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Experimental protection against evolution of states in a subspace via a super-Zeno scheme on an
NMR quantum information processor
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We experimentally demonstrate the freezing of evolution of quantum states in one- and two-dimensional
subspaces of two qubits, on an NMR quantum information processor. State evolution was frozen and leakage of
the state from its subspace to an orthogonal subspace was successfully prevented using super-Zeno sequences
[Phys. Rev. Lett. 96, 100405 (2006)], comprising a set of radio frequency (rf) pulses punctuated by pre-selected
time intervals. We demonstrate the efficacy of the scheme by preserving different types of states, including
separable and maximally entangled states in one- and two-dimensional subspaces of two qubits. The change
in the experimental density matrices was tracked by carrying out full state tomography at several time points. We
use the fidelity measure for the one-dimensional case and the leakage (fraction) into the orthogonal subspace for
the two-dimensional case, as qualitative indicators to estimate the resemblance of the density matrix at a later time
to the initially prepared density matrix. For the case of entangled states, we additionally compute an entanglement
parameter to indicate the presence of entanglement in the state at different times. We experimentally demonstrate
that the super-Zeno scheme is able to successfully confine state evolution to the one- or two-dimensional subspace
being protected.
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I. INTRODUCTION

Using frequent measurements to project a quantum system
back to its initial state and hence slow down its time evolution
is a phenomenon known as the quantum Zeno effect [1–3].
If the measurements project the system back into a finite-
dimensional subspace that includes the initial state, the state
evolution remains confined within this subspace and the
subspace can be protected against leakage of population using
a quantum Zeno strategy [4,5]. An operator version of this
phenomenon has also been suggested recently [6,7]. Zeno-like
schemes have been used for error prevention [8], and to
enhance the entanglement of a state and bring it to a Bell
state, even after entanglement sudden death [9,10]. It has been
shown that under certain assumptions, the Zeno effect can be
realized with weak measurements and can protect an unknown
encoded state against environment effects [11]. An interesting
quantum Zeno-type strategy for state preservation, achieved
using a sequence of nonperiodic short duration pulses, has been
termed the super-Zeno scheme [12]. The super-Zeno scheme
does not assume any Hamiltonian symmetry, does not involve
projective quantum measurements, and achieves a significant
betterment of the leakage probability as compared to standard
Zeno-based preservation schemes. Similar schemes involving
dynamical decoupling have been devised to suppress qubit
pure dephasing and relaxation [13,14]. Another scheme to
preserve entanglement in a two-qubit spin-coupled system
has been constructed, which unlike the super-Zeno scheme,
is based on a sequence of operations performed periodically
on the system in a given time interval [15].

There are several experimental implementations of the
quantum Zeno phenomenon, including suppressing unitary
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evolution driven by external fields between the two states of
a trapped ion [16], in atomic systems [17] and suppressing
failure events in a linear optics quantum computing scheme
[18]. Decoherence control in a superconducting qubit system
has been proposed using the quantum Zeno effect [19]. Unlike
the super-Zeno and dynamical decoupling schemes that are
based on unitary pulses, the quantum Zeno effect achieves
suppression of state evolution using projective measurements.
The quantum Zeno effect was first demonstrated in NMR by
a set of symmetric π pulses [20], wherein pulsed magnetic
field gradients and controlled-NOT gates were used to mimic
projective measurements. The entanglement preservation of a
Bell state in a two-spin system in the presence of anisotropy
was demonstrated using a preservation procedure involving
free evolution and unitary operations [21]. An NMR scheme
to preserve a separable state was constructed using the super-
Zeno scheme and the state preservation was found to be more
efficient as compared to the standard Zeno scheme [22]. The
quantum Zeno effect was used to stabilize superpositions of
states of NMR qubits against dephasing, using an ancilla to
perform the measurement [23]. Entanglement preservation
based on a dynamic quantum Zeno effect was demonstrated us-
ing NMR wherein frequent measurements were implemented
through entangling the target and measuring qubits [24].

This work focuses on two applications of the super-Zeno
scheme: (i) preservation of a state by freezing state evolu-
tion (one-dimensional subspace protection) and (ii) subspace
preservation by preventing leakage of population to an orthog-
onal subspace (two-dimensional subspace protection). Both
kinds of protection schemes are experimentally demonstrated
on separable as well as on maximally entangled two-qubit
states. One-dimensional subspace protection is demonstrated
on the separable |11〉 state and on the maximally entangled

1√
2
(|01〉 − |10〉) (singlet) state. Two-dimensional subspace

preservation is demonstrated by choosing the {|01〉,|10〉} sub-
space in the four-dimensional Hilbert space of two qubits, and
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implementing the super-Zeno subspace preservation protocol
on three different states, namely |01〉, |10〉 and 1√

2
(|01〉 − |10〉)

(singlet) states. Complete state tomography is utilized to
compute experimental density matrices at several time points.
State fidelities at these time points were computed to evaluate
how closely the states resemble the initially prepared states,
with and without super-Zeno protection. The success of the
super-Zeno scheme in protecting states in the two-dimensional
subspace spanned by {|01〉,|10〉} is evaluated by computing a
leakage parameter, which computes leakage to the orthogonal
subspace spanned by {|00〉,|11〉}. For entangled states, an
additional entanglement parameter is constructed to quantify
the residual entanglement in the state over time. State fidelities,
the leakage parameter, and the entanglement parameter are
plotted as a function of time, to quantify the performance of
the super-Zeno scheme.

The material in this paper is organized as follows:
Sec. II gives a concise description of the theoretical super-
Zeno scheme; in Sec. III and the subsections therein we
describe the main experimental results, namely freezing
the evolution of a separable and an entangled state and
the prevention of leakage of population from a subspace,
both schemes being implemented on a two-qubit NMR
information processor. Section IV contains some concluding
remarks.

II. THE SUPER-ZENO SCHEME

The super-Zeno algorithm to preserve quantum states has
been developed along lines similar to bang-bang control
schemes, and limits the quantum system’s evolution to a
desired subspace using a series of unitary kicks [12].

A finite-dimensional Hilbert space H can be written as
a direct sum of two orthogonal subspaces P and Q. The
super-Zeno scheme involves a unitary kick J, which can be
constructed as

J = Q − P, (1)

where P,Q are the projection operators onto the subspaces
P,Q, respectively. The action of this specially crafted pulse J
on a state |ψ〉 ∈ H is as follows:

J|ψ〉 = −|ψ〉, |ψ〉 ∈ P, J|ψ〉 = |ψ〉, |ψ〉 ∈ Q, (2)

where P is the subspace being preserved.
The total super-Zeno sequence for N pulses is given by

WN (t) = U (xN+1t)J · · · JU (x2t)JU (x1t), (3)

where U denotes unitary evolution under the system Hamilto-
nian and xit is the time interval between the ith and (i + 1)th
pulse. The sequence {xit} of time intervals between pulses is
optimized such that if the system starts out in the subspace P ,
after measurement the probability of finding the system in the
orthogonal subspaceQ is minimized. In this work we used four
inverting pulses interspersed with five inequal time intervals
in each repetition of the preserving super-Zeno sequence.
The optimized sequence is given by {xi} = {β,1/4,1/2 −
2β,1/4,β} with β = (3 − √

5)/8,i = 1 . . . 5 and t is a fixed
time interval (we use the xi as worked out in Ref. [12]).

The explicit form of the unitary kick J depends on the
subspace that needs to be preserved, and in the following
section, we implement several illustrative examples for both
separable and entangled states embedded in one- and two-
dimensional subspaces of two qubits.

III. EXPERIMENTAL DEMONSTRATION
OF SUPER-ZENO STRATEGIES

A. NMR details

The two protons of the molecule cytosine encode the two
qubits. The two-qubit molecular structure, system parameters,
and pseudopure and thermal initial states are shown in
Figs. 1(a)–1(c). The Hamiltonian of a two-qubit system in
the rotating frame is given by

H =
2∑

i=1

νiIiz +
2∑

i<j,i=1

Jij IizIjz, (4)

where νi are the Larmor frequencies of the spins and Jij

is the spin-spin coupling constant. An average longitudinal
T1 relaxation time of 7.4 s and an average transverse T2

relaxation time of 3.25 s was experimentally measured for
both the qubits. All experiments were performed at an ambient
temperature of 298 K on a Bruker Avance III 600-MHz

FIG. 1. (Color online) (a) Molecular structure of cytosine with
the two qubits labeled as H 1 and H 2 and tabulated system parameters
with chemical shifts νi and scalar coupling J12 (in Hz) and relaxation
times T1 and T2 (in seconds). (b) NMR spectrum obtained after a π/2
readout pulse on the thermal equilibrium state. The resonance lines
of each qubit are labeled by the corresponding logical states of the
other qubit. (c) NMR spectrum of the pseudopure |00〉 state.
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NMR spectrometer equipped with a QXI probe. The two-qubit
system was initialized into the pseudopure state |00〉 using the
spatial averaging technique [25], with the density operator
given by

ρ00 = 1 − ε

4
I + ε|00〉〈00|, (5)

with a thermal polarization ε ≈ 10−5 and I being a 4 × 4
identity operator. The experimentally created pseudopure state
|00〉 was tomographed with a fidelity of 0.99. The pulse
propagators for selective excitation were constructed using
the GRAPE algorithm [26] to design the amplitude and phase
modulated RF profiles. Selective excitation was typically
achieved with pulses of duration 1 ms. Numerically generated
GRAPE pulse profiles were optimized to be robust against
RF inhomogeneity and had an average fidelity of � 0.99.
All experimental density matrices were reconstructed using a
reduced tomographic protocol [27], with the set of operations
given by {II,IX,IY,XX} being sufficient to determine all
15 variables for the two-qubit system. Here I is the identity
(do-nothing operation) and X(Y ) denotes a single spin operator
that can be implemented by applying a corresponding spin
selective π/2 pulse. The fidelity of an experimental density
matrix was computed by measuring the projection between
the theoretically expected and experimentally measured states
using the Uhlmann-Jozsa fidelity measure [28,29]:

F = (T r(
√√

ρtheoryρexpt
√

ρtheory))2, (6)

where ρtheory and ρexpt denote the theoretical and experimental
density matrices, respectively.

B. Super-Zeno for state preservation

When the subspace P is a one-dimensional subspace,
and hence consists of a single state, the super-Zeno scheme
becomes a state preservation scheme.

Product states. We begin by implementing the super-Zeno
scheme on the product state |11〉 of two qubits, where the
Hilbert space can be decomposed as a direct sum of the
subspaces P = {|11〉} and Q = {|00〉,|01〉,|10〉)}. The super-
Zeno pulse J to protect the state |11〉 ∈ P is given by Eq. (1):

J = I − 2|11〉〈11|, (7)

with the corresponding matrix form,

J =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ . (8)

The super-Zeno circuit to preserve the |11〉 state, and the
corresponding NMR pulse sequence is given in Fig. 2. The
controlled-phase gate (Z) in Fig. 2(a) which replicates the
unitary kick J for preservation of the |11〉 state is implemented
using a set of three sequential gates: two Hadamard gates on
the second qubit sandwiching a controlled-NOT gate (CNOT12),
with the first qubit as the control and the second qubit as the
target. The �i time interval in Fig. 2(a) is given by �i = xit ,
with xi as defined in Eq. (3). The five �i time intervals were
worked to be 0.095 ms, 0.25 ms, 0.3 ms, 0.25 ms, and 0.095 ms,
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FIG. 2. (Color online) (a) Quantum circuit for preservation of
the state |11〉 using the super-Zeno scheme. �i = xi t,(i = 1 . . . 5)
denote time intervals punctuating the unitary operation blocks.
Each unitary operation block contains a controlled-phase gate (Z),
with the first (top) qubit as the control and the second (bottom)
qubit as the target. The entire scheme is repeated N times before
measurement (for our experiments N = 30). (b) Block-wise depiction
of the corresponding NMR pulse sequence. A z gradient is applied
just before the super-Zeno pulses, to clean up undesired residual
magnetization. The unfilled and black rectangles represent hard 1800

and 900 pulses, respectively, while the unfilled and gray-shaded
conical shapes represent 1800 and 900 pulses (numerically optimized
using GRAPE), respectively; τ12 is the evolution period under the J12

coupling. Pulses are labeled with their respective phases and unless
explicitly labeled, the phase of the pulses on the second (bottom)
qubit are the same as those on the first (top) qubit.

respectively, for t = 1 ms. One run of the super-Zeno circuit
(with four inverting Js and five �i time evolution periods)
takes approximately 300 ms and the entire preserving sequence
WN (t) in Eq. (3) was applied 30 times. The final state of
the system was reconstructed using state tomography and the
real and imaginary parts of the tomographed experimental
density matrices without any preservation and after applying
the super-Zeno scheme, are shown in Fig. 3. The initial |11〉
state (at time T = 0s) was created (using the spatial averaging
scheme) with a fidelity of 0.99. The tomographs (on the right
in Fig. 3) clearly show that state evolution has been frozen
with the super-Zeno scheme.

Entangled state preservation. We next apply the super-
Zeno scheme to preserve an entangled state in our system
of two qubits. We choose the singlet state 1√

2
(|01〉 − |10〉)

as the entangled state to be preserved. It is well known
that entanglement is an important but fragile computational
resource, and constructing schemes to protect entangled states
from evolving into other states is of considerable interest in
quantum information processing [30].

We again write the Hilbert space as a direct sum of two
subspaces: the subspace being protected and the subspace
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FIG. 3. (Color online) Real (left) and imaginary (right) parts of
the experimental tomographs of the (a) |11〉 state, with a computed
fidelity of 0.99; (b)–(e) depict the state at T = 0.61,3.03,5.46,7.28 s,
with the tomographs on the left and the right representing the
state without and after applying the super-Zeno preserving scheme,
respectively. The rows and columns are labeled in the computational
basis ordered from |00〉 to |11〉.

orthogonal to it. In this case, the one-dimensional subspace
P being protected is

P =
{

1√
2

(|01〉 − |10〉)
}
, (9)

and the orthogonal subspace Q into which one would like to
prevent leakage is

Q =
{

1√
2

(|01〉 + |10〉),|00〉,|11〉
}
. (10)

The super-Zeno pulse to protect the singlet state as
constructed using Eq. (1) is

J = I − (|01〉〈01| + |10〉〈10| − |01〉〈10| − |10〉〈01|), (11)

with the corresponding matrix form,

J =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ . (12)
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FIG. 4. (Color online) (a) Quantum circuit for preservation of
the singlet state using the super-Zeno scheme. �i,(i = 1 . . . 5)
denote time intervals punctuating the unitary operation blocks. The
entire scheme is repeated N times before measurement (for our
experiments N = 10). (b) NMR pulse sequence corresponding to
one unitary block of the circuit in (a). A z gradient is applied
just before the super-Zeno pulses to clean up undesired residual
magnetization. The unfilled rectangles represent hard 1800 pulses,
the black filled rectangles representing hard 900 pulses, while the
shaded shapes represent numerically optimized (using GRAPE) pulses
and the gray-shaded shapes representing 900 pulses, respectively; τ12

is the evolution period under the J12 coupling. Pulses are labeled with
their respective phases and unless explicitly labeled, the phase of the
pulses on the second (bottom) qubit are the same as those on the first
(top) qubit.

The quantum circuit and the NMR pulse sequence for
preservation of the singlet state using the super-Zeno scheme
are given in Fig. 4. Each J inverting pulse in the unitary block
in the circuit is decomposed as a sequential operation of three
noncommuting controlled-NOT gates: CNOT12-CNOT21-CNOT12,
where CNOTij denotes a controlled-NOT with i as the control
and j as the target qubit. The five �i time intervals were
worked to be 0.95 ms, 2.5 ms, 3 ms, 2.5 ms, and 0.95 ms,
respectively, for t = 10 ms. One run of the super-Zeno circuit
(with four inverting Js and five �i time evolution periods) takes
approximately 847 ms and the entire super-Zeno preserving
sequence WN (t) in Eq. (3), is applied 10 times. The singlet
state was prepared from an initial pseudopure state |00〉 by
a sequence of three gates: a nonselective NOT gate (hard πx

pulse) on both qubits, a Hadamard gate, and a CNOT12 gate. The
singlet state thus prepared was computed to have a fidelity of
0.99. The effect of chemical shift evolution during the delays
was compensated for with refocusing pulses. The final singlet
state has been reconstructed using state tomography, and the
real and imaginary parts of the tomographed experimental
density matrices, without any preservation and after applying
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FIG. 5. (Color online) Real (left) and imaginary (right) parts of
the experimental tomographs of the (a) 1√

2
(|01〉 − |10〉) (singlet)

state, with a computed fidelity of 0.99; (b)–(e) depict the state at
T = 0.85,2.54,4.24,5.93 s, with the tomographs on the left and the
right representing the state without and after applying the super-Zeno
preserving scheme, respectively. The rows and columns are labeled
in the computational basis ordered from |00〉 to |11〉.

the super-Zeno scheme, are shown in Fig. 5. As can be seen
from the experimental tomographs in Fig. 5, the evolution of
the singlet state is almost completely frozen by the super-Zeno
sequence up to nearly 6 s, while without any preservation the
state has leaked into the orthogonal subspace within 2 s.

Estimation of state fidelity. The plots of state fidelity versus
time are shown in Fig. 6 for the state |11〉 and the singlet state,
with and without the super-Zeno preserving sequence. The
deviation density matrix is renormalized at every point and
the state fidelity is estimated using the definition in Eq. (6).
Renormalization is performed since our focus here is on the
quantum state of the spins contributing to the signal and not
in the number per se of participating spins [31]. The plots in
Fig. 6 and the tomographs in Figs. 3 and 5 show that with
super-Zeno protection, the state remains confined to the |11〉
(singlet) part of the density matrix, while without the protection
scheme, the state leaks into the orthogonal subspace. As seen
from both plots in Fig. 6, the state evolution of specific states
can be arrested for quite a long time using the super-Zeno
preservation scheme, while leakage probability of the state
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FIG. 6. Plot of fidelity versus time of (a) the |11〉 state and (b) the
1√
2
(|01〉 − |10〉) (singlet) state, without any preserving scheme and

after the super-Zeno preserving sequence. The fidelity of the state
with the super-Zeno preservation remains close to 1.

to other states in the orthogonal subspace spanned by Q is
minimized. A similar renormalization procedure is adopted in
the subsequent sections where we plot the leak fraction and
entanglement parameters (Figs. 10 and 11).

C. Super-Zeno for subspace preservation

While in the previous subsection, the super-Zeno scheme
was shown to be effective in arresting the evolution of a one-
dimensional subspace (as applied to the cases of a product and
an entangled state), the scheme is in fact more general. For
example, if we choose a two-dimensional subspace in the state
space of two qubits and protect it by the super-Zeno scheme,
then any state in this subspace is expected to remain within
this subspace and not leak into the orthogonal subspace. While
the state can meander within this subspace, its evolution out
of the subspace is frozen.

We now turn to implementing the super-Zeno scheme
for subspace preservation, by constructing the J operator
to preserve a general state embedded in a two-dimensional
subspace. We choose the subspace spanned byP = {|01〉,|10〉}
as the subspace to be preserved, with its orthogonal subspace
now being Q = {|00〉,|11〉}. It is worth noting that within the
subspace being protected, we have product as well as entangled
states.

The super-Zeno pulse J to protect a general state |ψ〉 ∈ P

can be constructed as

J = I − 2(|01〉〈01| − |10〉〈10|), (13)

with the corresponding matrix form,

J =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ . (14)

The quantum circuit and corresponding NMR pulse se-
quence to preserve a general state in the {|01〉,|10〉} subspace
is given in Fig. 7. The unitary kick [denoted as Uzz in the unitary
operation block in Fig. 7(a)] is implemented by tailoring
the gate time to the J -coupling evolution interval of the
system Hamiltonian, sandwiched by nonselective π pulses
(NOT gates), to refocus undesired chemical shift evolution
during the action of the gate. The five �i intervals were
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FIG. 7. (Color online) (a) Quantum circuit for preservation of the
{01,10} subspace using the super-Zeno scheme. �i,(i = 1...5) denote
time intervals punctuating the unitary operation blocks. The entire
scheme is repeated N times before measurement (for our experiments
N = 30). (b) NMR pulse sequence corresponding to the circuit in (a).
A z gradient is applied just before the super-Zeno pulses, to clean up
undesired residual magnetization. The unfilled rectangles represent
hard 1800 pulses; τ12 is the evolution period under the J12 coupling.
Pulses are labeled with their respective phases.

worked to be 0.95 ms, 2.5 ms, 3 ms, 2.5 ms, and 0.95 ms,
respectively, for t = 10 ms. One run of the super-Zeno circuit
(with four inverting Js and five �i time evolution periods) takes
approximately 288 ms and the entire super-Zeno preserving
sequence WN (t) in Eq. (3), is applied 30 times.

Preservation of product states in the subspace. We im-
plemented the subspace-preserving scheme on two different
(separable) states |01〉 and |10〉 in the subspace P . The efficacy
of the preserving unitary is verified by tomographing the
experimental density matrices at different time points and
computing the state fidelity. Both the |01〉 and |10〉 states
remain within the subspace P and do not leak out to the
orthogonal subspace Q = {|00〉,|11〉}.

The final |10〉 state has been reconstructed using state to-
mography, and the real and imaginary parts of the experimental
density matrices without any preservation and after applying
the super-Zeno scheme, tomographed at different time points,
are shown in Fig. 8. As can be seen from the experimental
tomographs, the evolution of the |10〉 state out of the subspace
is almost completely frozen by the super-Zeno sequence up to
nearly 7.5 s, while without any preservation the state has leaked
into the orthogonal subspace within 3.5 s. The tomographs for
the |01〉 state show a similar level of preservation (data not
shown).

Preservation of an entangled state in the subspace. We
now prepare an entangled state (the singlet state) embedded
in the two-dimensional P = {|01〉,|10〉} subspace, and use the
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FIG. 8. (Color online) Real (left) and imaginary (right) parts
of the experimental tomographs of the (a) |10〉 state in the two-
dimensional subspace {01,10}, with a computed fidelity of 0.98;
(b)–(e) depict the state at T = 1.15,3.45,5.75,7.48 s, with the
tomographs on the left and the right representing the state without
and after applying the super-Zeno preserving scheme, respectively.
The rows and columns are labeled in the computational basis ordered
from |00〉 to |11〉.

subspace-preserving scheme described in Fig. 7 to protect P .
The singlet state was reconstructed using state tomography,
and the real and imaginary parts of the tomographed exper-
imental density matrices without any preservation and after
applying the super-Zeno scheme, are shown in Fig. 9. As can
be seen from the experimental tomographs, the state evolution
remains within the P subspace but the state itself does not
remain maximally entangled.

Estimating leakage outside subspace. The subspace-
preserving capability of the circuit given in Fig. 7 was
quantified by computing a leakage parameter that defines
the amount of leakage of the state to the orthogonal Q =
{|00〉,|11〉} subspace. For a given density operator ρ the “leak
(fraction)” δ into the subspace Q is defined as

δ = 〈00|ρ|00〉 + 〈11|ρ|11〉. (15)

The leak (fraction) δ versus time is plotted in Figs. 10(a)
and 10(b), for the |10〉 and the singlet state, respectively,
with and without applying the super-Zeno subspace-preserving
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FIG. 9. (Color online) Real (left) and imaginary (right) parts of
the experimental tomographs of the (a) 1√

2
(|01〉 − |10〉) (singlet) state

in the two-dimensional subspace {01,10}, with a computed fidelity of
0.98; (b)–(e) depict the state at T = 1.15,3.46,5.77,7.50 s, with the
tomographs on the left and the right representing the state without
and after applying the super-Zeno preserving scheme, respectively.
The rows and columns are labeled in the computational basis ordered
from |00〉 to |11〉.
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FIG. 10. Plot of leakage fraction from the {|01〉,|10〉} subspace
to its orthogonal subspace {|00〉,|11〉} of (a) the |10〉 state and
(b) the 1√

2
(|01〉 − |10〉) (singlet) state, without any preservation and

after applying the super-Zeno sequence. The leakage to the orthogonal
subspace is minimal (remains close to zero) after applying the
super-Zeno scheme.

sequence. The leakage parameter remains close to zero for both
kinds of states, proving the success and the generality of the
super-Zeno scheme.

D. Preservation of entanglement

The amount of entanglement that remains in the state after
a certain time is quantified by an entanglement parameter
denoted by η. Since we are dealing with mixed bipartite states
of two qubits, all entangled states will be negative under partial
transpose (NPT). For such NPT states, a reasonable measure
of entanglement is the minimum eigenvalue of the partially
transposed density operator. For a given experimentally tomo-
graphed density operator ρ, we obtain ρPT by taking a partial
transpose with respect to one of the qubits. The entanglement
parameter η for the state ρ in terms of the smallest eigenvalue
E

ρ

Min of ρPT is defined as

η =
{−E

ρ

Min if E
ρ

Min < 0

0 if E
ρ

Min > 0
. (16)

We will use this entanglement parameter η to quantify the
amount of entanglement at different times.

The maximally entangled singlet state was created and its
evolution studied in two different scenarios. In the first scenario
described in Sec. III B, the singlet state was protected against
evolution by the application of the super-Zeno scheme. In the
second scenario described in Sec. III C, a two-dimensional
subspace containing the singlet state was protected
using the super-Zeno scheme. For the former case, one expects
that the state will remain a singlet state, while in the latter
case, it can evolve within the protected two-dimensional
subspace. Since in the second case, the protected subspace
contains entangled as well as separable states, one does not
expect preservation of entanglement to the same extent as
expected in the first case, where the one-dimensional subspace
defined by the singlet state itself is protected. The experimental
tomographs at different times and fidelity for the case of state
protection and the leakage fraction for the case of subspace
protection have been discussed in detail in the previous
subsections.

Here we focus our attention on the entanglement present
in the state at different times. The entanglement parameter η

for the evolved singlet state is plotted as a function of time
and is shown in Figs. 11(a) and 11(b), after applying the state-
preserving and the subspace-preserving super-Zeno sequence,
respectively. In both cases, the state becomes disentangled very
quickly (after approximately 2 s) if no super-Zeno preservation
is performed. After applying the state-preserving super-Zeno
sequence [Fig. 11(a)], the amount of entanglement in the
state remains close to maximum for a long time (up to 8 s).
After applying the subspace-preserving super-Zeno sequence
[Fig. 11(b)], the state shows some residual entanglement over
long times but it is clear that the state is no longer maximally
entangled. This implies that the subspace-preserving sequence
does not completely preserve the entanglement of the singlet
state, as expected. However, while the singlet state becomes
mixed over time, its evolution remains confined to states
within the two-dimensional subspace (P = {|01〉,|10〉}) being
preserved as is shown in Fig. 10, where we calculate the leak
(fraction).
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FIG. 11. Plot of entanglement parameter η with time, with and
without applying the super-Zeno sequence, computed for (a) the

1√
2
(|01〉 − |10〉) (singlet) state, and (b) the same singlet state when

embedded in the subspace {|01〉,|10〉} being preserved.

IV. CONCLUDING REMARKS

In summary, we have experimentally demonstrated that
the super-Zeno scheme can efficiently preserve states in one-
and two-dimensional subspaces, by preventing leakage to a
subspace orthogonal to the subspace being preserved. We have

implemented the super-Zeno sequence on product as well as
on entangled states, embedded in one- and two-dimensional
subspaces of a two-qubit NMR quantum information proces-
sor.

We emphasize here that the strength of the super-Zeno
protection scheme lies in its ability to preserve the state such
that while the number of spins in that particular state reduces
with time, the state remains the same. Without the super-Zeno
protection, the number of spins in the state reduces with time
and the state itself migrates towards a thermal state, reducing
the fidelity. Our work adds to the arsenal of real-life attempts to
protect against evolution of states in quantum computers and
points the way to the possibility of developing hybrid strategies
(combining the super-Zeno scheme with other schemes such
as dynamical decoupling sequences) to tackle preservation of
fragile computational resources such as entangled states.
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