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Nonlinear atomic spectroscopy inside a random porous medium
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We have studied the pump-probe spectroscopy of rubidium vapor confined to the micrometric interstices of
a random porous glass. Due to the propagation in the highly scattering medium, the light fields are randomized
inside the sample with significant consequences for the atomic spectra. A two-frequency modulation technique
was used to isolate the atomic response proportional to the product of the intensities of the pump and probe
fields. Unusual line shapes were observed which include relatively narrow structures that are present in spite of
the Doppler broadening due to the atomic velocity distribution. A simple theoretical modeling of the light-atom
interaction that assumes statistical isotropy of the diffuse light field and mutual temporal incoherence of the
pump and probe fields is presented. Using a single adjustable parameter to account for the atomic confinement,
the model successfully describes the diversity of the observed spectral line shapes.
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I. INTRODUCTION

The spectra of atoms confined to small volumes present
interesting differences with those of atomic vapors observed
in standard spectroscopic cells. In thin cells, where the atoms
are confined within two parallel windows separated by several
microns, sub-Doppler spectral features appear in the linear
interaction of the atoms with laser light [1,2]. Nanometric
thin cells, with a window separation comparable to the optical
wavelength, have been used to observe the enhancement of the
coherent transient atomic response due to Dicke narrowing and
to study long-range atom-wall interactions [3,4]. Nanocells
have been also used to study either new physical phenomena
such as the cooperative Lamb shift [5] or the enhanced
optical response of high density Rb vapor [6]. More recently,
electromagnetically induced transparency (EIT) resonances
have been observed in micrometric thin cells [7–9] and even
in nanometric thin cells [10,11].

In parallel to the interest for the spectroscopy of atoms
under confinement, the use of diffuse light for spectroscopy
purposes has attracted increased attention in the last few
years. Light diffusion in strongly scattering media allows long
effective light paths that can be used for sensitive spectroscopy
in a reduced volume [12–14] and for the construction of
miniaturized spectrometers [15]. Sub-Doppler spectroscopic
signals were observed in a linear regime in the backscattered
light from a photonic crystal of nanospheres infused with Cs
[16]. Diffuse light is also at the core of the research on random
lasers [17,18] and weak and strong Anderson localization (see
Ref. [19], and references therein).

In a recent work [20], we have reported a study of the
resonance spectroscopy of Rb inside a random porous glass
medium. In such a medium, the atomic motion is limited by the
pore dimensions, resulting in reduced light-atom interaction
times due to collisions with the pore walls. We have shown
that, as a consequence of the spatial randomization of the
light wave vector due to diffusive propagation in the porous
medium, the laser photons cannot be distinguished from those
spontaneously emitted by the atoms. A striking consequence
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is that almost no absorption is observed on the light scattered
through the medium since the photons absorbed by the atoms
are almost entirely compensated by fluorescence. For higher
atomic densities, such compensation is less effective as photon
trapping increases the probability for an excited atom to
collide with the pore surface and decay nonradiatively. The
same porous medium shows sub-Doppler resonances in the
backscattered light due to saturated absorption of the Rb vapor
in the interstices of the medium near its surface [21].

In this paper we study the nonlinear response to two laser
fields—a pump and a probe—of Rb atoms confined to the
micrometric interstices of porous glass. Both laser fields are
independently and strongly scattered by the porous medium,
giving rise to stochastic spatial variations of their phase,
amplitude, and polarization over short distances (typically
of the order of the wavelength). The interaction of such
random light with atoms possessing random velocities in-
side random pore volumes gives rise to several interesting
problems. Harnessing this triple randomness might appear
to be a considerable challenge. In fact, as will be shown
below, considerable simplification results when the observed
quantities are statistical averages over the ensemble.

Two mechanisms can be pinpointed as the origin of a
nonlinear atomic response proportional to the product of the
powers of the two fields. One mechanism is saturation: The
presence of one field resonant with an atomic transition reduces
the population difference between the ground and the excited
level, rendering the transition more transparent to the second
field. A second mechanism is optical pumping, where atoms
excited from one ground level decay by spontaneous emission
into a different ground level.

II. EXPERIMENTAL SETUP

The porous sample cells were built following the procedure
described in Refs. [20,21]. The porous medium is obtained
from ground glass followed by sinterization. The glass grains
that compose the porous material are roughly selected by the
use of a passing and a retaining mesh. Two different porous
glass cells filled with rubidium vapor were used in the experi-
ment. The first cell was made with glass grains that had passed
through a 200-μm mesh and were retained by a 74-μm mesh.
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FIG. 1. (Color online) Scheme of the experimental setup show-
ing the porous cell (picture) and detection optics. The collecting
lens produces the image of a portion of the porous glass surface on
the photodetector. The cell is placed inside an oven (not shown).
A chopper wheel modulates the pump- and probe-laser beams at
frequencies f1 and f2. The f1 + f2 frequency component of the
photodetector output is extracted with a lock-in amplifier (not shown).

We will call this the large-grain cell. The second cell, desig-
nated as the small-grain cell, was made with ground glass hav-
ing passed through a 54-μm mesh. A sedimentation column is
used for additional grain size selectivity. The typical size of the
interstitial pores ranges between 10 and 100 μm, depending
on the sample. The porous material is placed at the flat end
of a cylindrical 6-mm-diam glass tube. After inserting a drop
of metallic rubidium, the tube is sealed under vacuum. During
the experiments, the cell was heated to 120 ◦C inside an oven
with optical windows to increase the atomic vapor density.

The scheme of the experimental setup is presented in
Fig. 1. We use two different extended cavity diode lasers
operating around the D1 transitions of Rb (795 nm). The pump
laser, when working at resonance or at a crossover frequency,
was frequency stabilized on a saturated absorption setup. A
stabilization system was not used when working at other fre-
quencies, as the laser was stable enough to be kept at a constant
frequency without the use of an active control. The probe laser
is tunable and a second saturation absorption setup is used as a
frequency reference. The two laser beams are weakly focused
on different spots of the nearly flat end of the sample cylinder.
The powers of the pump and probe lasers are typically 15 and
10 mW, respectively. A significant reduction of the light in-
tensity inside the porous volume is expected as a consequence
of the diffusive propagation in the sample. A small fraction of
the light emerging from the cylindrical surface of the sample
is collected by a lens and directed into a photodiode.

In order to be sensitive only to the nonlinear atomic
response proportional to the two laser field intensities, we
have implemented a double-modulation signal detection. The
two laser beams were modulated at different frequencies using
a chopper. We use a lock-in amplifier to extract the signal
modulated at the sum of the two chopping frequencies.

III. MODEL

In order to calculate the nonlinear atomic response we first
evaluate, as a function of the pump and probe frequencies, the

number of atoms simultaneously resonant with the two fields,
taking into account the distribution of atomic velocities in the
vapor and the Doppler effect. For this calculation we neglect
the homogeneous width of the transition, which is assumed
to be much smaller than the typical Doppler width. Once the
number of double-resonant atoms for a given pair of atomic
transitions is known, we estimate its contribution to the signal.

The main mechanisms responsible for light power varia-
tions at the detector are energy loss by nonradiative decay
of excited atoms colliding with the pore walls and resonant
scattering of the light into propagation modes not directed to
the detector. Based on our previous study [20], we believe
the first mechanism to be dominant. In any case, the two
mechanisms are proportional to the excited-state population. In
consequence, we use the calculated excited-state atomic popu-
lation as a measure of the variation of the photodetector output.

The excited-state population is calculated for a given
energy-level configuration using rate equations. The use of rate
equations in this context is naturally justified by the assumption
that coherence effects are statistically averaged. The signal
processing technique used in our experiment allows one to
extract from the detector output the contribution proportional
to the product of the two field intensities. To estimate such
a signal, we expand the exact expression of the excited-state
population obtained from the solution of the rate equations
into a power series of the field intensities and retain only the
lowest-order term proportional to the product of the intensities.

A. Calculation of the number of double-resonant atoms

The basic assumption of our model is that the two laser
fields (pump and probe) are completely and independently ran-
domized by scattering in the porous medium. In consequence,
at any position in the sample the fields can be considered as
a statistically isotropic random superposition of plane waves,
each characterized by its wave vector. We calculate the number
of atoms interacting with the two fields by determining the
atoms simultaneously resonant with a given pair of pump and
probe plane waves and assuming that the contributions of all
possible pairs can be incoherently added.

Let the frequency of the pump field be ω0 + � and that
of the probe field ω1 + δ, where ω0 and ω1 are two atomic
transition frequencies (δ,� � ω0,ω1). We initially assume
that the pump field wave vector is directed along z while the
probe field wave vector lies in the xz plane, forming an angle
θ with the z axis. Let �v = (vx,vy,vz) be the atomic velocity.

The Maxwell velocity distribution for the x and z velocity
components is

N (vx,vz) = N0

2πσ 2
e
− (v2

x+v2
z )

2σ2 , (1)

where N0 is the total number of atoms in the sample and
σ 2 = kBT

m
(kB is the Boltzmann constant, T is temperature,

and m is the atom mass).
Neglecting the atomic transition homogeneous width, the

resonance conditions for the two fields are

k0vz = �, (2)

k1vx sin θ = δ − � cos θ, (3)
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with ki = ωi/c. In consequence, the number of double-
resonant atoms is

N (δ,�) = N0

πD2
e
− �2 sin2 θ+(δ−� cos θ )2

D2 sin2 θ , (4)

where we have introduced the e−1 Doppler half width D ≡√
2kσ and neglected a small difference between k0 and k1

(k = k0 � k1). Equation (4) shows that N (δ,�) is a Gaussian
function of δ centered at δ = � cos θ with an e−1 width
D sin θ .

We now generalize the previous expression by consider-
ing that the probe field wave vector is oriented along the
direction defined by the polar angles θ and ϕ. Assuming
a uniform distribution of the probe waves over a solid
angle and integrating over all possible orientations of the
probe,

N (δ,�) = N0

2πD2

∫ π

0
e
− �2 sin2 θ+(δ−� cos θ )2

D2 sin2 θ sin θdθ. (5)

Finally, introducing the variable change cos θ = u, we get

N (δ,�) = N0

2πD2

∫ +1

−1
e
− (�2+δ2−2uδ�)

D2(1−u2) du. (6)

This expression corresponds to a sum of Gaussian functions
of δ with width D

√
1 − u2 and whose centers are spread over

the interval [−�, +�].
Equation (6) was obtained under the assumption that

the pump field has a well-defined orientation. However, the
isotropy of the light propagation inside the sample ensures
that it remains valid even when the pump field is composed of
an incoherent sum of randomly oriented waves. Assuming that
the pump field has a fixed detuning � and that its spectral width
is ε (ε � D), we get the distribution N (δ) of double-resonant
atoms as a function of the probe detuning δ:

N (δ) = N0ε

2πD2

∫ +1

−1
e
− (�2+δ2−2uδ�)

D2(1−u2) du. (7)

Figure 2 shows the distribution function N (δ) calculated
for a single transition atom (ω1 = ω0) for two different values
of the pump detuning �. For comparison, a Gaussian with an
e−1 half width D, which we will refer to as the Doppler profile,
and a Gaussian profile with the same width at half maximum
as N (δ) are also shown. When � = 0 [Fig. 2(a)], Eq. (7)
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FIG. 2. (Color online) Double-resonant atom number function
N (δ) (solid) for two different pump detunings: (a) � = 0 and
(b) � = 2D (D is the e−1 Doppler half width). For comparison,
a Gaussian of half width D (dashed) and a Gaussian with the same
width at half maximum as N (δ) (dotted) are shown.
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FIG. 3. (Color online) Number of double-resonant atoms with
two transitions separated by ω1 − ω0 = 3D (solid). The dotted
lines correspond to the atomic transition frequencies. The arrow
indicates the frequency of the pump field. (a) Symmetric pump
field detuning � = 1.5D. (b) Asymmetric pump field detuning
� = −1.5D. Dashed line: Sum of two Gaussian functions of e−1

half width D.

describes a sum of Gaussians centered at the origin, whose
widths are narrower than D. As a result, N (δ) is narrower
at half maximum by a factor 0.753 than the Doppler profile.
When � �= 0 [Fig. 2(b)] the peak value of the distribution
is reduced by the factor exp[−(�/D)2]. In this case, for
small values of δ, N (δ) is a slowly varying function until
δ approaches ±�, where a steep decrease occurs.

The most striking difference between the distribution given
by Eq. (7) and the distribution of double-resonant atoms when
only two plane waves are considered is that the former is an
even function of δ for any value of the pump detuning while
the latter is generally not centered at δ = 0 unless � = 0
[see Eq. (4)]. The symmetry of N (δ) around δ = 0 is
a consequence of the averaging over all possible relative
orientations of the pump and probe fields.

The departure of N (δ) from a Gaussian profile has
significant spectral consequences. When the pump field is
tuned to resonance with a given transition, the corresponding
distribution of the double-resonant atoms is narrower than
the Doppler profile. When the pump field is detuned from
resonance, not only can the double-resonant atom profile be
significantly broader than the Doppler profile, but also different
spectral features arise. Such features are better appreciated
when the atom possess two nearby transitions. Depending on
the frequency of the pump field and the separation between
the atomic transitions compared to the Doppler width, a
large variety of line shapes can occur. Two examples are
given in Fig. 3, where the number of double-resonant atoms
is plotted for atoms with two transitions with a frequency
separation 3D. The narrow peak appearing around the line
center is a consequence of the steepness of the decay of N (δ)
around |δ| � |�|. Notice that the position of the pump field
does not necessarily correspond to that of the central narrow
peak.

B. Calculation of the excited-state population

With the D1 hyperfine transitions of Rb in mind, we
consider an atom with two ground levels g1 and g2 and
two excited levels e1 and e2. Depending on the transitions
addressed by each field, four possible kinds of level schemes
can occur: a two-level system with two fields, a V system,
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FIG. 4. (Color online) Field and level schemes for double-
resonant atoms with two ground levels g1,g2 and two excited levels
e1,e2. Solid arrows: Pump (thick) and probe (thin) fields. Dotted
arrows: Spontaneous emission decay. Twelve similar additional
schemes are obtained by interchanging the pump and probe fields
or the atomic levels.

a 
 system, and two separate two-level systems. Examples
of these level schemes are sketched in Fig. 4. A total of 16
level schemes arise on the D1 line by interchanging the fields
or the atomic levels. Each scheme corresponds to a different
set of rate equations obtained by assuming isotropical and
unpolarized light fields [22]. As an example, the rate equations
for the case of the 
 system of Fig. 4(c) are

ṅg1 = −
(

γ + s1,1I1

dg1

)
ng1 +

(
�p1,1 + s1,1I1

de1

)
ne1 + γ n10,

(8a)

ṅg2 = −
(

γ + s2,1I2

dg2

)
ng2 +

(
�p1,2 + s2,1I2

de1

)
ne1 + γ n20,

(8b)

ṅe1 = s1,1I1

dg1

ng1 + s2,1I2

dg2

ng2

−
[
γ + � + (s1,1I1 + s2,1I2)

de1

]
ne1 , (8c)

where ng1 , ng2 , and ne1 are the level populations. Here � is
the total excited-state decay rate, and γ is an overall decay
rate affecting all states. In our system this rate accounts
in a simplified way for the interruption of the light-atom
interaction due to a collision with a pore wall. I1 and I2

are proportional to the intensities of the pump and probe
fields, respectively, si,j is a numerical coefficient representing
the strength of the transition from gi to ej [23], pi,j is the
probability for radiative decay from the excited level ei to the
ground level gj , dgi (ei ) ≡ 2Fi + 1 is the degeneracy of level
gi(ei) (Fi is the total angular momentum), and ni0 are the
ground level populations in the absence of light and for fresh
atoms coming into the system. They are assumed to be thermal:
ni0 = n0dgi

/(dg1 + dg2 ), where n0 is the total number of atoms
interacting with the two fields.

After obtaining the steady-state solution to the rate equation
system we expand the total excited-state population ne =
ne1 + ne2 into a power series of I1 and I2:

ne = η(1)
e I1 + η′(1)

e I2 + η(2)
e I1I2 + · · · . (9)

TABLE I. Transition strength coefficients si,j for the D1 transi-
tions of the two Rb isotopes [22,23].

e1 e2 e1 e1
87Rb (F = 1) (F = 2) 85Rb (F = 2) (F = 3)

g1 (F = 1) 1/6 5/6 g1 (F = 2) 2/9 7/9
g2 (F = 2) 1/2 1/2 g2 (F = 3) 5/9 4/9

The expressions for η(2)
e corresponding respectively to the level

schemes presented in Fig. 4 are given below:

η(2)
e = −K2n0

s2
1,1

dg1

[
p1,2 + x

(
1 + dg1

de1

)]
, (10a)

η(2)
e = −Kn0

s1,1s1,2

dg1

(p1,2 + p2,2 + 2x), (10b)

η(2)
e = Kn0s1,1s2,1

[
1

dg2

(
p1,2 − dg2

de1

x

)

+ 1

dg1

(
p1,1 − dg1

de1

x

)]
, (10c)

η(2)
e = Kn0s1,1s2,2

(
p1,2

dg2

+ p2,1

dg1

)
, (10d)

where x = γ /� and K = [γ�(dg1 + dg2)(1 + x)2]−1.
The terms on the right-hand side of Eqs. (10) that are

proportional to the decay probabilities pi,j represent optical
pumping while the terms proportional to x originate from
saturation. The overall result of both processes corresponds to
increased transparency in the case of Eqs. (10a) and (10b) and
to increased absorption in the case of Eq. (10d) (notice the
sign change). Equation (10c) is special since it corresponds
to absorption for small x but reverses into transparency for
x > xc with

xc = de1

2

(
p1,2

dg2

+ p1,1

dg1

)
. (11)

C. Calculation of the nonlinear signal

For a given value of the pump frequency, Eq. (7) is
used to evaluate the total number of double-resonant atoms
as a function of the probe frequency for all 16 possible
transition pairs in a given isotope (T = 393 K is used). The
obtained value is used as n0 on each of Eqs. (10) for the
determination of the excited-state population coefficient η(2)

e

using the parameters given in Tables I and II [22,23]. The total
nonlinear signal is given by the sum of all the η(2)

e ’s considering
all level schemes in the D1 transitions of 87Rb and 85Rb. In
this calculation the only free parameter is x, which is the ratio

TABLE II. Spontaneous decay probabilities pi,j from excited
level ei to ground level gj for the two Rb isotopes [23].

e1 e2 e1 e1
87Rb (F = 1) (F = 2) 85Rb (F = 2) (F = 3)

g1 (F = 1) 1/4 5/8 g1 (F = 2) 2/7 7/11
g2 (F = 2) 3/4 3/8 g2 (F = 3) 5/7 4/11
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between the rate γ describing the loss (and renewal) of atoms
interacting with light and the excited-state decay rate �.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 5 shows the recorded nonlinear signal as a function
of the probe-laser frequency for the two cells and for different
values of the pump-laser frequency. Also shown in Fig. 5
are the corresponding calculated spectra. On each row the
spectra are normalized to the same maximum. The only free
parameter in the calculation x = γ /� has been chosen to fit
the observations of a given cell. Consistently we have used
x = 0.2 for the large-grain cell and x = 0.5 for the small-grain
cell. Notice that the choice of a single value of x for each
cell results in a good agreement between experimental and
calculated spectra for different values of the pump frequency.

1→2
1→1

2→2
2→1

(a) Small grains cell

0

(g) γ/Γ=0.5
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FIG. 5. (Color online) Nonlinear signal around the D1 transitions
of Rb as a function of probe frequency for different frequencies of
the pump field. First column: Experimental signal. Second column:
Corresponding calculated signal. The arrow indicates the pump-laser
frequency. Two different cells were used (see text). Plots on the
same row are normalized to the same maximum value. The value
of x = γ /� used in the calculation is given. The dotted curve in
(h) is proportional to the calculated value of η′(1)

e giving the linear
response to the probe field [see Eq. (9)]. The saturated absorption
signal used for frequency calibration is shown in (d) (upper trace).
Vertical dashed lines correspond to the frequencies of the hyperfine
transitions Fg → Fe of 87Rb.

The use of a larger value of x for the smaller-grain cell is
consistent with the expectation of smaller pore dimensions and
consequently with a larger decay rate γ due to the interruption
of the atomic evolution by collisions with the pore walls. The
figures for γ obtained from the values of x mentioned above
are typical inverse time of flight for thermal atoms inside pores
with tenth of microns dimensions. Interestingly enough, the
value of x in the small-grain cell is larger than the value of
xc = 0.35 [see Eq. (11)] associated with the F = 1 → F ′ = 1
transition. In consequence, the peak for this transition in the
small-grain cell corresponds to gain instead of absorption
[compare, for instance, Figs. 5(a) and 5(g) with Figs. 5(d)
and 5(j)].

The nonlinear signal is highly isotope selective. Since the
pump field is near the 87Rb transitions, the contribution of 85Rb
atoms is very small.

Clearly visible in Fig. 5 is the departure of the nonlinear
signal line shape from the usual Gaussian Doppler profile. For
comparison Fig. 5(h) shows the calculated linear response to
the probe field. Notice the resolved Gaussian shapes and the
significant contribution of 85Rb atom peaks. The spectra shown
in Figs. 5(b) and 5(h), 5(e) and 5(k), 5(c) and 5(i), and 5(f)
and 5(l) are clearly reminiscent of the line shapes presented
in Fig. 3. They present the characteristic sharp peak halfway
between the F = 2 to F ′ = 1 and F = 2 to F ′ = 2 transitions
of 87Rb, which is the consequence of the steepness of the flank
of the double-resonant atom number distribution. The plots
presented in Fig. 5 correspond to a pump field tuned around
the Fg = 2 → Fe = 1 transition of 87Rb. We have checked that
a similarly satisfactory agreement between observations and
model is achieved when the pump is tuned to other frequencies
within the Rb D1 line.

In spite of the general agreement between the observations
and the numerical modeling, some differences appear. In
general, the spectral lines in the experimental plots are broader
and the spectrum is less resolved than in the calculated spectra.
Also, a visible, though small, contribution of 85Rb atoms
is present on several spectra of Fig. 5 [see, for instance,
Figs. 5(b) and 5(e)]. We interpret these facts as owing to the
frequency redistribution of light due to multiple absorption
and reemission cycles. Indeed, we know from previous work
that photon trapping is significant at the vapor density used
in the experiments [20]. The frequency redistribution would
result in an effective spectral broadening of the exciting
light and consequently of the nonlinear signal line. Also,
frequency redistribution can favor excitation of far-detuned
85Rb transitions.

It is worth noticing that our crude modeling of a statistically
complex physical process via simple rate equations results in
good agreement with the experimental records. The theoretical
modeling relies on a single parameter x. The calculated line
shapes are very sensitive to the value of x that affects the
relative weight and sign of the different peaks in the spectrum.
As shown in Fig. 5, a proper choice of x allows a quite
satisfactory reproduction of the overall line shape. Noticeable
exceptions are the absorption dips at the Fg = 1 → Fe = 2
transition in Figs. 5(b) and 5(e), which are overestimated in the
calculation [Figs. 5(h) and 5(k)]. Whether this disagreement
results from the above-mentioned frequency redistribution
deserves further investigation.
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V. CONCLUSION

We have presented the experimental study of incoherent
pump-probe spectroscopy in Rb vapor confined to the micro-
metric interstices of porous glass. An essential characteristic
of our system, the diffuse nature of light, introduces unusual
and singular line shapes producing, under specific conditions,
steep slopes and relatively narrow peaks in spite of the
Doppler broadening due to the atomic motion. The origin
of these narrow features was identified as a consequence of
the averaging of the atomic response over all possible relative
orientations of the pump and probe waves.

The disorder of the light as well as the variation in the atomic
confinement geometry could in principle represent a major

obstacle for the precise description of the light-atomic vapor
interaction. However, we have shown that the assumption of
complete randomness of these parameters allows a simplified
and reliable theoretical treatment that correctly predicts a vari-
ety of spectra with only one free parameter related to the atom
confinement. The relaxation of the assumption of complete
light randomness is the motivation of future investigations.
An extension of this work to temporal coherence spectroscopy
with spatially random light is currently under way.
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