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Scaling in the correlation energies of atomic ions
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We show through numerical investigations that the ground-state correlation energies of atomic ions follow an
unexpectedly simple scaling relation, Ec ≈ Z4/3fc(Z/N ), where N is the number of electrons, Z is the atomic
number, and fc is a universal function, for which an analytic expression with a one-parameter fit can be provided.
The relation agrees well with several sets of correlation energies obtained from different methods for atomic
ions with N = 2, . . . ,18 and Z = 2, . . . ,28. Moreover, our relation gives a good agreement with neutral atoms
up to N ≈ 90. Our main result is readily applicable to estimating correlation energies of heavy elements, for
which there are no available data in the literature. The simplicity of the relation may also have implications in
the development of correlation functionals within density-functional theory.
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I. INTRODUCTION

Electronic correlation is a fundamental property of a
many-particle quantum system that leads to important physical
effects and applications in condensed-matter and material
physics, e.g., in superconductivity, ultracold atoms, and semi-
conductor materials. On the other hand, theoretical treatment
of correlation effects is particularly challenging in first-
principles approaches such as density-functional theory (DFT)
[1]. In the development of density functionals for the exchange
and/or correlation [2], a common approach is to exploit the
properties of a known system, such as the homogeneous
electron gas or the exchange and/or correlation hole. These
properties can then be combined with exact constraints arising
from, e.g., the Lieb-Oxford lower bound for the exchange-
correlation energy [3,4] or the limit of strictly correlated
electrons [5,6]. Nevertheless, simple, scalable properties of
the correlation energy are highly desirable.

In this paper we follow the standard definition for the
electronic ground-state correlation energy [7–9]

Ec = Egs − EHF, (1)

where Egs is the total ground-state energy and EHF is the
Hartree-Fock (HF) total ground-state energy that, by defini-
tion, captures the electronic exchange through a single Slater
determinant but misses the electron correlation (contribution of
other determinants). It is noteworthy that in the DFT definition
for Ec, the HF term is replaced by the exact-exchange term,
where the HF orbitals are replaced by the Kohn-Sham orbitals.
The energy difference between these definitions is practically
negligible.

Our goal in this work is to find a scaling relation for
Ec that works for a large set of atomic ions, as well as
for neutral atoms, and is still as simple as possible. Our
construction is guided by extensive sets of numerical data
for ions and atoms (see below) as well as the Thomas-
Fermi (TF) theory as the starting point. The TF theory has
been previously used to find scaling relations for the total
energies of atoms [10–13] and ionization potentials [14].
Regarding correlation energies, scaling relations have been
derived for two-dimensional artificial atoms, i.e., quantum dots
modeled by a harmonic-oscillator potential [15]. For neutral,

conventional (three-dimensional) atoms, on the other hand,
Kais et al. [16] have found that Ec behaves as Z4/3 in the
large-Z limit, a tendency that has been supported by several
other studies [17–26].

To the best of our knowledge, a generic expression à la
Thomas-Fermi [see Eq. (2)] for the correlation energy of both
ions and neutral atoms is not yet available. In the following
we show that such a relation can be found with a remarkable
agreement with several sets of numerical data. This finding has
predictive power, albeit not yet within chemical accuracy, and
might also help in the development of simple, but efficient,
density functionals for the electronic correlation.

II. SCALING RELATION

Our ansatz for the correlation energy follows a scaling
relation of the form

Ec(N,Z) = Zαfc(Z/N ), (2)

which is reminiscent of the scaling of the total energy for
ions and neutral atoms [27]. The use of the combination Z/N

instead of N/Z responds only to aesthetic criteria: since most
of the available data correspond to the cationic domain (Z >

N ), we preferred to see the scaling behavior in an “extended
domain,” i.e., 0 < Z/N � ∞. All of the results can be easily
recovered in terms of N/Z.

To find the parameter α and the function fc in Eq. (2),
we analyze the results for the correlation energy reported
in Refs. [28–30], which have been used as a benchmark by
many authors. The results were obtained by removing the
relativistic contribution from measured ground-state energies
and therefore are often considered to be exact [31]. We use
the values of the correlation energy of all the systems with
7 � N � 18 and N − 1 � Z � 28 in Ref. [30], for which the
scaling behavior is apparent. In addition, we include the results
of He-like ions (N = 2,N � Z � 28) reported in Ref. [28].
In total, we consider more than 200 systems (see Fig. 2) that
we label Cha1996 later on in the paper.

By minimizing the rms deviation of the data as a function of
α we find that the minimum deviation is obtained for α ≈ 1.32,
as visualized in Fig. 1. This is very close to the expected
value of 4/3 [see Eq. (2)], which we adopt as our value in
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FIG. 1. (Color online) The rms deviation of the scaling relation
from the set of data for atomic ions in Refs. [28–30] as a function of the
parameter α in Eq. (2). The best fit is obtained with α ≈ 1.32 ≈ 4/3.

the following. For the function fc, on the other hand, we first
introduce a two-parameter form fc = γ ( Z

N
)δ . One of these

parameters can be removed by using the known case of the
simplest hydride anion 1H− (with Z = 1 and N = 2) as a
constraint. For this system Ec(1H−) ≈ 0.039751 (Ref. [32]),
leading to γ = Ec(1H−)/2δ . Finally, the parameter δ is found
through fitting, and the scaling relation becomes

Ec(N,Z) = Z4/3 0.0165663

(Z/N )1.26274
. (3)

We point out that the limit Z/N → ∞ correctly leads to zero
correlation. On the other hand, the limit Z/N → 0 is never
reached because it is beyond the instability threshold given by
Zc � N − 1.

In Fig. 2 we show the sign-reversed scaled correlation
energy according to Eq. (3) as a function of Z/N (solid line)
together with the data in Refs. [28–30] (symbols). The overall
agreement between our scaling relation and the data is obvious
due to the fitting procedure, but the good agreement through a
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FIG. 2. (Color online) Sign-reversed scaled correlation energies
for atomic ions with N = 2,1 � Z � 20 [28] and 7 � N � 18,N −
1 � Z � 28 [30]. The solid line represent the function fc(Z/N ), and
the vertical gray line indicates the position of neutral atoms.
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FIG. 3. (Color online) Sign-reversed scaled correlation energies
for atomic ions computed with different methods (see the main text
for details). The solid line shows fc(Z/N ) from the scaling relation
in Eq. (3), and the vertical gray line indicates the position of neutral
atoms.

wide range of Z/N is surprising in view of the simple form of
Eq. (3). Let us recall that at Z/N ∼ 1 the systems are close to
the instability threshold that characterizes the anionic domain
(Z < N). On the other hand, in the cationic domain (Z > N)
the TF theory is more valid [33]. This explains why the largest
deviations from the scaling in Fig. 2 occur around the vertical
line of neutral atoms (Z/N = 1).

III. TESTING THE RELATION FOR OTHER
CALCULATIONS

In order to corroborate the scaling relation using Eq. (3), we
next consider additional independent results for the correlation
energy obtained with different methods. The sets of data
included are (1) the results of Ref. [30] extrapolated to highly
charged cations by Fraga and Garcı́a de la Vega [34] (Fra2005),
which includes data of positive ions with N = 2,3 and 7 �
N � 18, with Z = 29, . . . ,36 in all the cases, (2) quantum
Monte Carlo (QMC) calculations for both positive and negative
singly charged ions from Li through Ar [35] (Mal2010),
(3) Fadeev random phase approximation calculations [36]
(Bar2012) for light atoms and ions up to Ar, which includes
He, Be2+, Be, Ne, Mg2+, Mg, and Ar14+, (4) He isoelectronic
series (2 � Z � 10) computed by Katriel et al. [37] (Kat2007),
and (5) virial-constrained effective Hamiltonian (VCEH)
results for singly charged ions [3 � Z � 55; Cle1997(1+)]
and doubly charged ions [4 � Z � 30; Cle1997(2+)]
[26].

All the results are shown in Fig. 3 (symbols) together with
our scaling relation in Eq. (3) (solid line). We can find the
same trend as in Fig. 2 (i.e., the overall qualitative agreement is
good), but the closer we get to the anionic domain (Z/N < 1),
the larger the deviations are.

Finally, we focus in more detail on the most challenging
regime in the agreement above, i.e., the case of neutral atoms
with Z/N = 1. Again, we consider several sets of data in the
literature: (1) the results of Refs. [28–30] for 2 � Z � 18,
which are also included in Fig. 2 (Cha1996), (2) the results
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FIG. 4. (Color online) Sign-reversed correlation energies of neu-
tral atoms as a function of the electron number N (symbols) computed
with different methods (see the text). The horizontal solid line shows
our scaling relation in Eq. (3), i.e., fc(Z/N = 1) = 0.0165663. The
vertical gray lines indicate the positions of noble atoms with filled
shells.

of McCarthy and Thakkar for 2 � Z � 55 [38] (McC2011),
(3) the results of McCarthy and Thakkar for 18 � Z � 36
[39] (McC2012), (4) VCEH results of Clementi and Corongiu
for 2 � Z � 55 [26] (Cle1997), (5) variational QMC results
for 3 � Z � 36 and Z = 54 in Ref. [40] (Bue2006), (6)
variational QMC results for 19 � Z � 54 in Refs. [41,42]
tabulated in [38] (Bue2007-08), and (7) results from Ref. [43]
for 2 � Z � 18 (Mos1997).

The results are collected in Fig. 4. Overall, the data
seems to follow the Z4/3 trend as expected. In addition,
the horizontal line resulting from our scaling relation with
fc(Z/N = 1) = 0.0165663 agrees relatively well with most
of the data sets, especially at large N . The sets of QMC results
in Refs. [40–42] (Bue2006 and Bue2007-08) fall considerably
below the scaling. However, it is important to know that QMC
calculations always give an upper bound for the total energy,
and since EHF � Egs, QMC, especially variational QMC, can
underestimate the absolute value of the correlation energy. This
is in line with our observation; in other words, the deviation
between Bue2006 and Bue2007-08 from the scaling relation
and the other data sets is most likely due to the nature of the
variational QMC method.

The local deviations in the data from the scaling relation
are due to fine details, such as the shell structure, which are not
captured by the TF theory or our scaling relation. In the small-
N regime, local extrema in the data sets match the positions
of noble atoms (gray vertical lines) with N = 2, 10, 18. The

maximum deviation in the considered range of N is, however,
rather moderate and indicates that Eq. (3) can be used to obtain
good estimations for the correlation energy of atomic systems.
In general, the fact that Ec scales is unexpected because, by
definition, the electronic correlation is beyond the mean-field
properties [7,8,44–53].

Finally, we point out that the relative fraction of the
correlation energy with respect to the total energy χ also
follows a simple scaling relation:

χ =
∣
∣
∣
∣

Ec

Egs

∣
∣
∣
∣
= Z4/3fc(Z/N)

Z7/3fgs(Z/N)
= Z−1fχ (Z/N). (4)

This quantity gives important information about the degree of
correlation in a specific system. An approximate expression
for fχ (Z/N) can be obtained by replacing fc(Z/N) in Eq. (4)
by Eq. (3) and fgs(Z/N) by a known relation for the total
energy such as the one reported in Ref. [27]. However, further
elaboration of this term is left to future studies.

IV. SUMMARY

In summary, we have found a simple scaling relation
for the correlation energy of atomic ions including neutral
atoms. The relation has been found by applying an ansatz
based on the Thomas-Fermi theory and numerical fitting to
an accurate set of data, together with an exact constraint for
the 1H− hydride anion. The obtained scaling relation has been
tested against a large set of data for the correlation energy
obtained using a variety of methods. The overall agreement
is good for both ions and neutral atoms. In the latter case
the observed deviations have been analyzed. Our relation can
thus provide useful estimates for the correlation energies of
heavy elements and their corresponding ions, for which there
are no available data in the literature. However, in the absence
of further data one needs to be cautious when applying the
present approximation because the correlation energy is a
subtle quantity. Our result may also have implications for the
development of correlation functionals for density-functional
calculations [17,54] and may also supplement the recently
developed density-functional theory for strictly correlated
electrons [5] and related approaches.
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