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We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action
of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared
in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We
assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian
nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the
ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement
of the mode can be performed instantaneously), we study how control can be optimized for speeding up the
relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our
model has potential and interesting applications to the control of modes of electromagnetic radiation and of
trapped levitated nanospheres.
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I. INTRODUCTION

Quantum optimal control theory is by now a well-
established area of research with several applications in
quantum information (for reviews see, e.g., Refs. [1–6]. A
particular example of quantum control is time-optimal control.
Here the aim is to determine the optimal control strategy for
a quantum system such that a given task is obtained in the
minimum amount of time. Time-optimal control has been
studied in a large variety of settings and perspectives, e.g.,
to give a more physical meaning to the complexity of quantum
algorithms [7] and to solve complex problems as geodesic
evolutions in a given geometry [8]. Geometrical approaches
[9] and variational principles for constrained Hamiltonians
[10] have been introduced, upper bounds for the speed of
evolution of quantum systems in the Hilbert space (the
“quantum speed limit,” or QSL) have been discussed [11,12].
The case when the quantum system is not perfectly isolated
from the environment and is subject to decoherence [13] has
also been extensively studied (see, e.g., Refs. [14,15]). The
time-optimal control of qubits in dissipative environments is
discussed in [16–25], while results related to the QSL are
given in [26]. Recent applications of time-optimal control to
quantum thermodynamics can also be found in [27–29].

In this work we focus on continuous single-mode sys-
tems evolving according to a Gaussian dynamics [30–34].
This model is particularly suitable for describing modes of
electromagnetic radiation [35], but also different systems
such as nanomechanical resonators [36,37], trapped dielectric
particles [38–40], etc.

If a bosonic mode is in contact with a thermal (and possibly
squeezed) environment, the state will naturally tend towards
a constant steady state in equilibrium with the bath. This
evolution corresponds to a generalized Gaussian dissipative
channel [32,33] and the asymptotic steady state is the fixed
point of the dynamical map. In general the system will
converge close to the fixed point in a given amount of time
which depends on the initial state and on the particular model
of the channel. The goal of this work is to study how quantum
control can be used in order to speed up the relaxation

time of the system, with respect to its natural dissipative
evolution without control. In particular we consider a control
composed of a sequence of unitary Gaussian operations, i.e.,
arbitrary phase rotations, bounded squeezing, and unlimited
displacements. We also assume that such operations can be
applied instantaneously, meaning that during the application
of the control one can neglect the dissipation induced by the
environment. Furthermore, we do not allow any feedback in
our system.

Even in the limit of fast and unconstrained control, the
optimal control strategies and the optimal relaxation times are
nontrivial. The reason is that a unitary control cannot change
the purity of the state and the only possibility to reach the
fixed point of the channel is a proper combination of the
roles of the external Hamiltonian control and the intrinsic
dissipative action of the environment. A similar approach was
used in the case of a discrete, finite dimensional quantum
system represented by a qubit [41]. In this work the analysis
is extended to the case of a continuous-variable single-mode
Gaussian state.

In addition to the derivation of quantitative expressions for
the optimal relaxation times, we also find some general results
which are analogous to those obtained for a single qubit [41].
Specifically, in the case of a single-mode thermal state which is
placed in contact with a bath at a different temperature, we find
that quantum control cannot be used to speed up the cooling
rate of the system but is instead advantageous for heating up
the system. Finally we have also studied the opposite task of
avoiding the spontaneous thermalization of the Gaussian state
and we found, similarly to the case of a qubit, that the dynamics
of some particular states can be blocked by quantum control for
an indefinite amount of time. In other words quantum control
can artificially create a new set of fixed points which are far
away from the natural equilibrium state.

The paper is organized as follows: In Sec. II we review
the main properties of continuous-variable quantum systems
with n bosonic degrees of freedom. Section III is devoted to
the introduction of n-mode Gaussian quantum states and their
representation in the real symplectic phase space, which is

1050-2947/2014/90(5)/052324(10) 052324-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.052324


CARLINI, MARI, AND GIOVANNETTI PHYSICAL REVIEW A 90, 052324 (2014)

given entirely in terms of the displacement vector and the co-
variance matrix (CM). In Sec. IV we introduce the Markovian
dissipative channels which preserve the Gaussian nature of
quantum states. In particular, Sec. IV.A describes the unitary
part of the Gaussian channel, given by a Hamiltonian which is
a quadratic polynomial in the Gaussian mode quadratures,
and which thus includes phase rotations, squeezings, and
displacements. On the other hand, in Sec. IV.B we describe
the nonunitary part of the Gaussian channel, represented by
amplitude damping and classical Gaussian noise, and we
derive the master equation describing the dynamics of the
displacement vector and of the CM. In Sec. V we restrict
our attention to the case of one-mode Gaussian systems and,
resorting to Williamson’s theorem, we parametrize the CM
in terms of the purity, the phase, and the squeezing of the
mode. In Sec. VI we give the fixed point of the dynamics
and we review the solution of the master equation for the CM
of the one-mode Gaussian system in the dissipative Gaussian
channel. In Sec. VII we introduce the problem of controlled
time-optimal evolution up to an arbitrarily small distance
from the target. In particular, in Sec. VII.A we analytically
study how optimal control can speed up the relaxation of the
mode in the case of unconstrained coherent control, while the
situation in which the control slows down the relaxation is
treated in Sec. VII.B. Finally, we provide some discussion of
the results in Sec. VIII. In Appendix A we explicitly derive an
analytical formula for the trajectories in the absence of external
control. Finally, Appendix B compares the free and controlled
dynamics for the case in which the fixed point is a pure state.

II. BOSONIC QUANTUM SYSTEMS

We consider a continuous-variable quantum system rep-
resented by n bosonic modes which may correspond, e.g.,
to the n quantized radiation modes of the electromagnetic
field [35]. In the following, we adopt the notation used in
[31]. To each mode i we associate a Hilbert space Hi and
a pair of annihilation and creation operators âi ,â

†
i , such

that [âi ,â
†
j ] = δij , for i,j = 1 . . . n, and we have introduced

the commutator [Â,B̂] := ÂB̂ − B̂Â. The total Hilbert space
is thus H⊗n = ⊗n

i=1Hi . Collecting the bosonic operators

together, we can define the vector �̂b := (â1,â
†
1, . . . ,ân,â

†
n)�

whose components satisfy the commutation rules,

[b̂i ,b̂j ] = �ij ; i,j = 1 . . . 2n, (1)

with the antisymmetric symplectic form,

� := ⊕n
i=1ω =

⎛
⎜⎜⎜⎝

ω

.

.

ω

⎞
⎟⎟⎟⎠ ; ω :=

(
0 1

−1 0

)
. (2)

We then introduce the quadrature field operators in their
Cartesian decomposition,

q̂i := âi + â
†
i ,

(3)
p̂i := −i(âi − â

†
i ),

and arrange these into the vector,

�̂x := (q̂1,p̂1, . . . ,q̂n,p̂n)�, (4)

whose components satisfy the commutation relations,

[x̂i ,x̂j ] = 2i�ij ; i,j = 1 . . . 2n. (5)

Throughout the paper we work in the units where � = 1.

III. GAUSSIAN STATES

A Gaussian state is a continuous-variable quantum state
with density operator ρ̂ which can be characterized entirely in
terms of the first and second statistical moments of ρ̂, i.e., in
terms of the displacement vector �d ∈ R2n, with components,

di := 〈x̂i〉 = Tr[x̂i ρ̂] ; i = 1 . . . n, (6)

and of the real and symmetric 2n × 2n covariance matrix (CM)
σ with components,

σij := 1
2 Tr[{x̂i − di,x̂j − dj }ρ̂]; i,j = 1 . . . n, (7)

where we have introduced the anticommutator {Â,B̂} :=
ÂB̂ + B̂Â. It can be shown [42] that the Heisenberg uncer-
tainty principle for Gaussian states expressed in terms of the
CM and of the symplectic form � becomes [42]

σ + i� � 0, (8)

which also implies positiveness of the CM, i.e., σ > 0.
Any quantum state ρ̂ ∈ H⊗n can also be described in phase

space (real symplectic space) in terms of a quasiprobability
(normalized but in general nonpositive) distribution, the
Wigner function,

W (�x) :=
∫
R2n

d2n�ξ
(2π )2n

exp[−i �x���ξ ]χρ(�ξ ), (9)

where �ξ ∈ R2n, �x ∈ R2n are the eigenvalues of the quadratures
(4),

χρ(�ξ ) := Tr[ρ̂D̂(�ξ )] (10)

is the symmetric characteristic function, and

D̂(�ξ ) := exp(i �̂x���ξ ) (11)

is the Weyl (displacement) operator. In this representation,
Gaussian states are defined as those bosonic states whose
Wigner function is a Gaussian, i.e.,

WG(�x) := exp[−(1/2)(�x − �d)�σ−1(�x − �d)]

(2π )2n
√

Detσ
, (12)

or whose characteristic function is

χG(�ξ ) := exp[−(1/2)�ξ�(�σ��)�ξ − i(��x)��ξ ]. (13)

From the latter, one can see that the square root of the CM and
the displacement play the role of, respectively, the width and
the center of the Gaussian in phase space.

Finally the scalar product between two operators Ô1,Ô2

can be evaluated as a scalar product between the respective
characteristic functions,

Tr[Ô†
1Ô2] =

∫
R2n

d2n�ξ
(π )2n

χ∗
O1

(�ξ )χO2 (�ξ ). (14)
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IV. GAUSSIAN CHANNELS

In this paper we will only consider quantum operations
(channels) which preserve the Gaussian nature of the states
[32].

A. Unitary evolution

It can be easily shown that the unitary operations Û which
preserve Gaussianity are generated by a Hamiltonian Ĥ which
is a quadratic polynomial in the creation and annihilation
operators �̂a := (â1, . . . ân)� and �̂a† := (â†

1, . . . â
†
n), i.e., Û =

exp(−iĤ ) with

Ĥ = i(�̂a†�α + �̂a†F �̂a + �̂a†G�̂a†�) + H.c., (15)

where �α ∈ CN and F,G are n × n complex matrices. Alterna-
tively, in phase space the Gaussian unitaries are equivalent to
an affine map,

(S, �d) : �̂x → S �̂x + �d, (16)

where S is a symplectic transformation which satisfies the
condition,

S�S� = �. (17)

B. Dissipative evolution

The propagation of an n mode Gaussian state in a noisy
and dissipative channel where each mode is coupled with an
(a priori different and uncorrelated) Markovian environment
modeled by a stationary continuum of oscillators, can be
described [43] (in the interaction picture) by the following
master equation:

˙̂ρ = −i[Ĥ ,ρ̂] + L(ρ̂), (18)

where ˙̂ρ := ∂ρ̂/∂t , γi are the decoherence rates and the first
term on the left-hand side with the Hamiltonian Ĥ represents
the unitary part of the dynamics, while the second termL gives
the dissipative part of the dynamics. The latter is explicitly
written as

L(ρ̂) :=
n∑

i=1

γi[(Ni + 1)L̃ (âi) + NiL̃(â†
i )

−M
i D̃ (âi) + MiD̃(â†

i )]ρ̂, (19)

and L̃(Ô) and D̃(Ô) are the Lindbladian superoperators,

L̃(Ô)ρ̂ := Ôρ̂Ô† − 1
2 {Ô†Ô,ρ̂}, (20)

D̃(Ô)ρ̂ := Ôρ̂Ô − 1
2 {Ô2,ρ̂}. (21)

The terms L̃(âi) and L̃(â†
i ) represent a generalized ampli-

tude damping, while the terms D̃(âi) and D̃(â†
i ) represent

phase-dependent fluctuations. The coefficients Ni ∈ R are the
effective bath occupation numbers (related to the correlation
functions via 〈B̂†

i (0)B̂i(ν)〉 := Niδ(ν), computed over the state
of the environmental bath, with operator modes B̂i and
frequency ν) and the coefficients Mi ∈ C are the squeezing
parameters of the bath (related to the environment correlations
via 〈B̂i(0)B̂i(ν)〉 := Miδ(ν)). When Mi �= 0, the bath is said

to be squeezed. It can be shown that, in order to generate a
completely positive dynamics, the parameters should satisfy

Ni(Ni + 1) � |Mi |2. (22)

Introducing linear combinations of the canonical operators,
ĉi := Cij x̂j , where i,j = 1, . . . 2n, one can also conveniently
rewrite the dissipator in Eq. (18) as

L(ρ̂) =
2n∑
i=1

[
ĉi ρ̂ĉ

†
i − 1

2 {ĉ†i ĉi ,ρ̂}]. (23)

In this way, the master equation (18) describing the quantum
dynamics of an n mode Gaussian system going through a
Gaussian channel can be more compactly rewritten in the
symplectic space representation as [44]

�̇d = A �d, (24)

σ̇ = Aσ + σA� + D, (25)

where A := �[H0 + 2Im(C†C)] is the drift matrix, D :=
4�[Re(C†C)]�� is the diffusion matrix, and the Hamiltonian

is Ĥ = ( �̂x�
H0 �̂x)/4. Thus, the time-independent matrices A

and D completely determine the dynamics of the Gaussian
state. Furthermore, from Eq. (24) it is easily seen that the
dynamics of the displacement vector decouples and is given
by

�d(t) = eAt �d(0). (26)

V. ONE-MODE GAUSSIAN STATES

We now focus our analysis to the case of a single-mode
Gaussian quantum state (n = 1) and of its evolution through a
noisy Gaussian channel (as described in the previous section).
Using Williamson’s theorem [45], one can show that for
the most general single-mode Gaussian state the CM can be
parametrized as [46]

σ (n̄,θ,r) = (1 + 2n̄)R(θ )S(2r)R(θ )�. (27)

Here the real and positive,

n̄ := Tr[â†âρ̂], (28)

is the average occupation number of the Gaussian bosonic
mode (e.g., the average photon number),

R(θ ) :=
(

cos θ, sin θ

− sin θ, cos θ

)
, (29)

is an orthogonal symplectic matrix corresponding to the
phase rotation of the mode with angle θ ∈ [0,π/4], generated
by the Hamiltonian Ĥθ = θâ†â (giving, in the Heisenberg
representation, â → e−iθ â), while

S(2r) :=
(

e−2r , 0
0, e2r

)
(30)

is a symplectic transformation corresponding to the squeez-
ing of the mode with parameter 2r ∈ R, generated by the
Hamiltonian Ĥr = ir(â2 − â†2) (giving, in the Heisenberg
representation, â → â cosh 2r − â† sinh 2r).
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We can also introduce the purity μ ∈ [0,1] of the quantum
state in terms of the characteristic function as

μ := Tr[ρ̂2] = 1

π

∫
|χρ(�ξ )|2d2n�ξ, (31)

where in the second step we have used Eq. (14). Using Eq. (13)
for a one-mode Gaussian quantum state, one easily obtains [47]

μ = 1√
Detσ

= 1

1 + 2n̄
, (32)

where in the second step we have used Eq. (27) and the fact that
Det[R(θ )] = Det[S(2r)] = 1. Therefore, one can explicitly
rewrite the parametrized CM as

σ = 1

μ

(
cosh 2r − cos 2θ sinh 2r, sin 2θ sinh 2r

sin 2θ sinh 2r, cosh 2r + cos 2θ sinh 2r

)
. (33)

VI. FREE DYNAMICS OF ONE-MODE GAUSSIAN STATES
IN GAUSSIAN CHANNELS

Now let us consider a one-mode Gaussian state subject to a
noisy Gaussian channel and with Hamiltonian Ĥ = 0. The
dynamics of the CM without the help of external controls
is described by Eq. (25). After some simple algebra, writing
M := M1 + iM2, it is possible to show that

C†C = γ

4

(
2N + 1 − 2M1, i − 2M2

−i − 2M2, 2N + 1 + 2M1

)
, (34)

and therefore, the drift and the diffusion matrices (with H0 =
0) are, respectively, given by

A = −γ

2
I, (35)

D = γ [(2N + 1)I + 2(M2σx + M1σz)], (36)

where {σi ; i = x,y,z} are the Pauli matrices.
The fixed point σfp of the dissipative dynamics (25) for

the CM without the aid of any external control is found by
imposing that σ̇ |fp = 0, and we obtain [48]

σfp = D

γ
. (37)

Similarly, the fixed point of the dynamics of the displacement
vector is given by �dfp = �0. In particular, exploiting Eq. (33)
and Eqs. (35)–(37), we obtain

μfp = [(2N + 1)2 − 4|M|2]−1/2, (38)

sinh 2rfp = 2μfp|M|, (39)

tan 2θfp = −M2

M1
, (40)

where we have rfp > 0 and we choose θfp ∈ [0,π/4]. From
Eqs. (32) and (38) one can see that N corresponds to the mean
thermal mode number n̄ of the asymptotic Gaussian state only
when M = 0, i.e., in the absence of squeezing. Note that the
presence of squeezing M �= 0 implies that n̄ is smaller than N .

Equation (37) also enables one to rewrite Eq. (25) for the
dissipative dynamics of the CM in the more compact form,

σ̇ = γ (σfp − σ ). (41)

The latter can be integrated in a straightforward way as [48]

σ (t) = e−γ tσ (0) + (1 − e−γ t )σfp, (42)

where σ (0) represents the initial correlations of the Gaussian
mode. Clearly, the CM σ (t) asymptotically approaches the
fixed point of the dynamics without external controls when
t → ∞. In other words, we have that μ∞ := μ(t → ∞) =
μfp, r∞ := r(t → ∞) = rfp and θ∞ := θ (t → ∞) = θfp.

From Eq. (42) one can see that a convenient parametrization
of a generic dissipative Gaussian channel of the form (25)
can be given in terms of the CM of the corresponding fixed
point σfp. In other words, the triplet (μfp,rfp,θfp) completely
characterizes the channel. After some simple algebra one
obtains the following differential equations for the dynamics
without control of the purity μ(t), the squeezing r(t), and the
phase θ (t) of the one-mode Gaussian state [48],

μ̇ = γμ

{
1 − μ

μfp
[cosh 2rfp cosh 2r

− cos 2(θ − θfp) sinh 2rfp sinh 2r]

}
, (43)

ṙ = − γμ

2μfp
[cosh 2rfp sinh 2r

− cos 2(θ − θfp) sinh 2rfp cosh 2r], (44)

θ̇ = γμ sinh 2rfp

2μfp cos 2θ sinh 2r
[sin 2θfp

− cos 2(θ − θfp) sin 2θ ]. (45)

One can either directly integrate the latter equations or
alternatively (and more easily) use the compact solution for
σ (t), thus obtaining [48]

μ(t) = μ0

{
e−2γ t + 2μ0

μfp
[cosh 2r0 cosh 2rfp

− cos 2(θ0 − θfp) sinh 2r0 sinh 2rfp]e−γ t

×(1 − e−γ t ) +
(

μ0

μfp

)2

(1 − e−γ t )2

}
,−1/2

(46)

cosh 2r(t) = μ(t)

μ0

[
cosh 2r0e

−γ t

+ μ0

μfp
cosh 2rfp(1 − e−γ t )

]
, (47)

tan 2θ (t) =
[

(sinh 2r0 sin 2θ0e
−γ t

+ μ0

μfp
sinh 2rfp sin 2θfp(1 − e−γ t )

]

×
[

(sinh 2r0 cos 2θ0e
−γ t

+ μ0

μfp
sinh 2rfp cos 2θfp(1 − e−γ t )

]−1

, (48)
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where μ0 := μ(0),r0 := r(0), and θ0 := θ (0) are the initial
conditions for the purity, squeezing, and phase, respectively.

Furthermore, one can first eliminate the explicit time
dependence exp[−γ t] using Eq. (48) and then eliminate the
dependence on the phase θ . After some elementary but lengthy
algebra (see Appendix A), it is then possible to derive an
analytical formula for the curve μ = μ(r),

μ(r)

μfp
= a1 cosh 2r − a2

√
a3 sinh2 2r − a4

a5
, (49)

where the constants ai,i = 1,5 are defined in Eq. (A5).

VII. TIME-OPTIMAL CONTROL WITH
UNCONSTRAINED HAMILTONIAN

Our main task is to study the time-optimal, open-loop,
coherent quantum control of the evolution of a one-mode
Gaussian state under the action of the master equations [(24)
and (25)]. The coherent (unitary) control is now achieved via a
Hamiltonian performing phase rotations θ (t), squeezing r(t) or
displacements �d(t). We assume that the dissipative part of the
quantum evolution [(20) and (21)] is fixed and assigned. We
also exclude the possibility of performing measurements on
the system to update the quantum control during the evolution;
i.e., no feedback is allowed [notice, however, that complete
information on the initial state of the Gaussian mode (μ0,r0,θ0)
is assumed].

Within this theoretical framework we analyze how to
evolve the system towards a target state ρ̂f , i.e., a state
with displacement vector �df and CM σf , in the shortest
possible time. In more details, we take the target as the
fixed point of the dissipative part of the master equation, i.e.,
a state with σf = σfp and �df = �dfp fulfilling the condition
L̃(ρ̂fp) = 0. This state is a stationary solution (i.e., ˙̂ρ = 0) of
the master equation, Eq. (18), when no Hamiltonian is present.
It represents the attractor points for the dissipative part of
evolution, i.e., the states where noise would typically drive
the system. By setting ρ̂f = ρ̂fp in our time-optimal analysis
we are hence effectively aiming at speeding up relaxation
processes that would naturally occur in the system even in
the absence of external control. In addressing this issue we
do not require perfect unit fidelity, i.e., we tolerate that the
quantum state arrives within a small distance from the target,
fixed a priori. More precisely, given ε ∈ [0,1] we look for the
minimum value of time Tfast which thanks to a proper choice
of H (t) allows us to satisfy the constraint,

F (σopt(Tfast), �dopt(Tfast); σfp, �dfp) = 1 − ε, (50)

where the fidelity distance between two one-mode Gaussian
states with CM σ1 and σ2 and displacement vectors �d1 and �d1

reads [49,50]

F (σ1, �d1; σ2, �d2) := 2√
� + δ − √

δ
e− 1

2
�d�σ−1

+ �d , (51)

with � := Det(σ1 + σ2), δ := (Detσ1 − 1)(Detσ2 − 1), �d :=
�d1 − �d2, and σ+ := σ1 + σ2.

We note here that the dynamics of the displacement vector
[Eq. (24)] decouples from that of the CM and it can be
controlled simply via the use of an external displacement

Hamiltonian Ĥd := d(eiαâ + e−iαâ†). In other words, with a
proper external control we can instantaneously change the
displacement vector from its initial value �d0 to any desired
target. Effectively, we can thus forget about the dynamics
of the displacement vector part of the Gaussian mode and
concentrate only on the time-optimal control of its CM part.

First of all we compute the minimal time Tfree(σ0,ε) required
for an initial state σ0 to freely reach the target σfp within a
fixed fidelity 1 − ε under the sole action of decoherence and
without the aid of any external control. We derive Tfree from
Eq. (46) evaluated at t = Tfree and where μ(Tfree) := μTf is
found by imposing the fidelity conditions [Eqs. (50) and (51)]
with �d = 0. From Eq. (33), we compute

�Tf = 1

μ2
Tf

[
1 + 2

μTf

μfp
(cosh 2rTf cosh 2rfp

− cos 2(θTf − θfp) sinh 2rTf sinh 2rfp) + μ2
Tf

μ2
fp

]
, (52)

δTf =
(
1 − μ2

fp

)
μ2

fpμ
2
Tf

(
1 − μ2

Tf

)
, (53)

where we have defined �Tf := �(Tfree), δTf := δ(Tfree), rTf :=
r(Tfree), and θTf := θ (Tfree). Now, for a generic σ0 not close
to the target, we will have γ Tfree > 1 and therefore we can
obtain μTf,rTf and θTf via an expansion in exp[−γ Tfree] of
Eqs. (46)–(48), respectively. After a lengthy but elementary
algebraic manipulation, upon imposing conditions (50) and
(51) one finally finds

Tfree(σ0,ε) = 1

γ
ln

{[(
1 + μ2

fp

)
(μ0 − μfpβ0)2

+μ2
fp

(
1 − μ2

fp

)(
β2

0 − 1
)]1/2

×[
2μ0

√
ε

√
1 − μ4

fp

]−1} � | ln ε|
2γ

, (54)

where we have introduced β0 := cosh 2r0 cosh 2rfp −
cos 2(θ0 − θfp) sinh 2r0 sinh 2rfp. As expected, for a generic
initial state Tfree diverges as ε → 0. This function sets the
benchmark that we will use to compare the performance of
our time-optimal control problem.

Next, we address the problem of speeding up the transition
of the system from σ0 towards the fixed point state σfp with a
proper engineering of the quantum control Hamiltonian H (t)
to see how much one can gain with respect to the “natural”
time Tfree of Eq. (54). Clearly the result will depend strongly
on the freedom we have in choosing the functions r(t),θ (t),
and d(t).

For a coherent control where the choice of the possible
functions r(t),θ (t), and d(t) is unconstrained the problem
essentially reduces to finding the maximum of the modulus
of the speed of purity change, at any given purity, for the
Gaussian channel. As we have already said when computing
Tfree, with a proper external control we can instantaneously
change the displacement vector from its initial value �d0 to any
desired target and thus, effectively, we can forget about the
dynamics of the displacement vector. Then, given any arbitrary
initial CM σ0 of the one-mode Gaussian state, one can always
unitarily and instantaneously (since we may take a control with
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infinite strength) move from the initial point along the surface
of constant purity μ0 until one reaches the new position of
coordinates (μ0,rext,θext) where the speed of purity change
induced by the dissipator, i.e., the quantity,

v(r,θ ) := μ̇, (55)

is extremal for fixed purity μ0, where μ̇ is given by Eq.
(43). Then, one can switch off the control and let the system
decohere for a time Tfast until the purity μ(Tfast) which satisfies
the fidelity condition (50) is reached. Finally, one can switch
the quantum control on again and unitarily rotate the CM
from the position [μ(Tfast),rext,θext] to a point within tolerable
distance from the target at [μ(Tfast),rfp,θfp].

In the following, we assume that we are able to perform
instantaneous squeezing of the Gaussian mode up to a
maximum strength, i.e., we take |r| < rM , with rM � 1).

A. Speeding up the relaxation

There are two possible scenarios to consider: (a) the cooling
case, i.e., when μ0 < μfp, and (b) the heating case, i.e.,
when μ0 > μfp. Since we assume that unitary operations
can be done arbitrarily fast, i.e., that r and θ can be
changed instantaneously, the dynamics is effectively captured
by Eqs. (43) and (31) for the speed of change of the purity at
a given purity.

The optimal values of the speed v(r,θ ) at given μ are found
by imposing that ∇v(r,θ ) = 0. In particular, a set of locally
positive maxima of the speed v is obtained for μ �= 0 and

rext,M = rfp, (56)

θext,M = θfp. (57)

In this case the speed of purity change (43) reads v =
γμ(1 − μ/μfp). Moreover, we have that v has other local
stationary points on the boundary of the domain of the allowed
parameters, i.e., along the curves of maximum squeezing
r = ±rM or with θ = 0. In particular, local maxima of
v are attained at (rextθext) = (rM,θfp), where we have v =
γμ[1 − (μ/μfp) cosh 2(rM − rfp)], while global minima of v

are attained at

rext,m = −rM, (58)

θext,m = θfp, (59)

where we have v = γμ[1 − (μ/μfp) cosh 2(rM + rfp)]. An-
other local maximum if found at θ = 0 and tanh 2r =
cos 2θfp tanh 2rfp, for which we have v = γμ[1 − μ/μfp(1 +
sin2 2θfp sinh2 2rfp)1/2].

Therefore, in the case (a) of cooling, i.e., when we want to
reach μfp starting from μ0 < μfp and we look for a maximum
of v, the optimal solution vcool

fast is obtained at the critical point
[(56) and (57)] and is given by

vcool
fast = γμ

(
1 − μ

μfp

)
> 0. (60)

Furthermore, from Eqs. (44) and (45) we note that at the
global maximum of the speed v the values of r and θ are
stationary, i.e., ṙ = θ̇ = 0. Then, the optimal control strategy
is the following [Fig. 1(a)]:

q
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Control Pulse

Initial State

Free Evolution

Fixed Point

t

q

p

q

p

Control Pulse

q

p

q

p

q

p

Control Pulse

 Initial State

Free Evolution

Fixed Point

t

FIG. 1. (Color online) Time-optimal cooling (a) and heating (b)
strategies for a single-mode Gaussian state in a Markovian dissipative
channel when instantaneous unitary control is available.

(i.) Rotate from θ0 to θfp and squeeze from r0 to rfp.
(ii.) Let the Gaussian mode freely decohere from μ0 to μTc

(with the external controls off and with r and θ stationary at
rfp and θfp, respectively).

The optimal time to let the system cool from the initial state
(μ0,r0,θ0) to the fixed point (μfp,rfp,θfp) is thus given by the
formula,

T cool
fast (σ0,ε) =

∫ μTc

μ0

dμ

vcool
fast

. (61)

The purity μTc := μ(T cool
fast ) is computed along the lines

described in the previous section for the case of the free
decoherence dynamics. One evaluates the quantities � and
δ and then the fidelity F in Eqs. (50) and (51) for �d = 0, with
σ1 = σ (μTc,rfp,θfp) and σ2 = σfp, obtaining

μTc � μfp
(
1 − 2

√
ε

√
1 − μ2

fp

)
(62)

for all mixed fixed points μfp �= 1 (the special case of μfp = 1
is considered in Appendix B).

Then the integral in (61) can be computed explicitly upon
using (60) and (62), and we get

T cool
fast (σ0,ε) = 1

γ
ln

[
(μfp − μ0)μTc

(μfp − μTc)μ0

]
� | ln ε|

2γ
, (63)

which diverges as ε → 0.
In the heating case (b), i.e., when we want to reach μfp

starting from μ0 > μfp and we look for a minimum of v, the
optimal solution vheat

fast is obtained along the boundary at the
point specified by (58) and (59) and it reads

vheat
fast = γμ

[
1 − μ

μfp
cosh 2(rM + rfp)

]
< 0. (64)

In this case, the optimal control strategy is as follows
[Fig. 1(b)]:

(i.) Rotate from θ0 to θfp and squeeze from r0 to −rM .
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(ii.) Let the mode freely decohere from μ0 to μTh while
keeping r = −rM fixed (ṙ = 0) via an appropriate squeezing
Hamiltonian [51].

(iii.) Squeeze from −rM to rfp.
The optimal time to heat up the system from the initial state

(μ0,r0,θ0) to the fixed point (μfp,rfp,θfp) is thus given by

T heat
fast (σ0,ε) =

∫ μTh

μ0

dμ

vheat
fast

. (65)

The computation of the purity μTh := μ(T heat
fast ) is similar to that

done for the cooling case, where now in Eqs. (50) and (51) we
use σ1 = σ (μTh, − rM,θfp) and σ2 = σfp, and we obtain

μTh � μfp
(
1 + 2

√
ε

√
1 − μ2

fp

)
. (66)

Then the integral in Eq. (65) can be evaluated explicitly upon
using (64) and (66), and we get

T heat
fast (σ0,ε) = 1

γ
ln

{
[μfp − μ0 cosh 2(rM + rfp)]μTh

[μfp − μTh cosh 2(rM + rfp)]μ0

}

� 1

γ
ln

{
[μ0 cosh 2(rM + rfp) − μfp]

μ0[cosh 2(rM + rfp) − 1)

}
, (67)

which is finite.
Finally, we can compare the relaxation time of the quantum

controlled dynamics with the relaxation time of the free
evolution for a single bosonic mode in contact with a generic
environment. We start with an important case which is worth
considering separately because of its potential implications in
quantum thermodynamics, namely that of an initial Gibbs state
(r0 = 0) placed in contact with a nonsqueezed thermal bath
(rfp = 0) characterized by a different temperature (μ0 �= μfp).
In this case our results suggest that it is impossible to increase
the cooling rate of a single Gaussian mode by quantum control,
while it is possible to increase the heating rate. This fact is
analog to the time-optimal control of a single qubit [41].

For a generic initial state and a generic dissipative channel,
unless the initial state is already along the extremal trajectory
with r0 = rfp and θ0 = θfp, quantum control is always advan-
tageous for speeding up the relaxation process. However, in
the limit of a small error parameter ε → 0, the situation is
very different depending on the relative values of the purity
of the initial state and of the fixed point. In the cooling case
μ0 < μfp, comparing Eqs. (54) and (63), we see that in the limit
ε → 0 the optimal time is asymptotically equivalent to the free
evolution time, since both quantities diverge as | ln(ε)|/(2γ )
[or as | ln(ε)|/γ in the special case μfp = 1 as explained
in Appendix B]. In the heating case μ0 > μfp instead, the
optimized relaxation time is dramatically different from the
free evolution time. Indeed, from Eq. (67) we observe that the
fixed point can be reached exactly (ε = 0) in a finite time,
while the free evolution time diverges to infinity. We can also
introduce a measure of the performance of the quantum control
in the worst case scenario by maximizing the time durations
of the evolutions with respect to the possible initial states of
the Gaussian mode, in a way similar to what was done in our
previous work on the discrete model case [41]. In fact, one can
show that Tfree(σ0,ε) in Eq. (54) is maximum for μ0/μfp → 0
and |r0| → ∞, and for ε → 0 we obtain that the longest time
one would have to wait to bring the Gaussian mode close to

the fixed point in the absence of external controls goes like

T max
free := max

r0,μ0,θ0

Tfree(σ0,ε)

� 1

γ
lim

ε,
μ0
μfp

→0

|r0|→∞

[∣∣∣∣ln
(

μ0
√

ε

μfp

)∣∣∣∣ + 2|r0|
]

, (68)

where we have used the fact that 2β0 → exp[2|r0|] for |r0| →
∞. On the other hand, by studying the optimal times to cool
and heat the system, Eqs. (63) and (67), one can easily check
that the optimal time one would have to wait to reach the
target with the help of unconstrained control is also achieved
for μ0/μfp → 0 and, for ε → 0, this goes like

T max
fast := max

r0,μ0,θ0

Tfast(σ0,ε)

� 1

γ
lim

ε,
μ0
μfp

→0

|r0|→∞

∣∣∣∣ln
(

μ0
√

ε

μfp

)∣∣∣∣. (69)

By comparing the maxima (68) and (69) we conclude that
quantum control enhances the performance by a factor,

T max
free

T max
fast

� 1 + lim
ε,

μ0
μfp

→0

|r0|→∞

2|r0|∣∣∣∣ln
(

μ0
√

ε

μfp

)∣∣∣∣
, (70)

which is much larger than one if 2|r0| � | ln(μ0
√

ε/μfp)|.

B. Stopping the relaxation

In the previous analysis we focused on the task of speeding
up the relaxation of an open system via quantum control.
Sometimes, however, one may be interested in the opposite
task of stopping the dissipative dynamics and avoiding the
natural evolution of the state towards the fixed point in
equilibrium with the environment.

The dynamics induced by the dissipative channel is de-
scribed by the differential equations [Eqs. (43)–(45)]. In the
heating case μ0 > μfp, one can easily check that μ̇ is always
strictly negative for every r and θ meaning that decoherence
cannot be stopped by quantum control. Instead, in the cooling
case μ0 < μfp, one may have μ̇ = 0 for some particular values
of r and θ . More precisely, this is achieved for all the states
whose parameters μ, r , and θ satisfy the condition,

μ

μfp
= [cosh 2rfp cosh 2r

− cos 2(θ − θfp) sinh 2rfp sinh 2r)]−1. (71)

In the assumption of unconstrained control, one can always
keep ṙ = 0 and θ̇ = 0 by appropriate squeezing and phase
shift Hamiltonians. Therefore Eq. (71) essentially defines an
extended set of “artificial” fixed points, i.e., states which can
be forced to remain stationary with the aid of quantum control
despite that they are not in equilibrium with the environment.

VIII. DISCUSSION

In this work we studied the time-optimal control of a
single-mode Gaussian state evolving according to a generic
Markovian dissipative master equation. We focused on the
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specific task of minimizing the total time necessary for a given
initial state to converge close to the fixed point of the dynamics
within a given error parameter ε.

We first computed such a relaxation time in the absence
of any control field. In this case the system is only driven
by decoherence and dissipation until the associated quantum
state converges to a unique Gaussian state in equilibrium
with the environment. Then we optimized such a relaxation
time assuming that one can apply arbitrary Gaussian unitary
operations to the state during its time evolution. We obtained
several analytical results which strongly depend on the initial
state of the system and on the relative values of the purities
of the initial state and of the fixed point. In particular, what
we found is that in the limit of vanishing error ε → ∞ the
advantage of quantum control is negligible if the purity of the
initial state is less than the purity of the fixed point while,
in the opposite case, quantum control allows an exponential
advantage with respect to the uncontrolled dynamics. We
further introduced a measure of the performance of the
quantum control in the worst case scenario by maximizing
the time durations of the evolutions with respect to all possible
initial states of the Gaussian mode, and we found that quantum
control greatly enhances the performance whenever 2|r0| �
| ln(μ0

√
ε/μfp)| for large r0, μ0/μfp → 0 and ε → 0.

Our results could find applications in any physical system in
which Gaussian unitary operations can be applied sufficiently
quickly with respect to the natural decoherence time, for
example, in optical and microwave systems with sufficiently
large and switchable nonlinearities, as is typical in experiments
of electromagnetically induced transparency [52,53]. Another
potential application could arise in the field of optically
levitated nanospheres [38–40]. The motion of such particles
is essentially harmonic but one can easily change the trapping
potential realizing effective squeezing operations and phase-
space rotations. The manipulation of the optical potential
would generate a fast and precise control of the state of the
trapped particle.

Finally we would like to stress that our results present also
some fundamental aspects which may be interesting from the
point of view of quantum thermodynamics [54]. For example,
according to our analysis it is impossible to speed up the
cooling process of a thermal state in a cold bath, in the standard
scenario in which the state and the bath are not squeezed.
It would be interesting to investigate how this fact depends
on the specific model or if it is a more general property of
thermalization processes.

Other research directions could be the following: gener-
alizing the target state of time-optimal control to arbitrary
Gaussian states (not necessarily the fixed point), extending
this approach to multimode bosonic systems, or including
the possibility of non-Gaussian operations in the control
strategy. Such non-Gaussian control could be obtained, e.g.,
using non-Gaussian ancilla states and Gaussian feed-forward
operations.
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APPENDIX A: EXPLICIT FORMULA FOR THE
TRAJECTORIES

We eliminate the explicit time dependence exp[−γ t] using
Eq. (48) and we get

e−γ t =
[

1 − μfp sin 2(θ − θ0) sinh 2r0

μ0 sin 2(θ − θfp) sinh 2rfp

]−1

. (A1)

Then, substituting the latter into Eqs. (46) and (47), we
parametrize the quantum trajectories in terms of the phase
θ as

√
cμ(θ ) = |μfp sin 2(θ − θ0) sinh 2r0

−μ0 sin 2(θ − θfp) sinh 2rfp|, (A2)

s
√

c cosh 2r(θ ) = [sin 2(θ − θ0) sinh 2r0 cosh 2rfp

− sin 2(θ − θfp) cosh 2r0 sinh 2rfp], (A3)

where we have defined the constants,

b := cosh 2r0 cosh 2rfp − cos 2(θ0 − θfp) sinh 2r0 sinh 2rfp,

c := sin2 2(θ − θ0) sinh2 2r0 + sin2 2(θ − θfp) sinh2 2rfp

−2b sin 2(θ − θ0) sin 2(θ − θfp) sinh 2r0 sinh 2rfp, (A4)

s := sign[μfp sin 2(θ − θ0) sinh 2r0

−μ0 sin 2(θ − θfp) sinh 2rfp].

After a lengthy but elementary algebra, it is also possible
to eliminate the dependence on the phase θ and to derive the
analytical formula for the curve μ = μ(r) given by (49), where
we have introduced the constants,

a1 = sinh 2r0[sinh 2r0 cosh 2rfp

− cos 2(θ0 − θfp) cosh 2r0 sinh 2rfp]

+ μ0

μfp
sinh 2rfp[cosh 2r0 sinh 2rfp

− cos 2(θ0 − θfp) sinh 2r0 cosh 2rfp],

a2 = cosh 2r0 − μ0

μfp
cosh 2rfp,

a3 = −1 + [cosh 2r0 cosh 2rfp (A5)

− cos 2(θ0 − θfp) sinh 2r0 sinh 2rfp]2,

a4 = [sin 2(θ0 − θfp) sinh 2r0 sinh 2rfp]2,

a5 = sinh2 2(r0 − rfp)

+ sin2 2(θ0 − θfp) sinh 4r0 sinh 4rfp.

In particular, the analytical expression μ = μ(r) for the curve
of the quantum evolution under free decoherence at the optimal
point θ = θ0 = θfp is given by

μ(r) = μfp

[
sinh 2(r + r0) − μ0

μfp
sinh 2(r + rfp)

]
sinh 2(r0 − rfp)

. (A6)
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APPENDIX B: PURE FIXED POINT

When the target state, i.e., the fixed point of the free evolution,
is given by a pure state, we have μfp = 1. In this case we have
δ = 0 and therefore F = 2/

√
� (at �d = �0) in Eqs. (50) and

(51). Therefore, for the dynamics of free decoherence from an
arbitrary initial point σ0 to the target σfp we get, using methods
similar to those explained in the main text,

Tfree,pure = 1

γ
ln

[
2μ0

(β0 − μ0)ε

]
� | ln ε|

γ
, (B1)

which diverges as ε → 0. Since the initial state must have
μ0 < μfp, there is just the possibility of optimal cooling now.
The strategy is the same as that of the main test for cooling,

where now, however, from the fidelity conditions [Eqs. (50)
and (51)] we find

μTc,pure � 1 − 2ε. (B2)

Therefore, inserting (B2) into Eq. (61) we obtain the time-
optimal cooling time,

T cool
fast,pure = 1

γ
ln

[
(1 − μ0)

2μ0ε

]
� | ln ε|

γ
, (B3)

which diverges as ε → 0 in the same way as Tfree,pure. There-
fore, there is no advantage in using time-optimal quantum
control for the relaxation towards a pure fixed point.
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