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Quantum randomness certified by the uncertainty principle
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We present an efficient method to extract the amount of true randomness that can be obtained by a quantum
random number generator (QRNG). By repeating the measurements of a quantum system and by swapping
between two mutually unbiased bases, a lower bound of the achievable true randomness can be evaluated. The
bound is obtained thanks to the uncertainty principle of complementary measurements applied to min-entropy
and max-entropy. We tested our method with two different QRNGs by using a train of qubits or ququart and
demonstrated the scalability toward practical applications.
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I. INTRODUCTION

Random numbers are of fundamental importance for
scientific and practical applications. Over the last years, great
effort has been devoted to quantum random number generators
(QRNGs), based on the intrinsic randomness of the quantum
measurement process [1–10].

Theoretical analyses about the security and the real con-
tent of randomness have been given only recently [9–13].
It has been shown that true random numbers, i.e. uni-
form and uncorrelated from any classical or quantum side-
information held by an eavesdropper, can be achieved by
using the randomness expansion [13,14] or amplification
protocols [7,15]. Expansion refers to a protocol able to
generate true random numbers by starting with a short random
seed. In an amplification protocol, the initial seed can have
arbitrarily weak (but nonzero) randomness at the price of
lower output rate. However, both protocols are very demanding
under the experimental point of view since, by operating
in the device-independent framework, the only way to get
perfect randomness is to enforce conditions of nonlocality and
nonsignalling between two parties that violate a (loophole-
free) Bell inequality [9].

A general QRNG works as follows: given a d-level quantum
system A prepared in a state ρA, the random variable Z is
obtained by measuring the state ρA with a d-outcome measure-
ment Z: each outcome z is obtained with a given probability
Pz. If the state ρA is pure, the number of true random bits that
can be extracted from each measurement is quantified by the
classical min-entropy H∞(Z) = − maxz(log2 Pz). In this work
we aim to deal with a generic scenario, in which the state ρA is
not pure and therefore the system A is correlated with another
quantum system, denoted by E. In this case it is necessary
to estimate the amount of (quantum) information that an
adversary Eve holding the system E has on the variable Z.
The importance of this estimation can be illustrated by a simple
example. Let us suppose that Eve holds two entangled photons
in the state |�〉 = 1√

2
(|HH 〉 + |V V 〉) and sends to Alice one

of the two photons as the system she uses for the randomness
extraction. If Alice measures in the {|H 〉,|V 〉} basis she obtains
a perfect random bit from the point of view of the classical
min-entropy, since the two outcomes |H 〉 and |V 〉 are equally
probable. However, due to the correlations in the |�〉 state,
Eve knows perfectly the outputs of Alice’s measurements: the

“random” bit held by Alice can be predicted with certainty
by Eve.

The amount of true random bits that can be extracted
from the random variable Z, if one requires uniformity and
independence from the environment system E, is given by
the conditional min-entropy Hmin(Z|E) [16,17]. Indeed, the
probability of guessing Z by holding the quantum system E

is given by [18]

pguess(Z|E) = 2−Hmin(Z|E). (1)

For instance, in the previous example with the entangled
state |�〉, pguess(Z|E) = 1 and the system held by Alice does
not allow the generation of true random numbers.

We present a method, based on the uncertainty principle
(UP), to estimate the conditional min-entropy and then
the amount of true randomness that can be obtained by
a given source. We show and experimentally test that, by
measuring the system in conjugate observables Z and X, it
is possible to obtain the following bound on the conditional
min-entropy:

Hmin(Z|E) � log2 d − H1/2(X), (2)

where d is the dimension of the Hilbert space and H1/2(X) is
the max-entropy ofX outcomes (see below). The measurement
Z is used to generate the random sequence Z, while the mea-
surement X is used to quantify the amount of true randomness
contained in Z. In our protocol we do not use any assumption
on the source ρA: an adversary, called Eve can have full control
on the source and the environment E. The bound (2) is achieved
by only assuming trusted a measurement device, meaning that
Eve has no access to it and that the device performs a given
positive-operator-value measure (POVM) that is only sensitive
to a subspace of dimension d. To prevent the possibility that
an adversary controls the detection efficiency, as reported in
quantum hacking against detectors [19–21], it is necessary
to monitor all detector parameters, such as bias voltage,
current, and temperature [22]. The advantage of the method
presented resides in its simplicity: no Bell inequality violation
is required but it is only necessary to measure the system in
two conjugate bases. With an initial seed of true randomness,
our protocol is able to expand the randomness by taking
into account all possible side quantum information possessed
by Eve.
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II. PROOF OF MAIN RESULT

In this section we derive our main result (2). We first
start by reviewing the uncertainty relation for min- and max-
conditional entropies introduced in Refs. [23–25].

A. Uncertainty principle

Let us consider three quantum systems A, B, and E, and let
ρABE be a tripartite state. Define Z and X as two POVMs on
A with elements {M̂z} and {N̂x}, and random outcomes Z and
X encoded in two orthonormal bases {|z〉} and {|x〉}. Then, the
uncertainty principle is written as

Hmin(Z|E)ρ + Hmax(X|B)ρ � q, (3)

where the min-entropy and max-entropy (see Appendix A and
Ref. [18] for definitions of min-entropy and max-entropy) are
evaluated on the postmeasurement states ρZE ≡ ∑

z |z〉〈z| ⊗
TrAB[M̂zρABE], ρXB ≡ ∑

x |x〉〈x| ⊗ TrAE[N̂xρABE], and

q ≡ log2
1

c
, c ≡ maxz,x‖

√
M̂z

√
N̂x‖2

∞. (4)

The parameter c represents the maximum “overlap” between
the two POVMs, and q quantifies the “incompatibility” of the
measurements. If M̂z and N̂x are projective measurements
corresponding to mutually unbiased bases in dimension d,
then c = 1

d
.

B. Proof of bound

In a QRNG, Alice measures its system ρA by using
a POVM measurement Z ≡ {M̂z}.1 The state ρA is, in
general, correlated with an external system E such that
ρA = TrE[ρAE]. The possible outcomes of the POVM can
be encoded in an orthonormal basis {|z〉A}, such that the
postmeasurement state is ρZE ≡ ∑

z |z〉〈z| ⊗ TrA[M̂zρAE] =∑
z Pz|z〉〈z| ⊗ ρz

E with normalized ρz
E . Eve’s knowledge about

the possible outcomes of the Z measurements is given by
the min-entropy Hmin(Z|E), evaluated over ρZE . If Alice
sometimes measures her system with a different POVM X,
the UP allows us to bound the min-entropy Hmin(Z|E) and
then the guessing probability by Eq. (1). In fact, by using
Eq. (3) and by considering the system B as a trivial space,
the uncertainty relation becomes Hmin(Z|E) � q − Hmax(X),
where the max-entropy must be evaluated on the state obtained
by the X measurement; namely, ρX ≡ ∑

x px |x〉〈x|, with
px = TrAE[N̂xρAE]. In this case Hmax(X) = 2 log2 Tr[

√
ρX]

(see Appendix A and Ref. [18]), i.e., the max-entropy is equal
to H1/2(X), the Rényi entropy2 of order 1/2 of the classical
outcome X.

Our result can be summarized as follows: the conditional
min-entropy of the Z outputs can be bounded by using the
Rényi entropy of order 1/2 of the X outputs; namely,

Hmin(Z|E) � q − H1/2(X), (5)

1We employed POVMs to present our method in a general
framework, but projective measurements are more suited for practical
applications.

2We recall that the Rényi entropy of order α is defined as Hα(X) =
1

1−α
log2

∑d−1
x=0 pα

x .

which reduces to Eq. (2) in case of conjugate observables
in d dimensions. We would like to point out that, thanks
to the inequality H1/2(X) + H∞(Z) � q derived by Maassen
and Uffink [26], the bound q − H1/2(X) is always lower
than the classical min-entropy H∞(Z) evaluated on the
probabilities Pz.

III. UP-CERTIFIED QUANTUM RANDOM-NUMBER
GENERATOR

Let us now evaluate the bound in two particular cases.
Let us consider the Z POVM as projective measurements
in the computational basis, {|0〉,|1〉, . . . ,|d − 1〉}, and let the
X measurement be chosen as its discrete-Fourier transform
|x〉 = 1√

d

∑d−1
z=0 ei xz

2πd |z〉 for which q = log2 d. If the system A

is prepared in the state |ψ〉A = 1√
d

∑
z |z〉, then H1/2(X) = 0

and Eq. (5) bounds Hmin(Z|E) to the classical min-entropy
H∞(Z) = log2 d. The random variable Z is then uniformly
distributed and independent of any adversary. However, in
practical implementations of a QRNG, it is impossible to
prepare the system A in a perfect pure state |ψ〉A. When the
state ρA is not pure, the entropies H∞(Z) and Hmin(Z|E)
can be different. Our result is thus particularly effective with
real sources (that cannot generate pure states) since it bounds
the effective achievable randomness without requiring any
assumption on them. Even if Eve has complete control over the
source ρA, the bound given in Eq. (5) evaluates the amount of
true random bits that can extracted from Z. This randomness
has complete quantum origin and no side information can be
used to predict the generated random bits.

Another important example is represented by the system
described in the introduction: Eve sends to Alice one photon
of a two-photon maximally entangled state and thus can
perfectly predict the outputs of Alice’s measurements. In this
case, Alice holds a completely mixed state ρA = 1

212 and the
max-entropy is H1/2(X) = 1. Thanks to Eqs. (5) and (1), the
bound on the min-entropy becomes trivial, Hmin(Z|E) � 0 and
pguess(Z|E) � 1: our result correctly predicts that the guessing
probability can reach unity and so no true random bits can be
extracted in this case.

In order to exploit the result of Eq. (5) it is necessary
to estimate the max-entropy of the source ρA = TrE[ρAE].
However, since the POVM {M̂z} and {N̂x} are incompatible, it
is not possible to measure them at the same time. We then need
to switch randomly between M̂z and N̂x during the random
bit generation (see Fig. 1). The measurements are chosen by
using a seed of true randomness that our method is able to
expand. From this point of view, our method can be seen as a
random-number expansion protocol.

We now show that the number of random extracted bits is
greater than the required seed. Let m be the total number of
measurements. We decide that, over m, the number of mea-
surements in the POVM {N̂x} will be nX = 	√m
, such that
the probability of measuring in the X basis is approximately

1√
m

. To randomly choose nX among m measurements we need

a number of bits given by t(m) = 	log2
m!

nX!(m−nX)!
. This is
the length of the random seed required for the randomness
expansion.
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FIG. 1. (Color online) Scheme of the QRNG. The source of
randomness is the state ρA that can be correlated with a larger
system E. An initial perfect random seed of length t(m) is used to
switch between the {M̂z} and {N̂x} POVMs, from which the random
variables Z and X are extracted. The variable Z is used to generate
the random sequence, while the variable X is used to evaluate how
many true random bits can be extracted by Z. Y represents the final
true random sequence.

The outcome probabilities in the X basis are given by px =
TrA[N̂xρA] and the asymptotic lower bound of the min-entropy
is Hmin(Z|E) � q − H1/2(X). From the experimental point of
view we need to estimate the max-entropy H1/2(X) by using
the nX outcomes. If we denote by nx the number of outcomes
such that X = x, we can estimate the max-entropy by using
the Bayesian estimator defined in Ref. [27] (with a uniform
prior distribution):

H̃1/2 ({nx}) = 2 log2

[
� (nX + d)

�
(
nX + d + 1

2

) d−1∑
x=0

�
(
nx + 3

2

)
� (nx + 1)

]
.

(6)

The Bayesian estimator has a lower variance with respect to the
frequentist estimator H̃

f

1/2 = 2 log2[
∑d−1

x=0 ( nx

nX
)1/2]. Moreover,

for low max-entropies, the frequentist estimator has a negative
bias that overestimates the bound on the min-entropy.

Then, given m measurements, the number of extracted
random bits are the outputs of the Z measurement, given by
m − nX: due to the bound (5), at least (m − nX)[q − H1/2(X)]
are true random bits. If we subtract the number of bits t(m)
required for the seed, we can estimate the random bits’
generation rate per measurement as

r̃ ({nx}) = bsec

m
, (7)

where bsec is the number of generated true random bits :

bsec = (m − nX)[q − H̃max({nx})] − t(m). (8)

It is worth noticing that, in the infinite-size limit m → +∞,
the seed length is given by t(m) ∼ √

m log2

√
m, the estimator

H̃1/2({nx}) ∼ H1/2(X), and the rate approaches the asymp-
totic limit r̃ −→ r(Z) = q − H1/2(X). Since the number of
extracted random bits are quadratically larger than the initial
seed bits, the generator can work in loop: an initial seed is
expanded and part of the extracted randomness is fed in as a
new seed.

IV. EXPERIMENTAL REALIZATION

We experimentally tested our method with two different
random-number generators implemented by photon pairs

FIG. 2. (Color online) Average experimental rate for the qubit
QRNG. Blue circles represent the experimental average rate r̃ of true
random bits per measurement, while the continuous red line is the
theoretical prediction with ρX = ∑1

x=0 px |x〉〈x| where p0 = 0.9973
and p1 = 0.0027. The shaded red area represents the theoretical
standard deviation of the rate, while gray rectangles show the
experimental standard deviation of the rate. Green crosses show
the classical min-entropy estimated on the Z random variable. The
asymptotic limit H∞(Z) is evaluated on the state ρZ = ∑1

z=0 Pz|z〉〈z|
with P0 = 0.5020 and P1 = 0.4980.

generated in the |HV 〉 state by spontaneous parametric down
conversion. See Appendix B for details about the source. The
first generator is a single qubit QRNG operated by a heralded
single-photon source: one photon of the pair, measured in the
|H 〉 state, is used as trigger, while the second represents the
signal. By measuring the signal photon in the Z = {|+〉,|−〉}
and X = {|H 〉,|V 〉} bases, we generate the random variables
Z and X. Here we denote with |±〉 the diagonal polarization
states 1√

2
(|H 〉 ± |V 〉). The second generator is a four-level

system (ququart) QRNG, represented by the pair of photons.
In this case the Z and X bases are respectively given by
{|++〉,|+−〉,|−+〉,|−−〉} and {|HV 〉,|V V 〉,|HH 〉,|V H 〉}.

We first analyze the qubit QRNG. By choosing different
values of m we performed nX = 	√m
 measurements in the
X basis and nZ = m − nX measurements in the Z basis,
obtaining the sequences X and Z. The two sequences are
used to estimate the classical max-entropy H̃1/2({nx}) and the
rate r̃({nx}). For each m, in Fig. 2 we show the average rate
r̃ and its standard deviation experimentally evaluated over
200 different X sequences of nX bits (see Appendix C for
the rate achieved, for each m, by a single X sequence of
nX bits). The experimental rates can be compared with the
predicted average rate 〈̃r〉 = ∑

{nx } �({nx})̃r({nx}), obtained
by averaging r̃({nx}) over the multinomial distribution

�({nx}) = nX!

n0!n1! · · · nd−1!
p

n0
0 p

n1
1 · · ·pnd−1

d−1 .

We also show the classical min-entropy H̃∞(Z) evaluated
on a sequence Z with nZ bits. The figure shows very
good agreement between the experimental result and the
theoretical prediction. It is worth noticing that at least m > 150
measurements are necessary to obtain a positive rate r̃ , while
with just m  106 the rate is very close to the asymptotic bound
r(Z). The difference between H∞(Z) and r̃ corresponds to the
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FIG. 3. (Color online) Average experimental rate for the ququart
QRNG. See Fig. 2 for notations. In this case ρX = ∑3

x=0 px |x〉〈x|
with p0 = 0.9937, p1 = 0.003 59, p2 = 0.002 66, and p3 = 1 −
p0 − p1 − p2 and ρZ = ∑3

z=0 Pz|z〉〈z| with P0 = 0.2527, P1 =
0.2412, P2 = 0.2608, and P3 = 0.2453.

possible knowledge that may have an adversary holding the
system E. The limit H∞(Z) is often and erroneously taken as
the amount of true randomness used to calibrate the extractor:
in this way, even if the output string appears statistically good,
possible side information held by Eve is not completely erased.
In our experimental analysis, since we are mainly interested
in demonstrating the physical principles, we did not use active
switches to change between the two bases (we first measured
the Z sequence and afterwards the X sequence). For practical
applications, however, the QRNG should contain an active
switch controlled by the seed t(m).

In Fig. 3 the results for the ququart QRNG are presented.
Also in this case, for each m, the average rate r̃ and
its standard deviation are experimentally obtained by 200
different X sequences of nX(m) bits. Again, there is a very
good agreement between the experimental results and the
theoretical predictions and a positive (average) rate is obtained
for m > 70. As before, for m  106 the rate is very close to the
asymptotic bound r(Z): thanks to the larger Hilbert space, we
can asymptotically obtain 1.685 bits per measurement, which
should be compared with the value 0.8583 achieved with the
qubit QRNG. Our method is thus very robust with respect to
the increasing of the dimension d of the system.

For the complete proof of our protocol, we performed the
extraction on a long random sequence Z, and the results are
presented in Appendix D.

Detailed comparison with Ref. [2]

Here we give a detailed comparison between our method
and the result of Fiorentino et al. [2], where the conditional
min-entropy of a qubit state is evaluated by measuring its
density matrix ρ = 1

2 (1 + �r · �σ ) (σi are the Pauli matrices
and �r is a three-dimensional vector such that |�r| � 1). By
extracting the random bits by measuring the qubit in the
computational basis Z = {|0〉,|1〉} such that rz = 〈0|ρ|0〉 −
〈1|ρ|1〉, the conditional min-entropy was estimated to be
Hmin(Z|E) = 1 − log2[1 + (1 − r2

x − r2
y )1/2] [2].

Our method estimates the min-entropy of the Z outcomes
by measuring in the X = {|±〉} basis giving the asymp-

totic bound of Hmin(Z|E) � 1 − log2[1 + (1 − r2
x )1/2]. Our

result is a lower bound, since q − H1/2(X) = 1 − log2[1 +
(1 − r2

x )1/2]: the bound is tight when ry = 0. If the state is
pure, the result of Ref. [2] allows to achieve the upper limit
Hmin(Z|E) = H∞(Z). The advantage of our approach resides
in the fact that it is not necessary to measure the full density
matrix but only measurements on two mutually unbiased bases.
Indeed, in order to evaluate the density matrix, it is necessary
to measure the system also in the X and Y = { 1√

2
(|0〉 ± i|1〉)}

basis beside the basis chosen to obtain the random sequence.
Also in the case of Ref. [2], a random seed is needed to switch
between the tomography bases and the random sequence basis.
As a final consideration, the result of Fiorentino et al. applies
only to qubit systems, while our result can be applied to a
general qudit systems, as we have demonstrated by analyzing
the ququart QRNG.

We now give a detailed comparison for finite m: let
us consider the following parameters rz = 0.9947 ± 0.001
and rx = 0.004 ± 0.002 corresponding to the experimental
measured parameter of our qubit QRNG. Since the norm
of the vector �r cannot be greater that 1, it implies that
|ry | � (1 − r2

z − r2
x )1/2 � 0.1027, corresponding to a purity

greater that Pmin = 0.9947. We recall that purity of the
state ρ is defined as P = Tr[ρ2] = 1

2 (1 + r2
x + r2

y + r2
z ). The

measurement in the Y basis will allow us to determine the ry

parameter.
We performed the detailed comparison in the finite-m case

(m is the total number of measurements) between our method
and Ref. [2]. To obtain a fair comparison we set n∗

X = n∗
Y =

	√m/2
 as the number of measurements in the X and Y bases,
respectively, for the tomographic method of Ref. [2]. Then the
number of measurements in the Z basis is given by n∗

Z = m −
2	√m/2
. From such measurements the rx and ry parameters
are estimated as (we used Bayesian estimators):

rx = n0x − n1x

n0x + n1x + 2
, ry = n0y − n1y

n0y + n1y + 2
. (9)

To randomly choose the X and Y measurements over the total
number of measurements m we need a number of bits given
by

t∗(m) = 2

⌈
log2

m!

(2n∗
X)!(m − 2n∗

X)!

⌉
.

FIG. 4. (Color online) Comparison between the rate achievable
by our bound (continuous blue line) and the rate achievable with the
min-entropy estimation of Ref. [2] (dotted green line) in the case of
perfect pure state with purity P = 1.
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FIG. 5. (Color online) Comparison between the rate achievable
by our bound (continuous blue line) and the rate achievable with the
min-entropy estimation of Ref. [2] (dotted green line) in the case of
slightly mixed state with purity P = 0.995.

In Figs. 4 and 5 we show the comparison between the two
rates in the case of a perfect pure state P = 1 and in the
case of ry = 0, corresponding to P = 0.995: the figures show
that our results are slightly outperformed by the tomographic
extractor only for high-purity states P > 0.995 and in the
large-m regime (m > 105). A maximum of 15% improvement
with respect to the results shown in Fig. 2 is expected if the
generated state is pureP = 1 and N > 108. However, to obtain
such limited advantage, a complication in the scheme; namely,
the measurement in the Y basis, is required.

V. CONCLUSIONS

We provided a bound, given by Eq. (5), to directly compute
the conditional min-entropy Hmin(Z|E) of the random variable
Z, by using the classical random variable X. The variables Z

and X are obtained by measuring the system in two mutually
unbiased bases. Hmin(Z|E) represents the amount of true
randomness that can be extracted from Z. No assumption is
made on the source and/or the dimension of Hilbert space.
Our result is based on the fact the measurement device is
trusted: we assumed that the measurement system (wave plates
and polarizing beam splitters) works properly and the detector
efficiency is not dependent on the input state or on an external
control. In order for the detection system to be only sensitive to
a well-known and characterized finite-dimensional subspace
of the total Hilbert space, photon-number-resolving detectors
or the squashing model of quantum key distribution [28,29]
can be implemented. It is important to stress that, if the source
does not generate a perfect pure state (and this always happens
in experimental realizations), the randomness extracted by
standard methods; namely, by measuring the system in a single
basis, is not a true randomness: an eavesdropper can have
(partial or full) information about the generated random bits.
We also tested our bound with a qubit and a ququart QRNG
with good agreement between theory and experiment.

Our method can be extended by taking into account possible
imperfections in the measurement device, as illustrated in
Ref. [16]. We believe that our method can be very useful
for the extraction of true randomness and can be applied in
the framework of practical high-speed QRNGs [6,8], since

it guarantees protection against quantum side information
without the need of a complex Bell-violation experiment.

ACKNOWLEDGMENTS

We would like to thank Alberto Dall’Arche of the Uni-
versity of Padova for his support on the setup preparation.
Our work was supported by the Strategic-Research-Project
QUINTET of the Department of Information Engineering,
University of Padova and the Strategic-Research-Project
QUANTUMFUTURE (STPD08ZXSJ) of the University of
Padova.

APPENDIX A: MIN-ENTROPY AND MAX-ENTROPY

We here briefly review the definition of conditional min-
entropy and max-entropy introduced in Ref. [18]. The condi-
tional min-entropy of a bipartite quantum state ρAE is defined
as

Hmin(A|E)ρAE
= max

σB

sup

{
λ ∈ R

∣∣∣∣1A ⊗ σE

2λ
� ρAE

}
, (A1)

where σE is a normalized positive state.
The conditional max-entropy is the dual of the min-entropy.

In fact, by using a purification ρABC of ρAB , the max-entropy
is defined by

Hmax(A|B)ρAB
= −Hmin(A|C)ρAC

, (A2)

where ρAB = TrC[ρABC] and ρAC = TrB[ρABC]. We recall
here that the purification of a state ρAB is a pure state
ρABC in the extended Hilbert space A ⊗ B ⊗ C, such that
TrC[ρABC] = ρAB .

For the QRNG we need to evaluate the max-entropy for
the state ρX ≡ ∑d−1

x=0 px |x〉〈x|, where the space B is a trivial
space. By definition (A2) we have

Hmax(X)ρX
= −Hmin(A|C)ρAC

, (A3)

with ρAC being a purification of ρX. A possible purification is
given by

ρAC = |�〉AC〈�|, |�〉AC =
d−1∑
x=0

√
px |x〉A ⊗ |vx〉C, (A4)

with {|vx〉} on the orthonormal basis on the space C with
dimension d. By Eq. (A1) we have

Hmax(X)ρX
= −Hmin(A|C)ρAC

= − max
σB

sup

{
λ ∈ R

∣∣∣∣1A ⊗ σC

2λ
� |�〉〈�|

}
.

(A5)

The state σC that maximizes the min-entropy definition is
σC = 1/d. The maximum λ such that 1A ⊗ 1C � d2λ|�〉〈�|
is λ = − log2[

∑
x(

√
px)]2, such that

Hmax(X)ρX
= log2

[∑
x

√
px

]2

= 2 log2

∑
x

√
px = H1/2(X).

(A6)
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FIG. 6. (Color online) Scheme of experimental setup generating
the SPDC photons. TDC is time-to-digital converter, SPAD is single-
photon avalanche diode, PBS is polarizing beam splitter, λ/2 are
wave plates.

APPENDIX B: PHOTON SOURCE

Photons used in experimental demonstration of the method
were generated by spontaneous parametric down conversion
(SPDC), as illustrated in Fig. 6. A femtosecond pulsed laser
(76 MHz repetition rate) at 405 nm shines on a nonlinear crystal
where pairs of photons are probabilistically emitted over two
correlated directions. Two polarizers select the |HV 〉 pair, with
|H 〉 and |V 〉 being the horizontal and vertical polarized photon,
respectively. Half-wave plates λ/2 allow us to change between
the Z and X bases. For the single qubit QRNG, the |H 〉
photon is used as a trigger: its detection heralds the presence
of the |V 〉 photon. Single-photon detectors (SPADs) deliver
signals to a time-to-digital converter (TDC). Concerning the
rate of raw-bit extraction, the source has a coincidence rate of
12 kHz: we would like to point out that we are not interested
in the speed of the generator, but on the demonstration of
the method presented here. However, it is worth noticing that
sources producing photon pairs at the rate of few MHz are
currently available [30,31].

APPENDIX C: ANALYSIS OF RANDOM-BIT
GENERATION RATE

In this Appendix we show the experimental rate obtained
with a single control X sequence, while in the main text
we showed the average value obtained with 200 sequences.
We report the rate achieved with the qubit QRNG. We
recall here that, given m measurements on the state ρA, we
obtained two classical X and Z sequences with nX and nZ

bits, respectively, whose lengths are respectively given by
nX = 	√m
 and nZ = m − nX. The state of the system A

after the measurement is given by ρZ = ∑1
z=0 Pz|z〉〈z| or

ρX = ∑1
x=0 px |x〉〈x|, depending on the POVM used.

Given m, we would like to evaluate the “single-shot” rate r̃

given by

r̃(n0,n1,m) = (m − nX)[1 − H̃1/2(n0,n1)] − t(m), (C1)

with n0 and n1 being the number of zeros and ones in the X

sequence.

For the single-qubit QRNG, since n0 + n1 = nX, the single-
shot rate is a function of only m and n1:

r̃(n1,m) = (m − nX)

{
1 − 2 log2

[
�(nX + 2)

�
(
nX + 5

2

)]

− 2 log2

[
�

(
nX − n1 + 3

2

)
�(nX − n1 + 1)

+ �
(
n1 + 3

2

)
�(n1 + 1)

]}

−
⌈

log2

(
m

nX

)⌉
. (C2)

For different values of m we show in Fig. 7 the achieved
rate: each point represents the rate r̃ evaluated over a single
X sequence of nX bits obtained by the measurement in the
X POVM. Each sequence is taken from a sample with the
following property:

ρX =
1∑

x=0

px |x〉〈x| with p0 = 0.9973, p1 = 0.0027.

(C3)

For perfect-state preparation we would like to have p0 = 1 and
p1 = 0: by this reason, the number of ones in the X sequence
are defined as the “number of errors” in the sequence. The
errors can be caused by the presence of the eavesdropper,
or by imperfections in the preparation devices. Since p1 is
very low, in Fig. 7 it is possible to see that, for m < 103,
few sequences have 1 errors and the most have 0 errors.
By increasing m, the number of errors increases to follow
the prediction n1 ∼ p1nX. For low m, the possible rates are
“quantized,” since the rate is evaluated on integer values n0

and n1. In Fig. 8 we show estimated max-entropy H̃1/2(X)
as a function of the number of errors for the case nX = 100
and nX = 1000. We also report the probability of obtaining
n1 errors, given by �(n1) = (nX

n1
)pn0

0 p
n1
1 . The figure shows that

FIG. 7. (Color online) Experimental rate for the qubit RNG. Blue
circles represent the experimental rate r̃ of true random bits per
measurement, while continuous red line represents the theoretical
average prediction with ρX = ∑1

x=0 px |x〉〈x| where p0 = 0.9973
and p1 = 0.0027. Dashed lines represent the rate achieved with
different numbers of “errors” in the X sequence. Green crosses
show the classical min-entropy estimated on the Z random variable
obtained from the state ρZ = ∑1

z=0 Pz|z〉〈z| with P0 = 0.5020 and
P1 = 0.4980.
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TABLE I. (Color online) (left column) Summary of the results of selected tests of batteries particularly effective in detecting defects in true
random-number generator (TRNG). The Alphabit and Rabbit batteries belong to the TESTU01: critical results are if P � 10−3 or P � 0.990.
For tests which give more than a P values, the smallest is reported. For the NIST SP-800-22 suite, the file was partitioned in substrings 200 000
bits long for a total of 150 strings: this length was chosen in order to obtain a sample size sufficiently large such that it is likely to fail the tests
in the case of poor randomness with a significance level of α = 0.01; a test is failed if more than six strings fail it. In addition, a test is passed
if the a χ -squared test on the distribution of P values, gives itself a P value P � 10−5. (right column) Summary of the results of selected tests
of batteries particularly effective in detecting defects in TRNG. The Alphabit and Rabbit batteries belong to the TESTU01: critical results are
if P � 10−3 or P � 0.990. For tests which give more than a P values, the smallest is reported. For the NIST SP-800-22 suite, the file was
partitioned in substrings 400 000 bits long for a total of 100 strings: this length was chosen in order to obtain a sample sizes sufficiently large
such that it is likely to fail the tests in case of poor randomness with a significance level of α = 0.01; a test is failed if more than four strings
fail it. In addition, a test is passed if the a χ -squared test on the distribution of P values, gives itself a P value P � 10−5.
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FIG. 8. (Color online) Estimated max-entropy H̃1/2(X) and error
probability �(n1). Due to the low value of p1 = 0.0027, the �(n1) is
peaked around the low values of n1.

H̃1/2(X) has discrete values corresponding to different values
of n1.

APPENDIX D: TESTS ON EXTRACTED
RANDOM NUMBERS

As a quantitative example for the complete proof of our
method, we performed the extraction on a long random

sequence Z. For the qubit case we use a random sequence
Z of length nZ = 35.6 × 106 and a control sequence X of
length nX = 5967, requiring a seed length t(m) = 83 443.
The estimated lower bound for the min-entropy is 1 −
H1/2(X)  0.8437 giving an output random sequence Y of
bsec  29.951 × 106 bits. For the qudit case, we have nZ =
25.770 × 106 and nX = 5100 with a seed length t(m) =
70 163. The estimated lower bound for the min-entropy
is 1.690, giving bsec  43.886 × 106 true random bits. In
both cases, the initial Z strings are fed to an extractor by
two-universal hashing [16,32] to obtain the Y strings. As
we now show, the obtained bits pass successfully the most
stringent tests [33] for the assessment of the independent
and identically distributed (i.i.d.) hypothesis for random
bits.

At the present time, TEST-U01 [34] is the most stringent
and comprehensive suite of tests; among all, we chose
the pair sub-batteries Rabbit and Alphabit, respectively,
specifically designed to tests RNGs. SP-800-22 [33] is devel-
oped by NIST and it is the most-applied battery for RNG
evaluation.

The output of a test on a bit string is another random
variable with a given distribution of probability, the so-called
test statistic. Hence, the P value; namely, the probability
of getting an equal or worse test statistic, satisfying the
i.i.d. hypothesis, are computed. If the P values are smaller
than some a priori defined critical values, then the tests are
considered failed: these limits are usually chosen as P < 0.01
and P < 0.001, corresponding to a confidence level of 99%
and 99.9%, respectively. Otherwise, whenever one obtains P
values equal or greater than these limits, the i.i.d. hypothesis
for the tested string is assessed.

In Table I we report the results applied on the secure bits
extracted by measuring a qubit and a ququart, respectively. All
the tests are passed.
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