius of the 3p1/2

electron for the 1s22s3p 3P0 level multiplied by (Z − 3) as a function
of Z.

C. Be 1s22s3 p 3P0 isoelectronic series

The energies evaluated for 3 < Z � 4 allow an extrapo-
lation that fixes the critical charge within the range 2.98 <

Z � 3.00 (Fig. 3). The 3p quantum defect (Fig. 4) vanishes,
asymptotically, at large Z, rising upon lowering the nuclear
charge, reaching a maximum (δ2p ≈ 0.61) at Z ≈ 3.2. It
then decreases rapidly, vanishing, with a vanishing slope, as
Z → ∼3. An expanding behavior at Z = 3 is expected, the
3p orbital being definitely the outermost occupied orbital, and
the clear vanishing of the quantum defect does signal this
behavior. A further confirmation of the expanding behavior is
obtained by evaluating (Z − 3)〈3p|r|3p〉, that approaches the
hydrogenic value 12.5 as Z → 3 (Fig. 5).

The 3P1 and 3P2 isoelectronic series exhibit essentially
identical behavior upon approaching Z = 3.

D. Be 1s22s3 p 1P isoelectronic series

The behavior of the ionization energy (Fig. 6) and the
limiting value of the 3p quantum defect (Fig. 7), upon
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FIG. 6. (Color online) 1s22s3p 1P1 level binding energy as a
function of Z.
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FIG. 7. (Color online) Quantum defect of the outermost electron
for the 1s22s3p 1P1 level.

approaching Z ≈ 3, are very similar to those in the 3P state.
However, the quantum defect exhibits a more complicated
behavior. It vanishes asymptotically at large Z and rises
to a maximum (δ3p ≈ 0.14) at Z ≈ 5, becomes negative at
Z ≈ 3.97, reaching a minimum (δ2p ≈ −0.107) at Z ≈ 3.5,
from which it rises towards zero at Z ≈ 3.

V. CONCLUSIONS

The four states (1s22s3s)1,3S and (1s22s3p)1,3P of the Be
isoelectronic series have been established to exhibit an ex-
panding behavior, the outermost orbital becoming an infinitely

diffuse hydrogenlike orbital upon approaching the critical
charge, Zc = 3. The mere extrapolation of the ionization
energies allows a (narrow) range of indefiniteness of the value
of the critical charge. However, two features allow a conclusive
establishment of the expanding nature of the approach to the
critical charge: (1) the ionization energy vanishes linearly
in (Z − Zc)2; (2) the quantum defect corresponding to the
outermost orbital approaches an integer that is equal to
the number of occupied (or partially occupied) subshells of
the same symmetry in the atomic core.

We propose to study the influence of relativistic and QED
effects on the critical charge in some heavy and super-
heavy elements, where these effects should be important. For
instance, Eliav et al. [37] found that the rare gas element 118
is the first rare gas with an electron affinity. It follows that the
“alkali metal” Z = 119 is absorbing, although all lighter alkali
metals are expanding.
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