
PHYSICAL REVIEW A 90, 052501 (2014)

Carbon atom in intense magnetic fields
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The energy levels of the first few low-lying states of carbon in intense magnetic fields upwards of ≈107 T
are calculated in this study. We extend our previously employed pseudospectral approach for calculating the
eigenstates of the carbon atom. We report data for the ground state and a low-lying state that are in good
agreement with findings elsewhere, as well as additional data for ten other states of the carbon atom. It is seen
that these latter states also become strongly bound with increasing magnetic field strengths. The data presented
in this study are relevant for astrophysical applications, such as magnetized white dwarf and neutron star spectral
analysis as well as opacity calculations and absorption features, including in the context of material accreting
onto the surfaces of these compact objects.
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I. INTRODUCTION

The study of atoms in magnetic fields of strength beyond
the perturbative regime was largely motivated by the discovery
of strong fields present in white dwarf stars [1–3] and neutron
stars [4,5]. Pulsars, which are the most commonly observed
neutron stars, harbor intense magnetic fields on the order of
107–109 T [6]. Magnetars [7], which are strongly magnetized
neutron stars, can have field strengths well in excess of 109 T.
White dwarfs possess somewhat weaker but nevertheless still
strong magnetic fields, with strengths ∼102–105 T [6]. Even
at these somewhat lower white dwarf field strengths, atomic
structure is considerably altered from the low-field case, and
a Zeeman-type perturbative treatment of the field [8] is not
possible.

The need to calculate atomic structure in high magnetic
fields has gained considerable impetus in recent years. It is
emerging from x-ray observations that neutron star atmo-
spheres may contain mid-Z neutral atoms, especially carbon
[9,10], cosmochemically one of the most important elements.
Interpretation of the emergent spectra is hindered by the lack of
atomic data pertinent to the extreme environment of neutron
star atmospheres. The presence of strong electric as well as
magnetic fields has a profound influence on the emergent
spectra, altering the energy levels and ionization potentials and
affecting ion population distributions at different energy levels.
The ubiquitous effects of line broadening further complicate
spectral analysis. It is remarkable that even for the simpler case
of no electric field, and relatively weak (for a neutron star)
magnetic field B ∼ 106 T, photoionization edges and spectral
lines differ significantly from those in the field-free case. A
considerable amount of atomic data is therefore required for
accurately interpreting the spectra of neutron stars.

Similarly, observations of white dwarfs are also motivating
study of atoms in intense magnetic fields. A sizable number
of white dwarfs are highly magnetized, with magnetic fields
around or in excess of 105 T (see [11] for a short review).
It is also now emerging that about 25% of white dwarfs
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are contaminated with mid-Z atoms such as carbon, silicon,
phosphorus, and sulfur [12,13]. The existence of such contam-
inants in white dwarf atmospheres has been a surprise, because
stellar evolution models predict largely H or He atmospheres
(DA or DB white dwarfs, respectively), with heavier species
sinking on relatively short time scales ∼102 yr [e.g., 13]. The
heavier atoms (such as silicon, phosphorus, and sulfur) are
predominantly present in hotter white dwarfs where they are
still radiatively levitated before submerging, although some
observations reveal that even cooler white dwarfs show such
contaminants [12]. Carbon meanwhile has been observed
in a large variety of white dwarfs, both hot and cooler
ones. To reconcile these observations, an exogenous source
is therefore argued for, and it is becoming understood that
white dwarfs often accrete the remnants of planetary systems.
Such observations are being used to determine planetary
compositions in these erstwhile systems [13]. Recently, a DQ
white dwarf (spectra distinguished by the presence of carbon
lines), SDSS J142625.71 + 575218.3, has been observed to
harbor a magnetic field of strength ∼1.2 × 105 T [14], further
motivating the need for atomic data for carbon in intense
magnetic fields, such as energy levels of different orbitals
alongside electron densities, with data for oscillator strengths
for bound-free and free-free transitions, to facilitate spectral
analysis.

An additional need for basic atomic data stems from
the realization that in the atmospheres of magnetized white
dwarfs and neutron stars, the atomic orbitals of adjacent atoms
may bond via a new mechanism, the so-called perpendicular
paramagnetic bonding, which can lead to strongly bound H2,
He2 [15], and possibly other species as well. In these highly
magnetized astrophysical objects, even simple atoms behave
completely differently from their terrestrial counterparts. It is
such considerations that have motivated the current study. We
present below a short review of the literature pertaining to this
field of study. The reader is referred to a recent article [16] for
a more detailed review of this area or research.

Due to the impossibility of achieving such high magnetic
field strengths in laboratory settings, atomic data for high-B
atoms have traditionally been derived using modeling. A vari-
ety of techniques has been used by various researchers since the
1970s, mostly applied to the hydrogen atom [17–26] and many
recent studies of helium [27–45] in strong magnetic fields.
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Studies have also been conducted for molecules and chains
of both hydrogen and helium atoms relevant to neutron star
magnetic fields [46–53]. Recent investigations by Thirumalai
and Heyl [54] using single-configuration Hartree-Fock (HF)
theory [55] was seen to yield accurate upper bounds for the
energies of hydrogen and helium in strong magnetic fields.
A follow-up study [56] obtained accurate energy estimates
for helium and lithium atoms in strong magnetic fields using
a pseudospectral method. This approach was seen to be
computationally far more economical than using the earlier
finite-element-based approach [54].

In contrast to the somewhat simpler two-electron systems,
relatively little work exists in the literature for atoms with
more than two electrons in strong magnetic fields. One of the
first studies to investigate atoms in intense magnetic fields, in
particular the iron atom, was by Flowers et al. [57] in 1977.
This variational study extended the work due to the authors
in Ref. [58] and obtained binding energies of iron atoms and
condensed matter in magnetic fields relevant to neutron stars.
Errors in this study were later corrected by Mueller [59].
Other methods such as density-functional studies [60,61] and
the Thomas-Fermi-Dirac method [62,63] were also employed
for estimating binding energies of atoms in intense magnetic
fields. Recently, Medin and Lai [49,50] have also studied
atoms and molecules and infinite chains of condensed matter
in magnetic fields greater than 108 T, using density-functional
theory. Mori and co-workers [34,35] have studied mid-Z atoms
in strong to intense magnetic fields using perturbation theory
as well, obtaining results consistent with previous findings.

The first comprehensive HF studies of atoms with more
than two electrons were carried out by Neuhauser et al.
[64,65] for magnetic fields greater than 108 T, thus being
directly relevant to neutron stars. Elsewhere, HF studies of
atoms and molecules in intense magnetic fields were conducted
by Demuer et al. [66], with results consistent with previous
findings. All of the above treatises, Refs. [57–66], concern
themselves with magnetic fields in excess of 108 T, well into
the so-called intense magnetic field regime. At these field
strengths, the interaction of the electron with the nucleus of
the atom becomes progressively less dominant, in comparison
to its interaction with the field itself.

Various fully computational methods have been brought to
bear on the case of atoms with more than two electrons in
strong fields. One of the first studies to carry out a rigorous
HF treatment of atoms with more than two electrons in strong
or intermediate field strengths was Ref. [30]. Therein, they
obtained estimates of the Hartree-Fock energies of a few
low-lying states of lithium and carbon atoms, in low to strong
magnetic fields. In recent years, Ivanov [67] and Ivanov and
Schmelcher [43,44,68–71] have carried out detailed HF and
post-HF studies of multielectron atoms using a numerical
mesh method for solving the unrestricted HF equations [43].
The special meshes were constructed so as to facilitate finite-
difference calculations in a two-dimensional domain using
carefully selected mesh node points [72]. Using this method
they were able to ascertain the energy landscape of the first few
low-lying states of low-Z atoms such as lithium and beryllium
and mid-Z atoms such as boron and carbon, etc. Al-Hujaj and
Schmelcher [73,74], adopting a full configuration-interaction
method and using a Gaussian basis for the electron wave

functions [36–42], obtained accurate estimates of the energies
of lithium and beryllium atoms in strong magnetic fields.
The sodium atom in a strong magnetic field has also been
studied by González-Férez and Schmelcher [75], obtaining
estimates for the binding energies. Elsewhere, low-lying states
of the lithium atom have also been studied in strong magnetic
fields using a configuration-interaction method, employing the
so-called freezing full-core method [76,77]. Initially, electron
correlation was considered only in the inner k shell [76] with
correlation between the core and the outer electron neglected;
however in a later study correlation between all the electrons
was included to yield an additional contribution to the energy
[77]. Using such an approach the beryllium atom and ion
have also been investigated in strong magnetic fields, yielding
accurate estimates of the energies [78]. In recent years Engel
and Wunner and co-workers [79–83] have computed accurate
results for several atoms in magnetic fields relevant to neutron
stars with a variety of techniques involving finite-element
methods with B splines both in the adiabatic approximation
and beyond the adiabatic approximation with more than one
Landau level. These highly accurate formulations employ
a fast parallel Hartree-Fock-Roothan code, in which the
electronic wave functions are solved for along the z direction,
with Landau orbitals (and combinations of more than one
level in the latter studies) describing the remaining parts of
the wave functions. Elsewhere, different ab initio quantum
Monte Carlo approaches [84,85] have also been successfully
employed to determine the ground states of atoms and ions in
strong magnetic fields. Recently excited states of helium have
also been computed quite accurately in intense magnetic fields
using a fixed-phase quantum Monte Carlo approach [86].

Recently, in very comprehensive studies, Schimeczek
et al. [81,82] and Boblest et al. [87] obtained accurate
estimates of the ground-state energies of atoms and ions up
to Z = 26, with only a few seconds’ worth of computing
time for helium and heliumlike atoms. Such speeds are
essential for coupling atomic structure codes with atmosphere
models and spectral analysis codes for magnetized white
dwarfs and neutron stars. While these investigations con-
cerned themselves with the ground state, a recent study by
Thirumalai and Heyl [88] employed a fast pseudospectral
approach for computing accurately the first few low-lying
states of helium and lithium in intense magnetic fields. They
obtained data for two additional states of lithium which
were observed to become tightly bound with increasing
magnetic field strength. By virtue of spectral convergence,
the computational times of this approach were seen to be on
the order of seconds for heliumlike systems, while maintaining
accuracy.

The current study extends the approach due to Thirumalai
and Heyl [88] to the carbon atom, investigating the first few
low-lying states that become tightly bound in the limit of
intense magnetic fields. The reader is referred to Ref. [88]
for the two-dimensional HF equations as well as for details
regarding their solution employing pseudospectral methods.
This article is arranged as follows. In Sec. II we briefly
describe the numerical methodology adopted for solving the
eigensystem. In Sec. III we present and discuss the results.
Finally in Sec. IV we present conclusions and briefly describe
avenues for further investigation.

052501-2



CARBON ATOM IN INTENSE MAGNETIC FIELDS PHYSICAL REVIEW A 90, 052501 (2014)

II. NUMERICAL DETAILS

For the carbon atom, the HF equations consist of six coupled
equations. The general form for the two-dimensional version
of the N-electron problem can be found in Ref. [88]. This
represents a coupled eigenvalue problem and its numerical
solution proceeds via the so-called self-consistent field (SCF)
method due to Hartree [55]. First we find a solution to
the hydrogenic problem, without the direct and exchange
interactions. This yields ionic single-electron hydrogenic
wave functions in the Coulomb potential of charge Ze forming
the initial estimates for the HF iterations. Second, using
these estimates, the elliptic partial differential equations for
the direct and exchange interaction potentials (see Ref. [88])
are solved. With these potentials now obtained, the coupled
HF problem including the direct and exchange interactions
is solved as an eigensystem. The exchange interactions that
couple the equations are expressed using wave functions from
the previous iteration to solve the eigenvalue problem for each
electron [89]. The eigenvalues obtained are the individual
particle energies εi and the normalized eigenvectors are the
wave functions ψi . The SCF iterations then proceed with the
updated electron wave functions, and the steps from the second
step described above are repeated until convergence.

For transforming the partial differential equations into
algebraic ones, we follow the domain discretization procedure
described in detail in Ref. [88]. The salient points are given
below in brief in order to facilitate a later discussion regarding
convergence of the method. As a result of the azimuthal
symmetry of the problem, and parity with respect to the z = 0
plane, it is sufficient to restrict the physical domain of the
problem [6,54,88] to 0 � ρ,z � ∞. However, for making
the problem numerically tractable, instead of using the above
semi-infinite domain, we instead solve the problem in a finite,
albeit sufficiently large, domain of size ρmax × zmax. This finite
domain is then mapped using a suitable transformation (see
below) to the domain [−1,1], and Chebyshev-Lobatto spectral
collocation points are then located on this latter compactified
domain [90]. Thereafter, a Chebyshev pseudospectral method
can be employed for representing the differential operators
and functions in this transformed domain. However, domain
truncation can introduce a confinement energy as an artifact
of the numerical procedure, artificially increasing the energy
of the electron [88]. This is mitigated by using a sequence of
domains of increasing sizes, obtaining a converged result in
the limit of the computational domain approaching the size of
the physical domain of the problem [88].

In our computations, the size of the computational domain
given by ρmax and zmax (in units of the Bohr radius) is given by

ρmax,zmax = 100η

1 + log10(βZ)
, (1)

where η = 1
4 , 1

2 ,1,2 is a scaling factor used for setting up
computations in a sequence of increasing domain sizes.
The magnetic field strength parameter is defined as βZ =
B/(Z2B0), where B0 = 4.701 08 × 105 T is the critical field
strength at which point the transition to the intense magnetic
field regime occurs [6]. The effect of the logarithmic term
log10(βZ) in the denominator is that it naturally makes the
domain larger or smaller, depending on whether βZ < 1 or

βZ > 1, respectively. With the maximum domain size thus
defined, we can then compactify the finite domain [0,ρmax] ⊗
[0,zmax] to [−1,1] ⊗ [−1,1] with the transformation

x = log10(1 + ραρ) − 1 (2)

and

y = log10(1 + zαz) − 1, (3)

where αρ = 99/ρmax and αz = 99/zmax. Note that in our
calculations we employed a square domain to achieve the
best possible internally consistent convergence. Thus in
our work ρmax = zmax and therefore αρ = αz ≡ α, but the
possibility remains for using different sizes and scalings in the
two orthogonal directions to optimize computational effort,
particularly in the intense field regime.

In order to obtain a converged solution within any given do-
main size, we employed six different levels of mesh refinement
using N = 21,31,41,51,61,71 Chebyshev collocation points
in each of the two orthogonal directions.

Utilizing a pseudospectral approach for discretization re-
sults in a sparse matrix for the coupled eigenvalue problem
[88]. Therefore we employ the widely used sparse matrix
generalized eigensystem solver ARPACK, which utilizes the
implicitly restarted Arnoldi method (IRAM) [91–94] for
solution. The key advantage is that since the Hamiltonian
matrix that we are solving has only a few bound-state solutions,
employing the IRAM with the shift-invert algorithm [93] for
computing only a portion of the spectrum saves considerable
computational effort.

It was found that generating a Krylov subspace with about
50 to 250 basis vectors was sufficient for determining around
15 to 100 eigenvalues in the vicinity of a given shift (σ ). Runs
were carried out for different values of the magnetic field
strength parameter βZ , in the range 0.7 � βZ � 250, for the
cylindrical pseudospectral code. A typical tolerance of around
10−10 was employed for the internal errors of ARPACK. It was
observed during our runs that fast convergence was achieved,
within about 3–6 HF iterations. A convergence criterion for the
HF iterations was employed wherein the difference between
the HF energies for two consecutive iterations was tested.
Typically, a tolerance on the order of 10−6EZ,∞ was employed.
Once the HF iterations attained convergence for a given level
of mesh refinement, the total Hartree-Fock energy of the state
is obtained according to Eq. (2) in Ref. [88].

III. RESULTS AND DISCUSSION

Using the atomic structure software package developed for
an earlier study [88], we carried out computations for several
Fully spin-polarized (FSP) states of the neutral carbon atom in
intense magnetic fields. After applying the extensive conver-
gence conditions to the computations as described in Ref. [88],
we arrived at estimates of the total HF energies for the 12
tightly bound states in the intense field regime. The majority
of the data presented herein aims to complement the already
available data for two states that have been investigated earlier.

The states that were considered in this study are labeled
using both the field-free and strong-field notations for the
sake of clarity; these can be found in Table I, which lists the
different states of carbon. In the presence of a magnetic field
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TABLE I. The different states of carbon considered in this study,
listed using both intense field and field-free notation.

Intense field Field-free

7(−15)+ 1s02p−13d−24f−35g−46h−5
7(−15)− 1s02p−13d−24f−35g−47i−5

7(−14)+ 1s02s03d−24f−35g−46h−5
7(−14)− 1s02p−13d−14f−35g−46h−5

7(−13)+ 1s02s02p−14f−35g−46h−5
7(−13)− 1s02p02p−14f−35g−46h−5

7(−12)+ 1s02s02p−13d−25g−46h−5
7(−12)− 1s02p02p−13d−25g−46h−5

7(−11)+ 1s02s02p−13d−24f−36h−5
7(−11)− 1s02p02p−13d−24f−36h−5

7(−10)+ 1s02s02p−13d−24f−35g−4
7(−10)− 1s02p02p−13d−24f−35g−4

states can be characterized using the notation 2S+1Mπz , where
M = ∑

i mi is the total z component of angular momentum.
The summation is over all the electrons in the atom. This
then forms a manifold within which different subspaces exist.
The spin multiplicity is given in the usual way as 2S + 1.
Finally, the z parity of the state is indicated using πz = ±1,
indicating positive or negative parity. We studied 12 tightly
bound states of carbon, 6 in each z-parity subspace, in the
intense magnetic field regime (βZ � 1). Within a given parity
subspace, typically there are crossovers that occur as the
magnetic field is reduced; the reader is referred to Ivanov
and Schmelcher [44,69] for excellent data and discussions
regarding ground-state crossovers. A recent study by Boblest
et al. [87] also represents one of the most comprehensive
discussions with regard to transitions concerning the ground
states of atoms up to Z = 26. The current work adds to the
available atomic data by investigating states of the carbon atom
not considered in these studies and reports on the Hartree-Fock
energies of several low-lying states in the intense field regime.

A. The positive-parity (πz = +1) subspace

For the states of carbon listed in Table I, eigenvalues
were determined using the numerical method described in
Sec. II (see Ref. [88] for more details). We began with
the lowest value of the domain scaling parameter η = 1/4.
This yielded a domain with dimensions given according to
Eq. (1), and this domain size depends on βZ . HF energies
were then calculated using up to six different levels of mesh
refinement in the domain. This enabled us to extrapolate the
results to the limit of infinitely fine mesh, for a given domain
size. We observed exponential convergence, characteristic of
spectral methods, wherein the errors diminish exponentially
with mesh refinement. We employed an exponential function
of the form aebx + cedx for extrapolating the total HF energies
to the limit of infinitely fine mesh. A Levenberg-Marquardt
optimization algorithm [95] was employed for this purpose.
The errors associated with the extrapolation procedure were
typically on the order of 10−4EZ,∞ to 10−6EZ,∞ with a
normalized R-squared value typically greater than 0.999 for
the interpolating function employed. However, at the upper

end of the intense magnetic field regime, we noticed slight
loss of accuracy as the states become tightly bound, and for
βZ � 200 the extrapolation procedure had an error on the order
of a few times 10−4EZ,∞ with a normalized R-squared value
of ≈0.98 on average. For the extrapolation to infinitely fine
mesh, the average area per unit grid size in the domain (AE ≈
ρmaxzmax/N

2) was taken as the independent variable and the
energies extrapolated to the limit of AE → 0, corresponding
to infinitely fine mesh.

This procedure was repeated as the domain was rescaled to
larger and larger values, corresponding to η = 1/2,1,2. Then,
using the extrapolated values of the HF energy corresponding
to infinitely fine mesh for each of the four domain sizes,
a subsequent extrapolated value of the HF energy (EHF)
was obtained, in the limit of the domain size approaching
infinity. These are then the converged EHF values reported in
Tables II and III. We employed an extrapolating function of
the form ax1/2 + b, with a Levenberg-Marquardt optimization
method [95]. The ordinates in this case were the four different
converged HF energies in the limit of infinitely fine mesh in
each of the four different domains, and the abscissae were the
inverse domain areas, i.e., (ρmaxzmax)−1. Thus, extrapolating
to zero inverse area corresponding to an infinite domain
size yields the final converged HF energy, and mitigates
errors arising due to domain truncation [88]. The error in the
extrapolation to the limit of an infinite domain size was on the
order of 10−5EZ,∞ to 10−6EZ,∞ with a normalized R-squared
value of >0.999 for the interpolating function employed.
Again at the upper end of magnetic field strengths (βZ � 200)
we noticed a slight loss of accuracy, with the extrapolation
errors increasing to the level of a few times 10−4EZ,∞.

It can be seen upon examining the data in Table II that
only one FSP positive-parity state had been investigated in the
intense field regime. This is the state 7(−15)+ that becomes
tightly bound, and is the ground state of the carbon atom,
in the range of magnetic field strengths investigated in this
study. It can be seen that the fully converged results obtained
in the current study for this state are in good agreement
with values obtained elsewhere, given that the current study
is a single-configuration calculation. Over the entire range
of magnetic field strengths investigated, our estimates of the
total Hartree-Fock energies [see Eq. (2) of [88] for definition]
agree with estimates elsewhere [44,81] to on average 
 ≈
0.75%, for the states 7(−15)+. We noticed a slight loss of
accuracy of the cylindrical pseudospectral method in the lower
magnetic field regime (βZ � 1) wherein the cylindrical code
(and the extrapolation method described above) maintained
accuracy to within 10−5EZ,∞ to 10−4EZ,∞. There was also
a similar loss of accuracy at the upper end of the intense
field regime as well, where the electron orbital geometries
become severely anisotropic (βZ

>∼ 200). Energy data for five
additional FSP positive-parity states are also provided in
Table II. Within a given M-π subspace, we considered only
a single state. It is therefore entirely possible that other states
within this subspace have crossovers in the intense field and
become tightly bound as well. This would require a detailed
investigation of all the different states that can comprise a
given M-π subspace. Such an investigation is left for a future
undertaking, with a cautionary reminder to the reader that
other states within a given subspace, apart from the ones
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TABLE II. Total Hartree-Fock energies of the positive-parity states of carbon [see Eq. (2) of Ref. [88]]. Energies are in units of Rydberg
energies in the Coulomb potential of nuclear charge Z = 6 for carbon. Accurate data from other work are also provided for comparison.
βZ = γ /2Z2. The values given in parentheses are the maximal fitting errors at the fourth decimal place.

7(−15)+ 7(−14)+ 7(−13)+ 7(−12)+ 7(−11)+ 7(−10)+

βZ Present work Other work Present work Present work Present work Present work Present work

0.5909 − 3.7898(0) − 3.7586a

0.6944 −4.0165(1) −3.9794b −3.5545(1) −3.7294(1) −3.8084(0) −3.8592(2) −3.9078(1)
1.0000 −4.5889(1) −4.0546(1) −4.2520(0) −4.3432(1) −4.4020(2) −4.4583(1)
1.3889 −5.1824(3) −5.1364b −4.5754(2) −4.7957(1) −4.8991(1) −4.9659(1) −5.0301(1)
2.0000 −5.9372(1) −5.2398(4) −5.4887(2) −5.6071(1) −5.6840(1) −5.7576(1)
2.7778 −6.7127(1) −6.6563b −5.9245(2) −6.2018(2) −6.3355(3) −6.4223(2) −6.5057(1)
2.9544 −6.8692(1) −6.8213a

5.0000 −8.3560(2) −7.3771(2) −7.7130(2) −7.8780(1) −7.9859(1) −8.0890(0)
5.9088 −8.8894(1) −8.8339a

6.9444 −9.4354(1) −9.3625b

7.0000 −9.4632(1) −8.3590(7) −8.7331(1) −8.9184(1) −9.0399(2) −9.1561(0)
10.0000 −10.7851(2) −9.5322(1) −9.9517(0) −10.1609(0) −10.2987(0) −10.4307(4)
13.8889 −12.1511(1) −12.0634b −10.7462(4) −11.2112(0) −11.4450(1) −11.5989(0) −11.7461(0)
20.0000 −13.8493(1) −12.2583(1) −12.7780(2) −13.0411(2) −13.2152(0) −13.3813(1)
25.0000 −14.9905(1) −13.2754(1) −13.8306(8) −14.1140(1) −14.3011(0) −14.4798(1)
27.7778 −15.5577(1) −15.4534b −13.7813(3) −14.3551(4) −14.6471(2) −14.8409(0) −15.0259(0)
29.5440 −15.8984(0) −15.8263a

50.0000 −19.0832(1) −16.9279(1) −17.6089(9) −17.9602(0) −18.1937(2) −18.4170(4)
69.4444 −21.3415(2) −21.2117b −18.9470(2) −19.6950(3) −20.0822(1) −20.3405(2) −20.5867(2)
100.0000 −24.1131(4) −21.4272(4) −22.2547(4) −22.6856(2) −22.9737(4) −23.2492(1)
138.8889 −26.8673(3) −26.7153a

200.0000 −30.2271(6) −26.9070(22) −27.9012(33) −28.4255(25) −28.7783(20) −29.1161(1)
250.0000 −32.4533(16) −28.9040(15) −29.9575(16) −30.5141(15) −30.8902(6) −31.2499(20)

aReference [81].
bReference [44].

TABLE III. Total Hartree-Fock energies of the negative-parity states of carbon [see Eq. (2) of Ref. [88]]. Energies are in units of Rydberg
energies in the Coulomb potential of nuclear charge Z = 6 for carbon. Accurate data from other work are also provided for comparison.
βZ = γ /2Z2. The values given in parentheses are the maximal fitting errors at the fourth decimal place.

7(−15)− 7(−14)− 7(−13)− 7(−12)− 7(−11)− 7(−10)−

βZ Present work Present work Present work Present work Present work Present work Other work

0.6944 −3.9117(1) −3.7567(2) −3.7907(2) -3.8658(3) −3.9123(2) −3.9568(4) −3.9177a

1.0000 −4.4630(0) −4.2766(6) −4.3028(2) −4.3903(3) −4.4451(2) −4.4979(4)
1.3889 −5.0346(1) −4.8156(2) −4.8354(3) −4.9355(3) −4.9991(2) −5.0601(3) −5.0153a

2.0000 −5.7617(1) −5.5036(2) −5.5161(3) −5.6320(2) −5.7063(2) −5.7778(4)
2.7778 −6.5090(0) −6.2122(1) −6.2194(4) −6.3511(1) −6.4366(4) −6.5184(2) −6.4671a

5.0000 −8.0927(0) −7.7195(1) −7.7209(1) −7.8854(3) −7.9926(2) −8.0954(2)
6.9444 −9.1338(2) −9.0672a

7.0000 −9.1593(2) −8.7376(1) −8.7379(1) −8.9229(2) −9.0444(1) −9.1605(2)
10.0000 −10.4312(1) −9.9535(2) −9.9534(1) −10.1625(1) −10.3001(2) −10.4316(2)
13.8889 −11.7465(2) −11.2121(1) −11.2117(1) −11.4452(1) −11.5994(1) −11.7465(3) −11.6656a

20.0000 −13.3811(1) −12.7781(2) −12.7776(2) −13.0406(1) −13.2148(1) −13.3810(2)
25.0000 −14.4793(2) −13.8314(7) −13.8305(1) −14.1132(2) −14.3004(2) −14.4793(1)
27.7778 −15.0252(1) −14.3548(6) −14.3539(0) −14.6461(1) −14.8400(1) −15.0250(1) −14.9284a

50.0000 −18.4151(1) −17.6087(5) −17.6026(1) −17.9526(7) −18.1867(4) −18.4154(1)
69.4444 −20.5850(0) −19.6006(16) −19.6872(2) −20.0743(2) −20.3328(3) −20.5790(4) −20.4500a

100.0000 −23.2470(5) −22.2553(11) −22.2523(3) −22.6831(3) −22.9713(4) −23.2522(5)
138.8889 −25.8961(8) −25.7611a

200.0000 −29.1191(8) −27.9131(15) −27.8991(22) −28.4235(25) −28.8014(13) −29.1198(8)
250.0000 −31.2522(9) −29.9686(54) −29.9602(68) −30.5110(15) −30.8871(6) −31.2537(9)

aReference [44].
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listed here, may be important as well from a spectroscopic
viewpoint.

B. The negative-parity (πz = −1) subspace

We investigated six FSP negative-parity states of the carbon
atom in intense magnetic fields. We have provided data for
the total Hartree-Fock energies [see Eq. (2) of [88] for
definition] of these states in Table III. Of these, there appears
to be a lack of information except for the state 7(−10)−
[44]. The data of the current computation are seen to be in
agreement with those results to on average ≈0.74%. It can
also be seen that the state 7(−15)− is also a tightly bound
state, with the energies of this state being nearly equal to those
of 7(−10)−, making them the two most tightly bound states
of the negative-parity subspace. We noticed that at both the
low and the high ends of the intense field regime considered
here, there was a slight loss of accuracy; this can be seen in the
slightly larger errors reported in the parentheses. Once more
however, we would like to remind the reader that in any given
M-π subspace, we have only investigated a single state; other
configurations in the subspace would need to be investigated
before determining the ordering of states according to their
energies in a given M-π subspace, as well as answering
the important question regarding crossovers. We again note
that such an undertaking is beyond the scope of the current
investigation, whose aim is merely to complement the data in
the literature for the carbon atom in intense magnetic fields,
by providing data for additional states that also become tightly
bound with increasing magnetic fields.

It can also be seen that the energies of the different states
shown in Tables II and III are fairly close together, particularly
at the higher end of the intense field regime, even with
the handful of states considered here. This would have an
impact on transition probabilities wherein many transition
probabilities between states may be nearly equally likely. This
would also affect the emergent spectra wherein several lines
may be rather close together. This effect may become more
pronounced should other states in the different M-π subspaces
be investigated as well.

IV. CONCLUSIONS AND OUTLOOK

In the current study we have investigated the carbon atom in
intense magnetic fields employing a two-dimensional single-
configuration Hartree-Fock approach with a pseudospectral
method of solution. We employed an atomic structure software
package that was developed earlier [88] for this purpose.

We presented data for 12 tightly bound FSP states of carbon,
six in each parity subspace. Data were lacking for ten of these
states. Where available, the data of the current computation for
certain states were seen to be in good agreement with findings
elsewhere.

The pseudospectral atomic structure software employed in
this investigation also has certain limitations. First, computa-
tions are currently required to be carried out in a sequence
of increasing finite domain sizes, so that a converged result
for the total Hartree-Fock energy may be obtained in the limit
of the domain size becoming infinite. This adds a layer of
computational complexity. We have discussed in Ref. [88] a

possible way to circumvent this, in essence by monitoring the
wave functions at the outer edges of the domain and requiring
their values to fall below a certain threshold, while varying
the domain size. While this may not be straightforward to
implement within the framework of a pseudospectral approach,
it would nevertheless make the computation more streamlined
if implemented. Second, the current work does not include
relativistic corrections to the energies. For the magnetic field
strengths considered herein, the relativistic corrections to the
energies were estimated using the scaling formula in Ref [96].
Their results for the hydrogen atom were used for this purpose
and the corrections were estimated to be on the order of
10−6EZ,∞. This was seen to be smaller than the numerical
errors arising from convergence of the entire numerical method
including the extrapolation to the limit of a semi-infinite
domain. Thus, relativistic corrections are important; however,
it was not possible to account for them accurately in the current
study. Moreover, as the magnetic field strength increases in the
intense magnetic field regime, effects due to finite nuclear mass
become relevant. In the current study, the mass of the nucleus
is assumed to be infinite, and as such we have not carried
out a suitable correction. One way to account for the finite
nuclear mass is to employ a scaling relationship wherein the
energies determined at a certain magnetic field strength βZ for
an infinite nuclear mass would be related to the corresponding
energies for a finite nuclear mass at a different value of the
magnetic field strength β̃Z [41].

Finally, and perhaps the most important, is the fact that the
current study is only a single-configuration calculation for a
system that has six electrons. Therefore, the effects of electron
correlation are of great importance and, if included, would
yield much more accurate results than those given here. The
current two-dimensional (2D) wave functions computed in this
study could form the initial estimates for 2D configuration-
interaction or multiconfiguration calculations. We leave this
much larger undertaking for a future endeavor.

The amount of data that is required for careful analysis
of the emergent spectra from a white dwarf (or neutron
star) is staggering. Foremost, multiwavelength observations
are required over the entire spectral energy distribution of
the compact object, e.g., spectroscopic data, photometry, and
polarimetric data (see, e.g., [97]). Observations are often
complicated by rotation of the compact object, and thus it
becomes necessary to have phase-resolved spectra to identify
spectral lines accurately. This entails long-period observations
using multiple high-sensitivity and high-spectral-resolution
instruments from various physical locations around the globe.
Thus, obtaining such data for the sizable number of magnetized
compact objects known is a formidable task, since dedicated
and prolonged instrument time for each object would be
required. Even from the perspective of theoretical atomic data
there are many challenges ahead. Foremost, for identifying
spectral features and lines one requires a wealth of data
regarding transition rates. In the presence of a strong magnetic
field many zero-field transitions forbidden due to dipole
selection rules now become permissible [97]. This situation is
further complicated by the ubiquitously present strong electric
fields in the atmospheres of these objects, which not only lead
to further violations of the zero-field selection rules, but also
significantly affect oscillator strengths and transition rates.
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It is also important to have data for stationary components
of the spectra. These lines are typically between 300 and
1000 nm for hydrogen, and these transitions go through either
a maximum or a minimum as a function of the magnetic field
strength. Such transitions produce sharp absorption features,
in contrast to fast-moving wavelengths which get smeared
out due to variations in the magnetic field structure on the
surface of the compact object [6]. The majority of such data
currently available are for atoms such as hydrogen and helium.
However, with the discovery of several mid-Z atmospheric
contaminants such as carbon, sulfur, phosphorus, and silicon,
it becomes necessary to have such extended atomic data for
interpreting spectral features of these objects. In addition to
atomic data for bound-bound transitions, data are also needed
for bound-free transitions, in particular photoionization cross
sections of various states of different low- to mid-Z atoms, as a
function of magnetic field strength. Such transitions contribute
significantly to continuum opacity as well as to polarization
effects in the atmospheres of compact objects. However, data
here are even more scarce and limited to hydrogen bound-free
photoionization cross sections [98–100]. Such data for helium
and mid-Z elements such as carbon would also be required for
accurately modeling the spectra of DB and DQ white dwarfs.

In summary, apart from extensive multiwavelength obser-
vations, a great wealth of atomic data are required for spectral
analysis of magnetized compact objects. The first step in that
direction is to obtain data for the energy levels and wave
functions of various low-lying states of mid-Z atoms. This
investigation considerably extends the currently available data
in the literature for the energy levels of the carbon atom in
intense magnetic fields. We would however like to remind the
reader that, at a minimum, several more states would need to be
computed within the different M-π subspaces for delineating
the full energy landscape of the carbon atom.
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