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Tuning the Casimir-Polder interaction via magneto-optical effects in graphene
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We investigate the dispersive Casimir–Polder interaction between a rubidium atom and a suspended graphene
sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for an
unprecedented control of dispersive interactions at micro- and nanoscales. Indeed, we show that the application
of an external magnetic field can induce an 80% reduction in the Casimir–Polder energy relative to its value
without the field. We also show that sharp discontinuities emerge in the Casimir–Polder interaction energy
for certain values of the applied magnetic field at low temperatures. Moreover, for sufficiently large distances,
these discontinuities show up as a plateau-like pattern with a quantized Casimir–Polder interaction energy, in a
phenomenon that can be explained in terms of the quantum Hall effect. In addition, we point out the importance of
thermal effects in the Casimir–Polder interaction, which we show must be taken into account even for considerably
short distances. In this case, the discontinuities in the atom-graphene dispersive interaction do not occur, which
by no means prevents the tuning of the interaction in ∼50% by the application of the external magnetic field.
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It has been known for a long time that quantum fluc-
tuations give rise to interactions between neutral but po-
larizable objects (atoms, molecules, or even macroscopic
bodies) which do not possess any permanent electric or
magnetic multipoles. These are referred to as dispersive
interactions, first explained in the nonretarded regime by
Eisenchitz and London [1]. Retardation effects were first
reported by Casimir and Polder [2,3] in works that pioneered
the study of dispersive interactions between an atom and a
perfectly conducting plane for arbitrary distances, generalizing
the Lennard–Jones nonretarded result [4]. Since then these
interactions, nowadays known as Casimir–Polder forces, have
been diligently investigated both theoretically [5–11] and
experimentally [12–18]. If instead of perfectly conducting
plates one considers dispersive media, the calculations become
more involved; this has motivated the development of a general
theory of dispersive forces, including thermal effects [19,20].
Dispersive forces play an important role in many different
areas of research and applications, ranging from biology and
chemistry [21,22] to physics, engineering, and nanotechnology
[8–10,23,24].

Recently, great attention has been devoted to dispersive
interactions in carbon nanostructures, such as graphene sheets.
These systems are especially appealing since graphene pos-
sesses unique mechanical, electrical, and optical properties
[25]. Recently, dispersive interactions between graphene
sheets and/or material planes have been investigated [26–39],
as well as the Casimir–Polder interaction between atoms and
graphene [40–45]. In particular, the impact of a graphene
coating on the atom-plate interaction has been calculated for
different atomic species and substrates; in some cases this
results in modifications of the order of 20% in the strength of
the interaction [44]. Furthermore, results on the possibility of
shielding the dispersive interaction with the aid of graphene
sheets have been reported [45].

However, the possibility of controlling the Casimir–Polder
interaction between an atom and a graphene sheet by an
external agent has never been envisaged so far. The possibility
of varying the atom-graphene interaction without changing
the physical system would be extremely appealing for both

experiments and applications. With this motivation, and
exploring the extraordinary magneto-optical response of
graphene, in the present work we investigate the Casimir–
Polder interaction between a rubidium atom and a suspended
graphene sheet under the influence of an external magnetic
field B. We show that, just by changing the applied magnetic
field, the atom-graphene interaction can be greatly reduced
by up to 80% of its value without the field. Furthermore,
we demonstrate that, at low temperatures (T � 4 K), the
Casimir–Polder energy exhibits sharp discontinuities at certain
values of B, which we show to be a manifestation of the
quantum Hall effect. As the distance z between the atom
and the graphene sheet grows to z � 1 μm, these discon-
tinuities form a plateau-like pattern with quantized values
for the Casimir–Polder energy. We also show that, at room
temperature (T � 300 K), thermal effects must be taken into
account even for considerably short distances. Moreover, in
this case the discontinuities in the atom-graphene interaction
do not occur, although the Casimir–Polder energy can still be
tuned in ∼50% by applying an external magnetic field.

Let us consider that an isotropic particle is placed a distance
z above a suspended graphene sheet biased by a static magnetic
field B = B ẑ, as depicted in Fig. 1. The whole system is
assumed to be in thermal equilibrium at temperature T . When
B �= 0 the optical properties of graphene can be well described
in terms of a homogeneous but anisotropic two-dimensional
conductivity tensor. In this case, the Casimir–Polder (CP)
energy interaction can be calculated through the scattering
approach and can be cast as [46]

UT (z) = kBT

ε0c2

∞∑
l=0

′
ξ 2
l α(iξl)

∫
d2k

(2π )2

e−2κlz

2κl

×
[
rs,s(k,iξl,B)−

(
1+2c2k2

ξ 2
l

)
rp,p(k,iξl,B)

]
, (1)

where ξl = 2πlkBT /� are the so-called Matsubara frequen-
cies, κl =

√
ξ 2
l /c2 + k2 , α(iξ ) is the electric polarizability of

the particle, and rs,s(k,iξ,B), rp,p(k,iξ,B) are the diagonal
reflection coefficients associated with graphene. As usual, the
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FIG. 1. (Color online) System of suspended graphene and an
isotropic particle at a distance z, in presence of a static perpendicular
magnetic field.

prime in the summation means that the zeroth term has to be
weighted by a factor of 1

2 . Note that the cross-polarization
reflection coefficients rs,p(k,iξ,B) and rp,s(k,iξ,B), despite
being nonvanishing, do not appear in Eq. (1). This, however,
does not mean that anisotropy plays no role in the interaction
energy, as transverse conductivities or permittivities could
still appear in rs,s(k,iξ,B) and rp,p(k,iξ,B). In particular,

by modeling graphene as a two-dimensional (2-D) material
with a surface density current K = σ · E|z=0 and applying the
appropriate boundary conditions to the electromagnetic field,
one can show that the reflection coefficients are [34]

rs,s(k,iξ,B)= 2σxx(iξ,B)Zh + η2
0[σxx(iξ,B)2 + σxy(iξ,B)2]

−	(k,iξ,B)
,

(2)

rp,p(k,iξ,B)= 2σxx(iξ,B)Ze + η2
0[σxx(iξ,B)2 + σxy(iξ,B)2]

	(k,iξ,B)
,

(3)

	(k,iξ,B) = [2 + Zhσxx(iξ,B][2 + Zeσxx(iξ,B)]

+ [η0σxy(iξ,B)]2, (4)

where Zh = ξμ0/κ , Ze = κ/(ξε0), and η2
0 = μ0/ε0. Besides,

σxx(iξ,B) and σxy(iξ,B) are the longitudinal and transverse
conductivities of graphene, respectively.

The electric conductivity tensor of graphene under an
external magnetic field is well known and reads [47,48]

σxx(iξ,B) = e3v2
F B�(ξ + τ−1)

π

∞∑
n=0

{
nF (Mn) − nF (Mn+1) + nF (−Mn+1) − nF (−Mn)

Dn(Mn+1 − Mn)
+ (Mn → −Mn)

}
, (5)

σxy(iξ,B) = e3v2
F B

−π

∞∑
n=0

{nF (Mn) − nF (Mn+1) − nF (−Mn+1) + nF (−Mn)}
[

1

Dn

+ (Mn → −Mn)

]
, (6)

where 1/τ is a phenomenological scattering rate, nF (E) is
the Fermi–Dirac distribution, Dn = (Mn+1 − Mn)2 + �

2(ξ +
τ−1)2, and Mn = √

nM1 are the Landau energy levels, M2
1 =

2�eBv2
F is the Landau energy scale, and vF � 106 m/s is

the Fermi velocity. Also, in the following we use τ = 1.84 ×
10−13 s and set the chemical potential to be μc = 0.115 eV.

We still have to specify the particle in our setup. It turns out
that a rubidium atom is a convenient choice, since there are
experimental data on its complex electric polarizability α(ω)
for a wide range of frequencies [49]. At this point it is worth
mentioning that the rubidium ground-state polarizability is
strongly dominated by the D-line transitions [50], which occur
around 380 THz. Even though Zeeman shifts ∼0.05 THz/T
(strong-magnetic-field regime) do exist at these transitions
[51], we checked that they are negligible for calculations of the
dispersive interaction for the values of B used throughout
the paper. Finally, as is clear from Eq. (1), we actually need
the polarizability evaluated at imaginary frequencies, which
can be readily be obtained from the Kramers–Kronig relations
provided one has the data for Imα(ω) [46].

Our first results are summarized in Fig. 2(a), where we
depict the CP energy of our setup as a function of the
atom-graphene distance z and magnetic field B for T =
4 K (normalized by its corresponding value for B = 0 T).
The hallmark of this plot is, surely, the great amount of
discontinuities shown by the energy as a function of B for all
distances considered. These drops show up even more clearly

in Figs. 2(b) and 2(c), where we take two cuts of Fig. 2(a)
at two different fixed values of z; namely, z = 100 nm and
z = 1 μm, and present them as 2-D plots. Such discontinuities
are directly linked to the discrete Landau levels brought about
by the application of a magnetic field. In order to understand
the situation, let us consider the energy-momentum dispersion
diagram of graphene in the presence of a static magnetic field
depicted in Fig. 3. On the left the usual linear dispersion
relation of graphene is presented by the blue solid line. Due
to the magnetic field the carriers in graphene can occupy only
the discrete values of energy given by the Landau levels Mn

represented by black dots. The allowed transitions between
two Landau levels give rise to all terms of the summations in
Eqs. (6) and (7). There are two kinds of transitions: interband
transitions, which connect levels at distinct bands (e.g., long
arrow between −Mnc

and Mnc+1), and intraband transitions
that involve levels at the same band (e.g., short arrow between
Mnc

and Mnc+1). The possibility of a specific transition occur-
ring is related to the difference between the probabilities of
having the initial and final levels full and empty, respectively.
Ultimately, these probabilities are given by the Fermi–Dirac
distribution (solid orange line on the right of Fig. 3). Hence,
whenever a given Landau level, whose position in energy
depends on B, crosses upwards (downwards) the chemical
potential (dot-dashed green line) of the graphene sheet, it gets
immediately depopulated (populated) as a consequence of the
quasi-step-function character of the Fermi–Dirac distribution
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FIG. 2. (Color online) (a) The Casimir–Polder energy of a rubid-
ium atom in front of a graphene sheet subjected to a magnetic field
B as a function of B and distance z. (b), (c) The Casimir–Polder
energy as a function of B for two fixed distances: (b) z = 100 nm,
and (c) z = 1 μm. In all plots μc = 0.115 eV, T = 4 K, and we have
normalized U4(z,B) by the energy in the absence of magnetic field,
U4(z,0).

at 4 K. Therefore, the crossing of the nth level sharply
quenches the Mn ↔ Mn+1 transition; at the same time it
gives birth to the Mn−1 ↔ Mn transition [47,48] in a process
that discontinuously changes the conductivity and thus the
interaction energy. The fact that the CP energy always drops
down at a discontinuity as we increase B may be understood
by recalling the behavior of the relativistic Landau levels with√

n (see above). This square-root growth implies that the
n − 1 ↔ n gap is wider than the n ↔ n + 1 gap, making the
transition weaker and hence reducing the overall conductivity.
A similar analysis is valid for the interband transitions.

Figure 2 also reveals that a flattening of the steps in the
CP energy between drops occurs as B increases. However,
if on the one hand for z = 100 nm only the very last step
is really flat, on the other hand many plateau-like steps exist
for z = 1 μm. This result is connected to the electrostatic
limit of the conductivity: for large distances the exponential

FIG. 3. (Color online) The left side shows the energy-momentum
dispersion diagram of graphene in a magnetic field. The blue lines
show the usual linear dispersion relation of graphene while the Landau
levels brought forth by the introduction of B are represented by the
black dots. The long (short) vertical arrow shows the lowest energy
interband (intraband) transition crossing the chemical potential (dot-
dashed green line). The right side shows the Fermi–Dirac distribution
at temperature T .

factor in Eq. (1) strongly suppress all contributions coming
from l �= 0, whereas for l = 0 and large magnetic fields
σxx ∼ 0 and σxy ∼ ±(2N + 1)e2/(π�), where N is an integer
[25]. Therefore, in the limit of large distances (of the order
of micrometers) only the Hall conductivity contributes to
U4(z,B), and the CP energy became almost quantized [34].
Furthermore, one should note the striking reduction in the
force as we sweep through different values of B. While for
z = 100 nm this reduction can be as hight as 30%, one can
get up to an impressive 80% decrease in the CP interaction
for z = 1 μm and B � 10 T, with huge drops in between.
Finally, it should be remarked that, for B � 10 T, the CP
interaction is practically insensitive to changes in the magnetic
field, regardless of the atom-graphene distance. In this regime
the discontinuities in the CP energy do not occur any longer.
This effect has its origins in the fact that there is a critical value
of the magnetic field Bc (in the present case, Bc ∼ 10 T) for
which the transition M0 → M1 is dominant since all Landau
levels, except M0, are above the chemical potential. The value
of the critical magnetic field can be estimated by solving
the equation μc = M1 =

√
2�eBcv

2
F . Altogether, our findings

suggest that the atom-graphene system is particularly suited
for investigation of the effects of external magnetic fields on
CP forces and may pave the way for an active modulation of
dispersion forces in general.

In order to investigate thermal effects, in Fig. 4(a) we
present the CP energy as a function of both z and B at
room temperature. The most distinctive aspect of Fig. 4(a)
is the complete absence of discontinuities that characterize the
behavior of the CP energy at low temperatures. At T = 300 K
the Fermi–Dirac distribution is a quite smooth function of
the energy levels, allowing for a partial filling of many
Landau levels. Hence the effects of the crossing between
these levels and the graphene’s chemical potential is hardly
noticed, resulting in a smooth CP energy profile. Indeed, we
checked that, even for temperatures of a few dozen kelvin, the
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FIG. 4. (Color online) (a) The Casimir–Polder interaction energy
U300(z,B) [normalized by U300(z,0)] between a rubidium atom
and a graphene sheet as a function of both distance and external
magnetic-field strength for T = 300 K. (b) The Casimir–Polder
energy [normalized by U0(z,0)] as a function of the mutual distance
between atom and graphene sheet for T = 0 K (solid line), T = 4 K
(dashed line), and T = 300 K (dot-dashed line). In both panels (a)
and (b) the graphene chemical potential is μc = 0.115 eV.

discontinuities in the interaction are not present any longer.
Another important aspect of Fig. 4(a) is that the CP energy
becomes essentially independent of B for z � 1 μm. For
this set of parameters, the system is already in the thermal
regime, where the CP energy is essentially dominated by the
electrostatic conductivity. In this regime, the CP energy is very
weakly affected by variations in B due the already-discussed
exponential suppression of the l � 1 terms in Eq. (1). We
emphasize, however, that the absence of discontinuities does
not prevent one from tuning the CP interaction between a Rb
atom and a graphene sheet, at least at short distances. This
tunability can be achieved even for relatively modest magnetic
fields, as the value of the CP energy can increase up to 50%
(compared to the case where B = 0 T) by applying a magnetic

field of B = 5 T for z = 50 nm. For B = 5 T and z = 100 nm,
the variation in the interaction can still be as high as 30%. In
Fig. 4(b) the CP energy is calculated for B = 10 T and for
different temperatures: T = 0, 4, and 300 K, all normalized
by the zero-temperature, zero-field energy value U0(z,0).
Figure 4(b) reveals that thermal corrections are relevant even
for low temperatures, and for a broad range of distances:
we have a 10%–20% variation in the relative difference of
U4(z,10) and U0(z,10) in the 1–10 μm interval, which is in
the ballpark of the precision of recent and current experiments.
Besides, Fig. 4(b) demonstrates that, at room temperature,
not only the thermal effects are absolutely dominant in the
micrometer range, but they also play an important role even for
small distances. Indeed, at z = 100 nm the relative difference
between U300(z,10) and U0(z,10) is ∼45% and at z = 1 μm
it is ∼400%; so in the latter approximately 80% of the CP
energy comes from the thermal contribution. We conclude
that, at room temperature, these effects should be taken into
account for a wide range of distances between the atom and
the graphene sheet.

In conclusion, we investigated the dispersive Casimir–
Polder interaction between a rubidium atom and a suspended
graphene sheet subjected to an external magnetic field B.
Apart from providing a concrete physical system where the
dispersive interaction in nano- and micrometer scales can
be controlled by an external agent, we show that, just by
changing the applied magnetic field, this interaction can be
reduced by up to 80% of its value in the absence of the
field. Furthermore, due to the quantum Hall effect, we show
that, for low temperatures, the Casimir–Polder interaction
energy acquires sharp discontinuities at given values of B

and that these discontinuities approach a plateau-like pattern
with a quantized Casimir–Polder interaction energy as the
atom and the graphene sheet become farther and farther
apart. In addition, we show that, at room temperature, thermal
effects must be taken into account even for considerably short
distances. In this case, the discontinuities in the atom-graphene
dispersive interaction are not present any longer, although the
interaction can still be tuned in ∼50% by applying an external
magnetic field.
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