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Magic wavelengths for the 2 3S → 2 1S transition in helium
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We have calculated ac polarizabilities of the 2 3S and 2 1S states of both 4He and 3He in the range 318 nm
to 2.5 μm and determined the magic wavelengths at which these polarizabilities are equal for either isotope.
The calculations, only based on available ab initio tables of level energies and Einstein A coefficients, do not
require advanced theoretical techniques. The polarizability contribution of the continuum is calculated using
a simple extrapolation beyond the ionization limit, yet the results agree to better than 1% with such advanced
techniques. Several promising magic wavelengths are identified around 320 nm with sufficient accuracy to design
an appropriate laser system. The extension of the calculations to 3He is complicated due to the additional hyperfine
structure, but we show that the magic wavelength candidates around 320 nm are predominantly shifted by the
isotope shift.
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I. INTRODUCTION

In recent years a growing number of experimental tests of
QED in atomic physics have surpassed the accuracy of theory,
allowing new determinations of fundamental constants. High-
precision spectroscopy in atomic hydrogen has been achieved
with sufficient accuracy to allow a determination of the proton
size from QED calculations [1], and spectroscopy in muonic
hydrogen has allowed an even more accurate determination
[2,3]. Interestingly, the muonic hydrogen result currently
differs by 7σ from the proton size determined by hydrogen
spectroscopy and electron-proton collision experiments. So far
there has not been a satisfying explanation for this discrepancy,
which is aptly named the proton radius puzzle [4]. Research
in this field has expanded to measurements in muonic helium
ions, a hydrogenic system which has a different nuclear charge
radius [5]. As this work is done for both naturally occurring
isotopes of helium (4He and 3He), the absolute charge radii of
the α particle and the helion may be determined at an aimed
relative precision of 3 × 10−4 (0.5 attometer), providing a very
interesting testing ground for both QED and few-body nuclear
physics.

Parallel to these developments, high-precision spectroscopy
in neutral helium has become an additional contribution to this
field in recent years. Although QED calculations for three-
body systems are not as accurate as for hydrogen(ic) systems,
mass-independent uncertainties cancel when considering the
isotope shift [6,7]. Therefore, isotope-shift measurements in
neutral helium can provide a crucial comparison of the nuclear
charge radius difference determined in the muonic helium ion
and planned electronic helium ion measurements.

High-precision spectroscopy in helium is a well-established
field, and transitions ranging from wavelengths of 51 nm to
2058 nm [8–18] have been measured in recent years both
from the ground state and from several (metastable) excited
states. Only two transitions have been measured in both helium
isotopes with sufficient precision for accurate nuclear charge
radius difference determinations. The 2 3S → 2 3P transition at
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1083 nm [15] and the doubly forbidden 2 3S → 2 1S transition
at 1557 nm [14,19] are measured at accuracies exceeding
10−11, providing an extracted nuclear charge radius difference
with 0.3% and 1.1% precision, respectively. Interestingly,
the determined nuclear charge radius differences from both
experiments currently disagree by 4σ [15].

In order to determine the nuclear charge radius difference
with a precision comparable to the muonic helium ion goal,
we aim to measure the 2 3S → 2 1S transition with sub-kHz
precision. One major improvement to be implemented is
the elimination of the ac Stark shift induced by the optical
dipole trap (ODT) in which the transition is measured. Many
high-precision measurements involving optical (lattice) traps
solve this problem by implementation of a so-called magic
wavelength trap [20,21]. In a magic wavelength trap the
wavelength is chosen such that the ac polarizabilities of both
the initial and final states of the measured transition are equal,
thereby canceling the differential ac Stark shift.

In this paper we calculate the wavelength-dependent (ac)
polarizabilities of both metastable 2 3S (lifetime ≈ 7800 s)
and 2 1S (lifetime ≈ 20 ms) states and identify wavelengths
at which both are equal for either 4He or 3He. Generally one
will find multiple magic wavelengths over a broad wavelength
range, but our goal is to identify the most useful magic
wavelength for our experiment. Currently [14,18] we employ
a 1557 nm ODT at a power of a few 100 mW, providing a
trap depth of a few μK and a scattering lifetime of >100 s
(the actual lifetime in the trap is limited to tens of seconds due
to background collisions). A good overview on calculating
trap depths and scattering rates in ODTs is given in [22], and
the specific calculations for our ODT are discussed in the
Appendix. For our future magic wavelength trap we need to
produce a similar trap depth with sufficient laser power at that
wavelength. Furthermore, the scattering rate should be low
enough to have a lifetime of at least a few seconds, providing
enough time to excite the atoms with a 1557 nm laser.

The purpose of this paper is to show that it is possible
to calculate magic wavelengths with sufficient accuracy to
design an appropriate laser system solely based on ab initio
level energies and Einstein A coefficients without having to
resort to advanced theoretical techniques [23,24]. Based on
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TABLE I. Comparison of calculations and measurements of MJ -averaged dc polarizabilities of the 2 1S0 and 2 3S1 states in units of a3
0 .

Author (year) Ref. 2 1S0 2 3S1

Crosby and Zorn (1977) [Experiment] [36] 729(88) 301(20)
Ekstrom et al. (1995) [Experiment] [37,38] 322(6.8)
Chung and Hurst (1966) [39] 801.95 315.63
Drake (1972) [40] 800.2 315.608
Chung (1977) [41] 801.10 315.63
Glover and Weinhold (1977) [42] 803.31 316.24
Lamm and Szabo (1980) [43] 790.8 318.7
Bishop and Pipin (1993) [44] 315.631
Rérat et al. (1993) [45] 803.25
Chen (1995) [28] 800.31
Chen and Chung (1996), B spline [46] 315.630
Chen and Chung (1996), Slater [46] 315.611
Yan and Babb (1998) [23] 800.316 66 315.631 468
Mitroy and Tang (2013), hybrid [27] 315.462
Mitroy and Tang (2013), CPM [27] 316.020
This work 801.19 317.64

the calculations reported here, we are currently building a
laser system at 319.82 nm with a tuning range of 300 GHz
based on similar designs [25,26].

The polarizabilities for the 2 3S and 2 1S states of 4He are
presented over a wavelength range from 318 nm to 2.5 μm.
In this range all magic wavelengths including estimated
required ODT powers and corresponding trap lifetimes are
calculated. From these results we identify our best candidate
for a magic wavelength trap. A lot of work, both theoretical
and experimental, has been done for the dc polarizability of the
2 3S and 2 1S states (see Table I for an overview). Therefore,
these are used as a benchmark for our calculations by also
calculating the polarizabilities in the dc limit (λ → ∞), as
discussed in Sec. IV. Calculations of the ac polarizability of
the 2 3S and 2 1S states [27,28] states allows for comparison
of the polarizability calculations at finite wavelengths.

Finally, we present a simple extension to 3He which has
a hyperfine structure that needs to be taken into account.
Although different theoretical challenges arise due to the
hyperfine interaction, we can get an estimation of the 3He
magic wavelength candidates and show that they are equal
to the 4He results approximately shifted by the hyperfine and
isotope shift.

II. THEORY FOR 4He

For an atomic state with angular momentum J and magnetic
projection MJ , the polarizability α induced by an electromag-
netic wave with polarization state q (q = 0,±1) and angular
frequency ω due to a single opposite parity state is [29]

α(n)(J,MJ ,J ′,M ′
J ,q) = 6πε0c

3(2J ′ + 1)

(
J 1 J ′

−MJ q M ′
J

)2

× AnJJ ′

ω2
nJJ ′

(
ω2

nJJ ′ − ω2
) . (1)

Here ωnJJ ′ is the 2 1,3SJ → n 1,3PJ ′ transition frequency
and AnJJ ′ the Einstein A coefficient of the transition. The
term between two brackets represents the 3j symbol of the

transition. The total polarizability α(J,MJ ,q) is given by a
sum over all opposite-parity states as

α(J,MJ ,q) =
∑

n

∑
J ′

α(n)(J,MJ ,J ′,M ′
J ,q). (2)

In a general way the polarizability α can be written as the sum
of a scalar polarizability, independent of MJ , and a tensorial
part describing the splitting of the MJ levels [24,30]. Within
the LS coupling scheme the tensor polarizability of the 2 3S1

and 2 1S0 states in 4He is zero and the polarizability is defined
by averaging over all MJ states and therefore independent
of MJ . As our experimental work specifically concerns the
spin-stretched 2 3S1 (MJ = +1) state [14,18], Eqs. (1) and
(2) are used to calculate the polarizability for the MJ = +1
state assuming linearly polarized light (q = 0). For 3He the
calculations specifically concern the spin-stretched 2 3S F =
3/2 (MF = +3/2) and 2 1S F = 1/2 (MF = +1/2) states.

The higher-order contribution to the Stark shift, the hy-
perpolarizability, is estimated using calculations of a similar
system [31]. The contribution is many orders of magnitude
smaller than the accuracy of our calculations and therefore
neglected.

The summation in Eq. (2) can be explicitly calculated
for 2 1,3S → n 1,3P transitions up to n = 10, as accurate
ab initio energy-level data and Einstein A coefficients are
available [32]. Extrapolation of both the energy levels and the
Einstein A coefficients is required to calculate contributions of
dipole transition matrix elements with states beyond n = 10.
A straightforward quantum defect extrapolation can be used
to determine the energies using the effective quantum number
n∗ [33]:

n∗ = n −
∞∑

r=0

δr

n∗r
, (3)

where δr are fit parameters and the quantity n − n∗ is
commonly referred to as the quantum defect. For both the
singlet and triplet series, Eq. (3) is used to fit the literature data
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up to n = 10 and to extrapolate to arbitrary n. This method is
tested using a data set provided by Drake [33].

Extrapolation of the Einstein A coefficients is more com-
plicated as there is no relation such as Eq. (3) for Einstein A
coefficients. Furthermore, the sum-over-states method does not
provide straightforward extrapolation beyond the ionization
limit, as the energy levels converge to the ionization limit
for n → ∞. Both problems can be solved by calculating the
polarizability contribution of a single transition 2 3S1 → n 3PJ ′

(or 2 1S0 → n 1P1) as given in Eq. (2) and defining the
polarizability density per upper state energy interval as

	α(n)

	E
= 2α(n)

En+1 − En−1
, (4)

which is evaluated at En. En+1 and En−1 are the energies of
the neighboring upper states with the same value of J ′. The
energies are given by the Rydberg formula En(n∗) = EIP −
R∞/n∗2, where EIP is the ionization potential of the ground
state. For ease of notation we have omitted all the dependent
variables of α(n) as defined in Eq. (1). The polarizability density
is a function of energy and can not only be used to calculate
the polarizability contribution from dipole transition matrix
elements to highly excited (Rydberg) states, but additionally
allows extrapolation beyond the ionization potential. Using the
Rydberg formula, the polarizability density becomes

	α(n)

	E
= α(n)

R∞

(n∗2 − 1)2

2n∗ , (5)

where we have made the approximation that n − n∗ is constant
for increasing n. This approximation already works better
than 1% for n = 2. In the limit n � 1, the polarizability
contribution per energy interval can be written as

dα(n)

dE
= 6πε0c

3

R∞
(2J ′ + 1)

(
J 1 J ′

−MJ q M ′
J

)2

× CnJJ ′ (n∗)

ω2
nJJ ′

(
ω2

nJJ ′ − ω2
) , (6)

where we define

CnJJ ′ (n∗) ≡ AnJJ ′ (n∗2 − 1)2

2n∗ . (7)

As there is no exact analytical model for AnJJ ′ as function
of energy, the method of extrapolation is based on a simple
low-order polynomial fit of the CnJJ ′ (n∗) as function of E(n∗)
for the n � 10 levels. The result is a function CnJJ ′ (E) that is
used to extrapolate AnJJ ′ to arbitrary upper states and calculate
the corresponding polarizability contributions. This method
can be used to calculate the finite polarizability contributions
of all Rydberg states for n → ∞. As the general behavior of the
Einstein A coefficients is proportional to n∗−3 for the Rydberg
states, CnJJ ′ (E) will have a finite value at the ionization
potential indicating that contributions from the continuum
have to be taken into account as well. As the extrapolation
is a function of energy, it is extended beyond the ionization
potential to calculate additional continuum contributions to
the polarizability. This omits all higher-order effects such as
resonances to doubly excited states or two-photon excitations
into the continuum, and it should be considered as an
approximation of the continuum.

For a large enough quantum number n, the discrete sum-
over-states method smoothly continues as an integration-over-
states method following Eq. (6). The ionization potential
serves as a natural choice as the energy at which the calculation
would switch from the discrete sum to the integration method.
But even for large enough n there is a negligible numerical
error in varying the exact cutoff energy Ec at which we
switch between these methods. The calculation of the total
polarizability is therefore performed using the sum-over-states
method to an arbitrary cutoff at Ec = EIP − R∞/n∗2

max and
continued with an integration over the remaining states as

αcont(J,MJ ) =
∑
J ′

∫ ∞

Ec

dα(n)

dE
dE, (8)

where E is the energy of the corresponding state. A low-order
polynomial fit of Eq. (7) is used to calculate dα(n)/dE such
that the integral of Eq. (8) provides an analytical solution. The
total polarizability is therefore easily calculated as a sum-over-
states part and an analytical expression

α(J,MJ ) = αcont +
n=nmax∑

n=1

∑
J ′

α(n). (9)

III. NUMERICAL UNCERTAINTIES

In this section we discuss the sources of any numerical
errors in our calculations, which are purely based on the techni-
cal execution of our method. The accuracy of our calculations
due to our estimation of the continuum contribution will be
discussed in Sec. IV where our results are compared to other
calculations.

The numerical convergence of Eq. (9) is tested by varying
nmax. The polarizability converges as n−2

max and even for
nmax = 20 the polarizability is within a fraction 10−4 of the
polarizability calculated using nmax = 5000. The computation
of Eq. (9) therefore poses no numerical problems.

A more crucial matter is the fact that our calculations are
based on two extrapolations: that of the level energies and
the Einstein A coefficients. For the n � 10 levels in helium
the ab initio calculations of the level energies and Einstein
A coefficients are used [32]. The higher level energies are
extrapolated using Eq. (3) and include up to fifth order (r = 5)
contributions. Variation of the total number of orders (r = 4,6)
or using a different data set (such as the NIST database [34]
as used in other recent work [27]) affects the polarizabilities
at the 10−8 level and is negligible.

The limiting factor in the accuracy of the calculations
is the choice of extrapolation of the Einstein A coefficients
through extrapolation of CnJJ ′ (E). As mentioned before, no
advanced methods are used to calculate transition matrix
elements to higher states or doubly excited states in the
continuum. The heuristic approach we use instead is to choose
an extrapolation function that is smooth, continuous, and
provides a convergent integral in Eq. (8). A number of different
functions have been tried which provide a similar quality of
the fit, and their effect on the calculation of the continuum
contribution can lead to a polarizability shift which is a
significant fraction of the continuum contribution itself. In
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TABLE II. Calculated magic wavelengths λm for the 2 3S1(MJ = +1) → 2 1S0 transition with the corresponding differential polarizability
slope dα/dλ and the absolute polarizability α at the magic wavelength. The last row gives the wavelength and polarizability at which we
currently use our ODT. Additional columns give the laser beam power required to create a 5 μK deep trap in the exact same crossed-beam
geometry as currently employed and the corresponding lifetime of the gas in this geometry due to scattering from a nearby 2 3S1 → n 3P0,1,2

transition. See the Appendix for details on those calculations.

dα/dλ α

λm (nm) (units of a3
0/nm) (units of a3

0 ) Laser power (W) Lifetime (s) Nearest transition

318.611 −7.00 × 104 −809.2
319.815 −4.40 × 103 189.3 0.7 3 2 3S1 → 4 3P0,1,2

321.409 −5.38 × 102 55.3 2.3 6 2 3S1 → 4 3P0,1,2

323.587 −1.48 × 102 17.2 7.3 6 2 3S1 → 4 3P0,1,2

326.672 −5.48 × 101 −1.2
331.268 −2.37 × 101 −13.5
338.644 −1.08 × 101 −24.2
352.242 −5.33 −39.0
411.863 −2.00 4.5 28.0 4 2 3S1 → 3 3P0,1,2

1557.3 0.0 603.8 0.2 205 2 3S1 → 2 3P0,1,2

our calculations this is the limiting factor in the accuracy of
the calculated magic wavelengths. A second-order polynomial
function is chosen to extrapolate CnJJ ′ (E) as it has the
additional advantage of providing an analytical solution of
the continuum contributions.

The absolute accuracy of the calculations will be discussed
in Sec. IV A and determines the accuracy given in the
calculated magic wavelengths in Sec. IV B.

IV. RESULTS

In order to discuss the absolute accuracy of the calculations,
we first present our polarizabilities calculated in the dc
limit (λ → ∞) as a lot of literature is available for these
calculations. After comparison with the dc polarizabilities
in Sec. IV A, the ac polarizabilities are given in Sec. IV B
including the magic wavelengths at which they are equal
for the 2 3S1 (MJ = +1) and 2 1S0 states. Experimental
characteristics, such as the required trapping power and
scattering lifetime at the magic wavelengths, are estimated
in order to discuss which magic wavelength candidate is
most suitable for our experiment. In Sec. IV C the tune-out
wavelength (where the polarizability is zero) of the 2 3S1 state
near 414 nm is compared to the result calculated by Mitroy
and Tang [27].

A. dc polarizabilities

An overview of previously calculated and measured dc
polarizabilities for the 2 1S0 and 2 3S1 states of 4He is given in
Table I together with our results. For convenience the polariz-
abilities are given in atomic units a3

0 (a0 is the Bohr radius),
but they can be converted to SI units through multiplication
by 4πε0a

3
0 ≈ 1.64877 × 10−41 JV−2m2. Furthermore, the dc

polarizabilities are calculated using the common convention
of averaging over all MJ states and all possible polarizations
q [24].

There is general agreement between our results and previ-
ously calculated dc polarizabilities, but comparison with the
work of Yan and Babb [23], which provides the most accurate
calculated dc polarizabilities to date, shows that both our 2 1S0

and 2 3S1 dc polarizabilities are slightly larger (0.1% and 0.6%,
respectively). The difference is comparable to the uncertainty
in the calculated continuum contributions as discussed in
Sec. III, and we conclude that our absolute accuracy is indeed
limited by the exact calculation of the continuum contributions.
It should be noted that the continuum contributions in the dc
limit are 7.1 a3

0 and 3.6 a3
0 , respectively. This only contributes

1% to the total polarizability in contrast to, e.g., ground-state
hydrogen for which the continuum contribution is 20% of the
total polarizability [35].

B. Magic wavelengths

We have calculated the ac polarizabilities of the 2 1S0 and
2 3S1 (MJ = +1) states in the range of 318 nm to 2.5 μm
and an overview of the identified magic wavelengths is shown
in Table II. The slope of the differential polarizability is also
given in order to estimate the sensitivity of the determined
magic wavelength due to the accuracy of the calculated
polarizabilities. Table II furthermore provides the trapping
beam power required to produce a trap depth of 5 μK and
the corresponding scattering lifetime (see the Appendix) to
indicate the experimental feasibility of each magic wavelength.

The magic wavelengths in the range 318–327 nm, as shown
in Fig. 1, are mainly due to the many resonances in the singlet
series. The most promising magic wavelength for application
in the experiment is at 319.815 nm, as the polarizability is
large enough to provide sufficient trap depth at reasonable
laser powers while the estimated scattering lifetime is still
acceptable (see Table II).

The magic wavelengths at 318.611 nm and 326.672 nm
are not useful for our experiment as the absolute 2 3S1

polarizability is negative and therefore a focused laser beam
does not provide a trapping potential. There are more magic
wavelengths for λ < 318.611 nm, but the polarizability of the
2 3S1 state will stay negative until the ionization wavelength
of the 2 1S state around 312 nm. In the range 327–420 nm,
shown in Fig. 2, there are four more magic wavelengths. The
magic wavelength at 411.863 nm, previously predicted with
nm accuracy [10], is the only one in this region with a small yet
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FIG. 1. (Color online) Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted, black) states shown together with the
differential polarizability (full, red) in the wavelength range 318–327 nm. The blue and black vertical lines indicate the positions of the
2 3S1 → 4 3P and the 2 1S0 → n 1P (n = 9–13) transitions, respectively. There are five magic wavelengths (black dots) in this range, all listed
in Table II.

positive 2 3S1 polarizability (see inset in Fig. 2). There are no
more magic wavelengths in the range 420 nm–2.5 μm, which
is shown in Fig. 3, and the polarizabilities converge to the dc
polarizabilities for λ > 2.5 μm.

The ac polarizability of the 2 1S0 state can be compared
to previous polarizability calculations from dc to 506 nm
[28]. Combined with the dc polarizability comparison and
the tune-out wavelength result for the 2 3S1 state, as discussed
in Sec. IV C, we find that the accuracy of our calculations is
limited by the exact calculation of the continuum contributions.
We note that around 320 nm the absolute continuum contribu-
tions (26 a3

0 and 5.5 a3
0 for the 2 1S and 2 3S states, respectively)

and the corresponding uncertainty have increased, as the
shorter wavelengths are closer to the 2 1S ionization limit
at 312 nm. The uncertainty in the absolute value of the
polarizabilities translates to an uncertainty in the absolute
value of the magic wavelength through the slope dα/dλ of the
differential polarizability at the zero crossing. For the magic
wavelength at 319.815 nm this gives a frequency uncertainty
of 10 GHz (0.003 nm), yet for the magic wavelength near
412 nm the uncertainty is approximately 1 nm due to the very
small slope at the zero crossing. However, the latter magic
wavelength is not suitable for our experiment as the absolute
polarizability is very small.
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FIG. 2. (Color online) Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted, black) states shown together with the
differential polarizability (full, red) for wavelengths ranging from 327 nm to 420 nm. The blue and black vertical lines indicate the positions
of the 2 3S1 → 3 3P and the 2 1S0 → n 1P (n = 4–8) transitions, respectively. There are four magic wavelengths (black dots) in this range,
all listed in Table II. The inset shows the wavelength region 411–415 nm, displaying the magic wavelength at 411.863 nm and the tune-out
wavelength of the 2 3S1 state at 414.197 nm.
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FIG. 3. (Color online) Calculated polarizabilities of the 2 3S1 (dashed, blue) and 2 1S0 (dotted, black) states shown together with the
differential polarizability (full, red) for wavelengths ranging from 420 nm to 2.5 μm. The blue and black vertical lines indicate the positions of
the 2 3S1 → 2 3P and the 2 1S0 → n 1P (n = 2,3) transitions, respectively. There are no magic wavelengths in this range and the polarizabilities
converge to the dc polarizabilities for λ > 2.5 μm.

C. Tune-out wavelength of the 2 3S1 state

The zero crossings of the absolute polarizability of a single
state occur at so-called tune-out wavelengths. Mitroy and Tang
calculated several tune-out wavelengths for the 2 3S1 state [27],
of which the candidate at 413.02 nm is the most sensitive to
the absolute value of the polarizability due to a very small
slope at the zero crossing. We find this tune-out wavelength
at 414.197 nm (see inset in Fig. 2), which is considerably
larger. However, the slope of the polarizability at the zero
crossing can be used to calculate that the difference in tune-out
wavelength is equivalent to a difference in the calculated
absolute polarizabilities. Comparison of the calculated dc
polarizabilities (see Table I) shows a similar difference, so
within a constant offset of the absolute polarizability our tune-
out wavelength is in agreement with Mitroy and Tang’s result.

V. EXTENSION TO 3He

The 2 3S → 2 1S transition is also measured in 3He in order
to determine the isotope shift of the transition frequency [14].
Hence a magic wavelength trap for 3He will be required as
well. As 3He has a nuclear spin (I = 1/2), the measured hy-
perfine transition is 2 3SF = 3/2 (MF = +3/2) → 2 1SF =
1/2 (MF = +1/2) and the magic wavelengths need to be
calculated for these two spin-stretched states.

The mass-dependent (isotope) shift of the energy levels is
taken into account by using 3He energy-level data [47] and
recalculating the quantum defects using Eq. (3). The Einstein
A coefficients of the transitions also change due to the different
reduced mass of the system [32], but this effect is negligible
compared to the accuracy of the calculations. In total, the
mass-dependent shift of the magic wavelengths is dominated
by the shift of the nearest transitions and is approximately
−45 GHz.

The fine-structure splitting decreases as 1/n3, whereas the
hyperfine splitting converges to a constant value for increasing
n [48]. In this regime the (LS)JIF coupling scheme is not

the best coupling scheme because J is no longer a good
quantum number. Instead an alternative coupling scheme is
used which first couples the nuclear spin quantum number I

and total electron spin S to a new quantum number K [49]. This
new quantum number K then couples to L to form the total
angular momentum F . In this coupling scheme the transition
strengths can be calculated with better precision compared to
the (LS)JIF coupling scheme, and can be applied for states
with n � 3. Although this coupling scheme does not work
perfectly for n = 2 (which in any case is far detuned from the
magic wavelengths), it provides an estimate of the transition
strengths that is sufficiently accurate for our purposes.

For increasing n, the strong nuclear spin interaction with the
1s electron becomes comparable with the exchange interaction
between the 1s and np electrons [48]. This leads to mixing
of the singlet and triplet states as the total electron spin S

is no longer a good quantum number. The solution requires
exact diagonalization of the Rydberg states, which provides
the singlet-triplet mixing and the energy shifts of the states.
The mixing parameter is then used to correct the Einstein
A coefficients and the energies of the states. Although this
is implemented in the calculations, these corrections lead to
shifts in the magic wavelengths that are below the absolute
accuracy of the calculations.

Due to the two hyperfine states of 3He+ in the 1s ground
state, there are two Rydberg series in the 3He atom. For
even higher n than discussed before, this leads to mixing of
Rydberg states with different n [48]. The resulting shifts in the
polarizabilities are well below the accuracy of the calculations
and are therefore neglected.

Using the aforementioned adaptations, the polarizability
of the 2 3SF = 3/2 (MF = +3/2) and 2 1SF = 1/2 (MF =
+1/2) states can be calculated using Eq. (1), but with
substituted quantum numbers (J,MJ → F,MF ), Einstein A
coefficients, and transition frequencies. The numerical calcu-
lation of the polarizabilities and discussion of the numerical
accuracies is similar to the 4He case. An additional uncertainty
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TABLE III. Comparison of magic wavelengths λm calculated for
the 4He 2 3S1 (MJ = +1) → 2 1S0 and 3He 2 3S F = 3/2 (MF =
+3/2) → 2 1S F = 1/2 (MF = +1/2) transitions and the corre-
sponding frequency shift. The uncertainty in the shift is due to the
additional 1.0 a3

0 absolute uncertainty in the polarizabilities of 3He.

λm (nm)

4He 3He Shift (GHz)

318.611 318.626 −45.03(4)
319.815 319.830 −43.1(7)
321.409 321.423 −38(5)
323.587 323.602 −4(2) × 101

of 1.0 a3
0 is added in the calculation of the polarizabilities of

the 3He states based on a conservative estimate of the shifts
caused by the hyperfine interaction. It should be noted that the
states of interest, 2 1S and 2 3S, both have angular momentum
L = 0 and both are in the fully spin-stretched state. Therefore,
neither 3He nor 4He has a tensor polarizability for the states
discussed in this paper.

A comparison between the 4He and 3He magic wavelengths
is presented in Table III. Magic wavelengths up to 330 nm
are all shifted by the isotope shift with small corrections
due to the above-mentioned effects. The frequency difference
between the two isotopes (third column of Table III) grows
with increasing wavelengths because dα/dλ decreases and
the results become more sensitive to the absolute accuracy
(1.0 a3

0) of the calculations, as can be seen from the growing
uncertainties associated with the shifts. The isotope shifts
for magic wavelengths with λ > 324 nm have been omitted
in Table III as they are not useful due to the large relative
uncertainty.

The difference of the magic wavelengths between the two
isotopes is well within the tuning range of our designed laser
system near 320 nm. Furthermore, there is no significant
change in the absolute polarizability or the slope dα/dλ

at the magic wavelengths. This means that an ODT at
these wavelengths has a comparable performance for either
isotope.

VI. CONCLUSION

We have calculated the dc and ac polarizabilities of the 2 1S

and 2 3S states for both 4He and 3He in the wavelength range
of 318 nm to 2.5 μm and determined the magic wavelengths
at which these polarizabilities are equal for either isotope. The
accuracy of our simple method is limited by the extrapolation
of the polarizability contributions of the continuum states. This
is less than achievable through more sophisticated methods
which calculate the transition matrix elements explicitly.
However, the purpose of this paper is to show that using
a simple extrapolation method it is possible to achieve an
accuracy on the order of 10 GHz for the magic wavelengths
that are of experimental interest, which is required to design
an appropriate laser system for the required wavelengths.

Most experimentally feasible magic wavelength candidates
are in the range 319–324 nm, as the absolute polarizability of

the 2 3S1 state in this range is positive and large enough to
create reasonable (∼μK) trap depths in a crossed-beam ODT
with a few watts of laser power. The estimated scattering rates
at these wavelengths and intensities are low enough to perform
spectroscopy on the doubly forbidden 2 3S → 2 1S transition.

The calculations are extended to also calculate magic
wavelengths in 3He. Although the hyperfine structure, which
is absent in 4He, leads to complications in the calculation of
the polarizabilities, these effects are very limited for the 2 1S

and 2 3S states. The magic wavelengths of interest, around
320 nm, are shifted relative to the 4He magic wavelengths by
predominantly the isotope shift.
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APPENDIX: CROSSED-BEAM OPTICAL DIPOLE TRAP

An overview of optical dipole traps (ODTs) and the
equations used in this appendix can be found in [22]. The
depth U of a crossed-beam ODT, as currently used in our
experiment [14,18], is

U = 2
α

2ε0c

2P

πw2
0

, (A1)

where α is the polarizability of the 2 3S1 (MJ = +1) state,
P the power of the incident trapping laser beam, and w0 the
beam waist. In our experiment, the first ODT beam is reused
by refocusing it through the original focus (w0 ≈ 85 μm) at
an angle of 19◦ with respect to the original beam. At the
currently used ODT wavelength of 1557 nm the polarizability
is α = 603.8 a3

0 (see Table II) which gives a trap depth of
approximately 5 μK at an ODT beam power of P = 210 mW.
In Table II we used Eq. (A1) to calculate the trapping power at
the different magic wavelengths corresponding to a trap depth
of 5 μK to indicate the required beam power that should be
produced at that magic wavelength.

As a good approximation of the lifetime of the atoms in
the ODT due to scattering, one can take the nearest transition
into account to calculate the corresponding scattering rate. The
scattering rate 
sc is


sc = 6πc2ω3

�

(



ω2
0

(
ω2

0 − ω2
)
)2

I0, (A2)

where I0 is the total intensity of the light, ω the angular
frequency of the trapping light, and ω0 and 
 the transition
frequency and linewidth (all in rad s−1). The nearest transitions
are given in Table II, and the lifetime 1/
sc is given for each
magic wavelength trap using the required trapping beam power
calculated to provide a 5 μK deep trap.
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