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I. INTRODUCTION

Entanglement has proven to be a central resource in
quantum information processing using either discrete or
continuous-variable (CV) systems (such as field modes of
light, nanomechanical oscillators or cold atomic gases) [1].
Any attempt to create an entangled state is limited by the
residual noise and decoherence, and proper tools to verify
entanglement are needed to evidence the success of an
experiment. In CV systems these tools can roughly be divided
into those that apply to Gaussian states [2–6] (see [7] for
a complete review), and those that apply to more general
states [8,9]. Most tools entail an optimization of an entropylike
functional like a convex roof construction [10,11], the proper
choice of a set of observables that witness the entanglement
for a broad class of states [12–18], or the suitable selection
of a finite [19–24] or infinite [25,26] series of inequalities
(concerning moments of the quadrature variables) which are
mainly based on the well-known criterion of positive partial
transposition (PPT) [1,27]. The need to optimize or accurately
choose a tool in accordance with the specific properties of a
quantum state makes the characterization of entanglement a
computationally intricate problem [28], which becomes even
more involved as the mixedness of the state or the number of
constituents of the system grows.

Entanglement shared by two subsystems has been realized
experimentally in various systems [29], but increasing the
number of entangled components is a big experimental
challenge, such that the preparation of states with more than
bipartite entanglement has been achieved in few systems
only [30–32]. The limitations due to noise and decoherence
typically get increasingly severe with the growing number
of entangled subsystems. Under given imperfect conditions it
might not be possible to create a genuinely n-partite entangled
state in an n-partite system, whereas the preparation of a
bipartite entangled state might still be feasible. Tools to verify
bipartite or genuine n-partite entanglement have been explored
in detail [33], but tools that analyze the range in between
have been established only recently [8,34–37]. Only those
tools, however, will help us to gauge experimental progress
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and eventually achieve the creation of genuine n-partite
entanglement.

We build up here on a hierarchy of separability criteria
that detect k-partite entanglement in n-partite discrete sys-
tems [36], and extend this approach to the case of contiuous-
variable systems. Based on this hierarchy, we present versatile
hierarchies of separability criteria that apply to Gaussian
and non-Gaussian states such as photon-added or -subtracted
states [38] that display particularly strong nonclassical corre-
lation properties [39–44].

The paper is organized as follows: We start with an
introduction to CV systems and hierarchies of separability
criteria in Sec. II. The formulation of these hierarchies for
CV systems is presented in Sec. III, which is accompanied
with a discussion of the similarities with the PPT criterion
(see Sec. III A). We apply these hierarchies to Gaussian and
non-Gaussian states in Sec. IV, and the possible experimental
assessment of the criterion is discussed in Sec. V.

II. BASIC DEFINITIONS

A. Phase space representation

The Hilbert space Hn of a quantum system composed
by n modes results from the n-fold tensor product of the
single-mode Hilbert space H1 = L2(R), and all the physical
information about the system is encoded in the density operator
ρ̂. The mth mode is described in terms of the canonical
operators, i.e., position Q̂m and momentum P̂m. Equivalently
it may be described by their dimensionless counterparts q̂m =
Q̂m

√
M�/� and p̂m = P̂m/

√
M�� defined in terms of the

frequency � and and mass M . From now on we will use only
the dimensionless operators and define the operator-valued
vector x̂ = (q̂1,p̂1,...,q̂n,p̂n)T whose elements satisfy the
canonical commutation relations [x̂m,x̂l] = −i[ Jn]ml , with
the symplectic matrices,

Jn =
n⊕

m=1

J1 and J1 =
(

0 −1
1 0

)
,

of the composite system and a single subsystem.
It is convenient to describe a continuous-variable system

in terms of the real symplectic space (R2n,Jn), i.e., phase
space [7,27], rather than the infinite dimensional complex
Hilbert space Hn. Quantum mechanical operators Â are then
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replaced by their Weyl symbol,

WA(x) =
∫
R2n

d2nξ

(2π )2n
eixT Jnξ Tr

[
Âe−i x̂T Jnξ

]
, (1)

i.e., functions WA(x) of classical phase space variables x =
(q1,p1, . . . ,qn,pn) [45]. The Weyl symbol of a density matrix
ρ̂ is typically referred to as the Wigner function, and it is
denoted by W (x) [46].

The Wigner function W (x) of a Gaussian state ρ̂ has the
particularly simple form [46],

W (x) = e− 1
2 (x−x̄)T V −1(x−x̄)

(2π )n
√

det(V )
,

where the vector x̄ = Tr(ρ̂ x̂) contains the expectation values
(first moments) of the dimensionless phase space variables,
and the covariance matrix V is defined by

V ml = 1
2 Tr(ρ̂{[x̂]m − [x̄]m,[x̂]l − [x̄]l}),

where {.,.} denotes the anticommutator. In this case, W

is completely characterized by the vector x̄ and the real
symmetric 2n × 2n matrix V , i.e., by 2n2 + n real param-
eters. According to the Heisenberg uncertainty relation, the
covariance matrix of any quantum state must satisfy V �
i
2 Jn [27,46], which implies the positive definiteness V > 0.
Since the entanglement of the system is invariant under local
unitary displacements [27], we shall take the first-moment
vector equal to zero (x̄ = 0) from now on.

Here, we are concerned with the class of entangled states
ρ̂ whose Wigner function may be expressed as the product
of a polynomial function F (x) and the Wigner function of a
Gaussian state with the covariance matrix V , i.e.,

W (x) = F (x)e− 1
2 xV −1 x

(2π )n
√

det(V )
. (2)

Direct examples of this kind of state are those states which
are generated by a series of photon-creation [47] or photon-
subtraction operations [44,48,49], or more general, a coherent
superposition of both [20,50]. We shall refer to the latter
as photon-manipulated states. In that case, the degree of the
polynomial corresponds to the number of such manipulations
that need to be applied to a Gaussian state to arrive at the
state in question. We should, however, stress that F (x) may be
also an analytic function with domain in all the phase space (a
function with a convergent Taylor series), such that the set of
non-Gaussian states with Wigner function (2) may comprise a
broader class of CV states than the photon-manipulated states,
as, for example, Schrödinger cat states.

B. Hierarchy of separability criteria

A pure state of an n-partite quantum system is considered
n-partite entangled if it cannot be written as a simple tensor
product of two state vectors each of which describes a part
of the subsystems only. If an n-partite quantum state cannot
be written as a simple tensor product of ki-partite entangled
ki-partite state vectors with ki < k, then the state is k-partite
entangled.

A mixed n-partite state ρ̂ is considered k-partite entangled
if it cannot be represented as an average over projectors onto

pure states that are less than k-partite entangled, i.e.,

ρ̂ �=
k−1∑
j=1

∫
dμj (a)

∣∣�(a)
j,n

〉〈
�

(a)
j,n

∣∣, (3)

where |�(a)
j,n〉 are j -partite entangled n-partite states, μj (a)

are positive functions that satisfy
∑k−1

j=1

∫
dμj (a) = 1, and

the summation is restricted to values j < k. Physically, this
definition means that a k-partite entangled state can be
realized by mixing different states that are at most k-partite
entangled, but since the states that enter this average may
carry entanglement between different groups of subsystems, a
k-partite entangled n-partite state is not necessarily separable
with respect to a certain bipartition.

Our starting point to detect k-partite entanglement is
a hierarchy of separability criteria τk,n. It is based on a
comparison between several matrix elements of the density
operator in question with respect to some product states. As
shown in [51], genuine n-partite entanglement is identified
through the condition,

τn(ρ̂) = |〈�1|�|�2〉|︸ ︷︷ ︸
f (�)

−
2n−1−1∑

j=1

√〈�1j |�|�1j 〉〈�2j |�|�2j 〉︸ ︷︷ ︸
fj (�)

> 0, (4)

where |�1〉 =⊗n
m=1 |ϕm〉 and |�2〉 =⊗n

m=1 |ϕn+m〉 are two
product vectors, and the vectors |�1i〉 and |�2i〉 are defined
in terms of the inequivalent possibilities to divide the n

subsystems into two groups: There are 2n−1 − 1 inequivalent
such bipartitions, each of which that can be characterized by
a vector vj whose n elements adopt the values 0 or 1, and the
groups are defined by the subsystems associated with the value
0 and 1, respectively. In terms of these vectors, we have the
definition,

|�1j 〉 =
n⊗

m=1

∣∣ϕm+n[vj ]m

〉
, |�2j 〉 =

n⊗
m=1

∣∣ϕm+n−n[vj ]m

〉
, (5)

that is, the vectors |�1j 〉 and |�2j 〉 are obtained from the
vectors |�1〉 and |�2〉 through a permutation of state vectors
|ϕm〉 with |ϕn+m〉 that belong to those subsystems that are
grouped together in the j th bipartition.

If a pure state ρ̂ = |�〉〈�| is separable with respect to the
j th bipartition, then f (ρ̂) = fj (ρ̂). Since the fj (�̂) are non-
negative, this implies that τn is nonpositive. As this reasoning
holds for any bipartition, and, in addition, τn is convex, τn is
indeed nonpositive for any state � that can be decomposed into
biseparable pure states.

A fully separable pure state is biseparable with respect to
all bipartitions; accordingly, one may introduce the function
τbi,n(ρ̂) = f (�) − (2n−1 − 1)−1∑2n−1−1

j=1 fj (�), and a positive
value of τbi,n identifies a mixed state to be at least bipartite
entangled. In the same fashion, one can introduce scalar factors
a

(k,n)
j � 0 [36] for n � k � 2 such that

τk,n(ρ̂) = f (�) −
∑

j

a
(k,n)
j fj (�) (6)

can be positive only if ρ̂ is at least k-partite entangled.
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In order to detect entanglement properties as reliably
as possible, a suitable choice of probe vectors |ϕi〉 is in
order. In practice, it is desirable to find an optimal set of
normalized such vectors that maximize τk,n. Advantageously,
the number of probe vectors scales only linearly with n,
but a full optimization over the infinite-dimensional vectors
without simplifying assumptions does not seem to be a fruitful
endeavor. Similarly to the concept of Gaussian entanglement of
formation [10], we therefore require that all probe vectors are
Gaussian. Each Gaussian probe state |ϕm〉 is then characterized
by it first and second moments,

x̄m = (q̄m,p̄m), and (7)

�m =
[
σ (m)

xx σ (m)
xp

σ (m)
xp σ (m)

pp

]
, (8)

with det(�m) = 1/4, σ (m)
xx � 0 and σ (m)

pp � 0. In the following
we will identify choices for these parameters that yield strong
criteria. Remarkably enough, this allows us to reproduce the
PPT criterion for two-mode and pure three-mode Gaussian
states. Beyond that, even with this simplifying assumption,
Eq. (6), is able to detect non-Gaussian entanglement [20],
for which criteria only based on the second moments of the
quadrature variables fail. Both observations demonstrate that
assuming Gaussian probe states makes the present hierarchy
an easily accessible but strong tool.

III. HIERARCHIES OF INSEPARABILITY CRITERIA
FOR CV SYSTEMS

The τk,n are parametrized by the first and second moments
of the Weyl symbols of the operators |�1〉〈�1|, |�2〉〈�2|,
|�1j 〉〈�1j |, and |�2j 〉〈�2j |. Let us denote their vectors of first
moments by X�1 , X�2 , X�1j

, and X�2j
, and their matrices of

second moments by ��1 , ��2 , ��1j
, and ��2j

. Since also the
matrix element 〈�1| ρ̂ |�2〉 enters the definition of τk,n, it is
convenient to introduce also moments,

X�21 =
∫

d2nx x W|�2〉〈�1|(x)∫
d2nx W|�2〉〈�1|(x)

, (9)

and ��12 defined analogously, where the explicit normaliza-
tion is introduced because the overlap between |�1〉 and |�2〉
is typically not unity.

As shown in Eq. (A6) in Appendix A, ��21 can easily be
constructed from the covariance matrices �m defined in Eq. (8)
via the prescription,

��21 =
n⊕

m=1

�m,n+m, (10)

with

�m,n+m = �m + �n+m

2 det(�m + �n+m)

+ i
�m JT

1 �n+m − �n+m JT
1 �m

2 det(�m + �n+m)
.

The first moments are then given by [52]

X�21 = X�1 + X�2

2
+ i��21 Jn

(
X�1 − X�2

)
. (11)

As it is extensively illustrated in Appendix A, one may
express τk,n in a rather compact form,

τk,n(ρ̂) = e− α
2

∣∣f�21

∣∣
4

√
det
(
��1 + ��2

) −
∑

j

a
(k,n)
j e− βj

4

√
f�1j

f�2j
,

(12)

with

fu = exp
( 1

2KT
(
V −1 + �−1

u

)−1
K

)
F (x)

∣∣
x=�0√

det(�u + V )
, (13)

and K = ( ∂
∂x + �−1

u Xu) for u = �21,�1j ,�2j . The quanti-
ties,

α = Re
(
XT

�21
�−1

�21
X�21

)+ (X�1 − X�2

)T
JT

n Re
(
��21

)
× Jn

(
X�1 − X�2

)
, (14)

and

βj = XT
�1j

�−1
�1j

X�1j
+ XT

�2j
�−1

�2j
X�2j

, (15)

are quadratic functions of the first-moment vectors, and Re
denotes the real part. We provide the expressions for the vectors
X�1 , X�2 , X�1j

, and X�2j
, as well as for the covariance

matrices ��1 , ��2 , ��1j
, and ��2j

in Eqs. (B1)–(B8) in
Appendix B.

The general expression Eq. (12) holds for any state whose
Wigner function can be cast in the form of Eq. (2). If F (x) = 1
in Eq. (2), i.e., if ρ̂ is Gaussian, then fu defined in Eq. (13) takes
the simpler form,

f(G)
u = exp

( 1
2 (Xu)T �−1

u

(
V −1 + �−1

u

)−1
�−1

u Xu

)
√

det(�u + V )
.

In order to identify general properties of the states |�i〉 that
yield potentially maximal values for τk,n, we will make the
assumption,

��1 = ��2 = �, (16)

i.e., we assume that |ϕm〉 and |ϕn+m〉 (for m = 1, . . . ,n) have
the same covariance matrix. With this assumption Eqs. (14)
and (15) reduce to α = α′ and βj = β ′

j with

β ′
j = 2α′ + 1

2

(
X�1 − X�2

)T
PT

j �−1 Pj

(
X�1 − X�2

)
,

and

α′ = 1/4(X�1 + X�2 )T �−1(X�1 + X�2 ),

with

P j =
n⊕

m=1

(−1)[vj ]m I, (17)

where I is the two-dimensional identity matrix, and vj , which
is defined in the context of Eq. (5), characterizes the bipartition
j . With the help of the following identity valid for quadratic
matrices [53],

1

� + V
= �−1 − �−1(V −1 + �−1)�−1, (18)
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one may easily show that the hierarchy τ ′
k,n resulting from the

assumption Eq. (16) can be expressed as

τ ′
k,n(ρ̂) = e− 1

8 (X�1 +X�2 )T 1
�+V (X�1 +X�2 )

√
det(� + V )

hk,n,

where hk,n is a function which does not depend on (X�1 +
X�2 ), i.e., hk,n = hk,n(�,X�1 − X�2 ).

Since � and V are positive definite, the exponent is
nonpositive, such that τ ′

k,n adopts its maximum only if
X�1 + X�2 = 0. That is, assuming Gaussian probe vectors
and Eq. (16) permits one to perform an essential part of the
maximization of τk,n analytically, which eases the reliable
estimation of Tk,n = max

�1,�2

τk,n substantially. With this, we
arrive at

T̃k,n = max
X,�

τ̃k,n,

with

τ̃k,n(ρ̂) = e
−2XT JT

n
1

�−1+V−1 Jn X

√
det(� + V )

−
∑

j

a
(k,n)
j

e− 1
2 XT (Pj )T 1

�+V Pj X√
det
(
� + V

) ,

(19)

which can readily be optimized numerically.

A. Resemblance to the PPT Criterion

Since Eq. (19) is the result of several restrictions that
potentially weaken the hierarchy, a critical assessment of its
strength is in order. Since most of the existing separability
criteria are concerned with separability with respect to a
given bipartition, we focus for the moment on this question.
According to Eq. (19), the inequality,

e− 1
2 XT (Pj )T 1

�+V Pj X � e
−2XT JT

n
1

�−1+V−1 Jn X
,

is satisfied for any mixed Gaussian state that is biseparable
with respect to the bipartition j . Since this scalar inequality
is satisfied for any choice of X , it implies the matrix
inequality [54],

4 JT
n

1

�−1 + V −1
Jn � (Pj )T

1

� + V
Pj . (20)

In the following, we will show that this permits us to recover
the ppt criterion for mixed two-mode and pure three-mode
Gaussian states, when all the probe states |ϕm〉 are chosen
to be pure infinitely squeezed states, with covariance matrix
with σm

pp → 0 (∀m) for squeezing in momentum, or σm
xx → 0

(∀m) for squeezing in position. It is worthwhile noting that
if inequality (20) is violated in all the bipartitions, then ρ̂ is
genuine multipartite entangled.

1. Two-mode case

The covariance matrix V of any two-mode Gaussian state
can be expressed in the standard form (C1), in terms of four
coefficients a,b,c,d ∈ R [7].

According to the ppt criterion, a two-mode Gaussian state
is separable if and only if the symplectic eigenvalues {ν̃1,ν̃2} of
the partial transpose of the covariance matrix Ṽ j with respect

to the bipartition j satisfy [7,21]

ν̃1,ν̃2 � 1
2 . (21)

These are directly obtained from the roots {±iν̃1, ± iν̃2} of the
characteristic polynomial of the matrix JT

2 Ṽ j , which is given
by

λ4 + �̃2
1λ

2 + �̃2
2 = 0, (22)

with �̃2
1 = 1

4 (a2 + b2 − 2cd), �̃2
2 = 1

16 (ab − c2)(ab − d2),
which are the symplectic invariants.

On other hand, inequality (20) in the two-mode case may
be translated into the eigenvalue problem of the product
matrix [54],

Z1 = 4P1
(
� + V

)
P1 JT

2 (�−1 + V −1)−1 J2, (23)

such that inequality (20) is not violated as long as all of the
eigenvalues {λ(i)

z ; i = 1,2,3,4} of Z1 are non-negative, i.e.,
λ(i)

z � 1 ∀i.
Using the standard form (C1) and substituting �m by the

covariance matrix of a pure squeezed state [see Eq. (C2)], Z1

results in the matrix Z1(r) defined in Eq. (C3) whose entries are
given in terms of rational functions in the squeezing parameter
r , as discussed in more detail in Appendix C.

In the limit of infinite squeezing in momentum (r → 0), we
find that Z1 [see Eq. (C4)] has λ(1)

z = λ(2)
z = 1 as the doubly

degenerate eigenvalue, and the other two are given by the
characteristic polynomial,(

λz

4

)2

− �̃2
1

(
λz

4

)
+ �̃2

2 = 0. (24)

Since the roots of Eq. (24) are related with the roots of
Eq. (22) through the expression λ = ±i

√
λz/2, the conditions

λ(3)
z � 1 and λ(4)

z � 1 are indeed equivalent to Eq. (21). That is,
given the optimal choice of probe states with |ϕm〉 = |ϕn+m〉
(m = 1, . . . ,n) and infinitely squeezed covariance matrix, we
recover exactly the necessary and sufficient PPT criterion
from the inequality (20). It is straightforwardly to show that
this assertion also holds if we consider infinite squeezing in
position (r → ∞) [see Eq. (C5)].

2. Three-mode case

The foregoing discussion sets the stage of the procedure
that one has to follow in order to show the analog result for
pure three-mode Gaussian states. In this case, the comparison
between the inequalities (20) and (21) has to be in terms of
the three possible bipartitions of the system, such that the
characteristic polynomial of the matrices Zj (j = 1,2,3) leads
to the characteristic polynomial of the matrices JT

3 Ṽ j . We
defer the details of the proof to Appendix C.

We may apply the same procedure to study the case
of mixed tripartite-entangled states, but one finds that this
assertion is no longer true. For mixed three-mode Gaussian
states inequality (20) cannot be expected to reproduce the
PPT criterion, since PPT basically discerns fully inseparability
in the case of mixed states [5,32], whereas τ3,3 identifies
genuine tripartite entanglement. However, we found that τ2,3

still detects entanglement of the vast majority of three-mode
bipartite entangled states.
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IV. EXAMPLES

We now turn the attention to illustrate how expression (12)
provides reliable estimates of k-partite entanglement in Gaus-
sian and non-Gaussian states.

A. Mixed genuine tripartite entangled states

Let us start analyzing the inseparability properties of a
mixed tripartite Gaussian entangled state, whose covariance
matrix may be expressed as follows,

V = V GHZ + g I3, with g � 0, (25)

where In =⊕n
m=1 I , and

V GHZ = 1

2

⎛
⎜⎜⎜⎜⎜⎝

a 0 −c 0 −c 0
0 b 0 c 0 c

−c 0 a 0 −c 0
0 c 0 b 0 c

−c 0 −c 0 a 0
0 c 0 c 0 b

⎞
⎟⎟⎟⎟⎟⎠ , (26)

with

a = 1
2 [e2r + cosh(2r)], b = 1

2 [e−2r + cosh(2r)],

c = 1
2 sinh(2r),

the covariance matrix of the continuous-variable analog of the
GHZ states [5]. Here, g plays the role of a mixing parameter,
while r � 0 is the squeezing parameter. We compare the
hierarchies τ2,3 and τ3,3 with the PPT criterion applied to the
bipartition 1|23 [5].

As one can see in Fig. 1, τ3,3 detects that this state
is genuinely tripartite entangled in a substantial part in
the parameter regime, and for sufficiently strong squeezing,
even substantially mixed states are still genuinely tripartite
entangled. States that are too strongly mixed to be genuinely
tripartite entangled can still be identified to be bipartite
entangled via τ2,3, which detects nearly as many states as the
ppt criterion.

FIG. 1. (Color online) Density map of the inseparability proper-
ties of the Werner-type GHZ state defined in Eq. (25) in terms of the
mixing g and squeezing parameter r . The black solid line depicts the
border between bipartite entangled (blue region) and separable states
according to the PPT criterion. Within the former, the blue dashed
and orange dot-dashed lines delimit the region of the states for which
the hierarchies T2,3 and T3,3 return positive values, respectively.

FIG. 2. (Color online) T2,2(ρ̂) as a function of the amplitude |α|
for the CPS-TSVS defined in Eq. (27) with r = 0, α = |α|ei

√
2

2 , and
β = |β|ei π

2 .

B. Coherent photon-added or -subtracted two-mode states

To demonstrate the performance on non-Gaussian states we
investigate the inseparability properties of coherently photon-
subtracted two-mode squeezed vacuum states (CPS-TSVS).
These states derive from the locally squeezed two-mode
vacuum state by applying the operator (αâ1 + βâ2)u, where âl

(l = 1,2) is the photon-annihilation operator of the lth mode
and |α|2 + |β|2 = 1 [50]. For simplicity, we shall consider the
states obtained for u = 1 and symmetrically squeezed in both
modes. The covariance matrix V and the polynomial function
F that define the Wigner function via Eq. (2) take the form,
V = 1

2 diag(e−2r ,e2r ,e−2r ,e2r ), and

F (x) = 2 cosh2(r)
((

x2
1 + p2

1

)|α|2 + (x2
2 + p2

2

)|β|2

+ 2Re((x1 − ip1)(x2 + ip2)α∗β)
)

+ 2 sinh2(r)
((

x2
1 + p2

1

)|α|2 + (x2
2 + p2

2

)|β|2

+ 2Re((x1 + ip1)(x2 − ip2)α∗β)
)

− 4 cosh(r) sinh(r)(|αp1 + βp2|2 − |αx1 + βx2|2) − 1.

(27)

In [20] it is shown that the PPT criterion based on the second-
order correlations fails to unveil the entanglement of this state
for r = 0, what makes this state particularly interesting to
demonstrate the strength of the hierarchy. Remarkably enough,
Fig. 2 shows that expression (12) is able to detect this purely
non-Gaussian entanglement in agreement with [20]. Figure 2
corresponds to a specific choice of the phases of the complex
parameters α and β, but we found τ2,2 to perform equally well
for any other choice of phases.

C. Time evolution of an initially non-Gaussian entangled state

Finally, the tractable form of the hierarchy (12) also permits
one to study the time evolution of the k-partite entanglement
under the influence of environmental noise. Let us investigate
how the two-mode non-Gaussian entanglement of the fore-
going example is influenced when each mode is in contact
with an independent heat bath. To be specific we assume the
environmental coupling of both modes to be modeled with the
same rate γ , and both baths to have the same temperature
characterized by the mean photon number Nth. The open
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system dynamics is governed by a Fokker-Plank equation in
the interaction picture [see Eq. (D1) in Appendix D], which
has been extensively employed to study the effects of losses
and thermal hopping in CV systems [55].

The time-dependent Wigner function is obtained from the
Green function of the Fokker-Plank equation (see Appendix D
for further details). In the interaction picture, one finds that the
covariance matrix evolves according to

V (t) = ε(t) + σ (t), (28)

with

ε(t) = e−γ t

2
V (0), σ (t) = (1 − e−γ t )V (Nth,0),

where V (0) = 1
2 diag(e−2r ,e2r ,e−2r ,e2r ), V (Nth,0) =

1+2Nth
2 (I ⊕ I), and the polynomial part F (x,t) is given

by

F (x,t) = F (e
γ

2 t [ε−1(t)σ (t) + I2]−1x)

+ 1

2

∑
l,m

(ε−1(t) + σ−1(t))−1
lm

∂2F (e
γ

2 t x)

∂[x]l∂[x]m

∣∣∣∣
x=�0

,

(29)

For t = 0, Eq. (29) returns the initial expression Eq. (27)
for the state (F (x,0) = F (x)), whereas in the long time
(F (x,t → ∞) → 1) the system evolves asymptotically into
the symmetrical separable thermal (Gaussian) state.

One may appreciate from Fig. 3 that the initial non-
Gaussian entanglement is degraded asymptotically in time:
The hierarchies shows that the two-mode entanglement fea-
tures an exponential decay.

This example illustrates that Eq. (12) may provide an ac-
curate description of multipartite CV entanglement in realistic
dissipative scenarios. As the hierarchy deals with Gaussian and
non-Gaussian states at the same footing, Eq. (12) is particularly
of interest to study the time evolution of k-partite entanglement
when the state evolves from Gaussian to non-Gaussian, or vice
versa.

V. EXPERIMENTAL QUANTIFICATION

Let us now briefly discuss how the hierarchies (12)
and (19) can be assessed with experimental data. The

FIG. 3. (Color online) Time evolution of T2,2(ρ̂(t)) when the
system is initially in the CPS-TSVS state plotted in Fig. 2 with
|α| = 0.5, and it is in contact with independent thermal reservoirs
with Nth = 2 (black solid line) and with Nth = 4 (red dashed line).

standard procedure would be based on the experimental
reconstruction of the Wigner function in terms of quantum
state tomography [56,57] or a measurement scheme especially
designed for multicomponent CV systems [58], followed by
the analytical evaluation of Eqs. (12) and (19). However,
the hierarchies for Gaussian states (19) may be also directly
accessed by performing Gaussian measurements, modeled in
terms of positive-valued operators with the Gaussian Weyl
symbol [27,59], which will be characterized by a covariance
matrix σM and first-moment vector XM that plays the role
of the outcome of the measurement. If one performs such a
measurement on the whole n-mode system, the probability of
the outcome XM is given by [59]

p(XM ; σM ) = e
− 1

2 XT
M

1
σM +V XM

(2π )n
√

det(σM + V )
.

One may immediately identify the terms in the sum in
Eq. (19) as (2π )np(Pj X ; �), since these terms are derived
from diagonal matrix elements [see Eqs. (A2) and (A3)]. On
the other hand, the first term in Eq. (19), which results from
off-diagonal matrix elements [see Eq. (A1)], may be expressed
in terms of the Fourier transform p̂(ω; �) of the probability
distribution p(X ; �), i.e.,

p̂(ω; �) = 1

(2π )n

∫
R2n

d2n Xe−iωT Xp(X ; �),

such that Eq. (19) may be brought in the form,

τ̃k,n(ρ̂) = e−2XT JT
n � Jn X

∫
R2n

d2nωe−2ωT � Jn X p̂(ω; �)

− (2π )n
∑

j

a
(k,n)
j p(Pj X ; �), (30)

as we extensively show in Appendix E. This expression relates
τ̃k,n directly to the measurement statistics of a Gaussian
measurement with covariance matrix �.

Since the projection of ρ̂ onto a one-mode pure infinitely
squeezed state [whose covariance matrix we illustrate in (C2)]
models an (ideal) homodyne measure in the mth mode of
the system [57,60,61], the results of Sec. III A indicate that
one may completely certify the inseparability of arbitrary two-
mode and pure three-mode Gaussian states by a collective of
simultaneous (ideal) homodyne measures on each mode of the
system.

VI. CONCLUDING REMARKS AND OUTLOOK

The strength of the hierarchy as demonstrated by the explicit
examples in Sec IV and the prospect to obtain a fine-grained
characterization of multimode entanglement properties even
for non-Gaussian states based only on Gaussian measurements
underlines the practical value of the separability criteria pre-
sented here. In particular, the recent development of optome-
chanical experiments [62,63] that permit the realization of con-
trolled interactions between massive degrees of freedom [64]
and light call for tools that permit one to verify experimental
achievements. Whereas experiments on continuous-variable
entangled systems were in the realm of Gaussian states for
a long time, this new generation of experiments permits one
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to realize sizable nonlinear interactions which result in the
generation of non-Gaussian entangled states.

This prospect to create and probe entangled states that
were out of reach until recently, highlights the demand for
theoretical tools for the analysis of entanglement properties
beyond the Gaussian theory. In particular with the capacity to
probe entanglement properties also in multimode systems, the
present separability criteria promise to be a valuable theoretical
support for a series of experiments to come.
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APPENDIX A: DERIVATION OF EQ. (12)

In this Appendix we illustrate the derivation of expres-
sion (12) starting from the formulation Eq. (6) of the hierarchy
τk,n(ρ̂) in Hn. The latter involves the following three matrix
elements:

〈�1|ρ̂|�2〉, (A1)

〈�1j |ρ̂|�1j 〉, (A2)

〈�2j |ρ̂|�2j 〉, (A3)

with |�1〉, |�2〉, |�1j 〉, and |�2j 〉 defined in Eqs. (4) and (5).
One may compute these matrix elements by using the trace

product rule [65],

〈φ|ρ̂|ψ〉 = Tr(ρ̂|ψ〉〈φ|)
= (2π )n

∫
d2nxW (x)W|ψ〉〈φ|(x). (A4)

Hence, we must first derive the Weyl symbol W|�2〉〈�1| cor-
responding to the n-fold tensor product operator |�2〉〈�1| =⊗n

m=1 |ϕn+m〉 〈ϕm|. According to the definition in Eq. (1), this
may be expressed as

W|�2〉〈�1|(x) =
n∏

m=1

W|ϕn+m〉〈ϕm|(q,p). (A5)

Moreover, W|ϕn+m〉〈ϕm| may be directly derived by using the
classical formulation of the Wigner function [65], and the
expression for the wave function of any single-mode pure
Gaussian state, i.e.,

φm(q) =
√√√√ 2σ

(m)
pp

π
(
1 + 4

(
σ

(m)
xp

)2)e
− σ

(m)
pp (q−q̄m)2

1+2iσ
(m)
xp

+iqp̄m

.

Doing so, one arrives at the Gaussian function,

W|ϕl〉〈ϕm|(q,p) = Nm,le
− 1

2 ((q,p)−Xm,l )T �−1
m,l ((q,p)−Xm,l )), (A6)

with first-moment Xm,l = 1/2((q̄m,p̄m) + (q̄l ,p̄l))T +
i�m,l J1((q̄m,p̄m) − (q̄l ,p̄l))T and the covariance matrix as
given in Eq. (10), where the absolute value of the normalizing
factor is given by

|Nm,l| = e
−1

4 det(�m+�l ) ((X−)T JT
1 (�m+�l ) J1 X−)

π 4
√

det(�m + �l)
,

with X− = (q̄m,p̄m) − (q̄l ,p̄l). Notice that, from Eq. (10) it is
deduced that ��21 is a complex symmetric matrix which in
general is not Hermitian. One may follow the same recipe to
obtain the other Weyl symbols corresponding to the operators
|�1j 〉〈�1j |, and |�2j 〉〈�2j |.

By virtue of the trace product rule (A4), the matrix
element (A1) takes the form,

〈�1|ρ̂|�2〉 = N�21√
det(V )

∫
R2n

d2nx F (x)e− 1
2 xT V −1 xe

− 1
2 (x−X�21 )T �−1

�21
(x−X�21 )

= N�21√
det(V )

∫
R2n

d2nx
(
F (x)e

1
2 (xT �−1

�21
X�21 +XT

�21
�−1

�21
x−XT

�21
�−1

�21
X�21 ))

e
− 1

2 xT (V −1+�−1
�21

)x

= (2π )nN�21e
− 1

2 XT
�21

�−1
�21

X�21√
det
(
V −1 + �−1

�21

)
det(V )

[
e

1
2 ( ∂

∂x )T (V −1+�−1
�21

)−1( ∂
∂x )(

F (x)eXT
�21

�−1
�21

x)]
x=�0,

where we made use of the symmetry property of the pseudocovariance matrix ��21 = �T
�21

. In this expression, x is a 2n-
dimensional real vector. Since the exponential of the differential operator describes a shift in phase space (see Appendix E), we
can conveniently manipulate this expression to obtain

〈�2|ρ̂|�1〉 = πnN�21e
− 1

2 XT
�21

�−1
�21

X�21√
det
(
V + ��21

) [
e

1
2 ( ∂

∂x +�−1
�21

X�21 )T (V −1+�−1
�21

)−1( ∂
∂x +�−1

�21
X�21 )

F (x)
]

x=�0. (A7)
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Similarly, one may derive the analog expression for the matrix
elements given in Eqs. (A2) and (A3) by substituting the pair
X�21 , ��21 for the corresponding pair X�1j

, ��1j
, and X�2j

,
��2j

in Eq. (A7) (and by taking N�21 equal to π−n). After
replacing the result for each matrix element in Eq. (6) and some
straightforward algebra, one arrives at expression Eq. (12) for
the hierarchy that is valid as long as the Wigner function of
the system can be expressed as in Eq. (2).

APPENDIX B: FIRST-MOMENT VECTORS AND
COVARIANCE MATRICES ASSOCIATED WITH THE

BIPARTITION J

In this Appendix we describe in more detail how to obtain
the vectors X�1j

and X�2j
, and the matrices ��1j

, ��2j
, and

Pj associated with the bipartition labeled by j . In Sec. II,
we stated that |�1j 〉 and |�2j 〉 are obtained from |�1〉 and
|�2〉 by interchanging the one-mode states |ϕm〉 with |ϕm+n〉
corresponding to those subsystems that are grouped together
in the bipartition j [see Eq. (5)]. On the other hand, from
Eqs. (11) and (10) one obtains that the first-moment vectors of
|�1〉 and |�2〉 are given by

X�1 =
n⊕

m=1

x̄m, (B1)

X�2 =
n⊕

m=1

x̄n+m, (B2)

and the covariance matrices are given by

��1 =
n⊕

m=1

�m, (B3)

��2 =
n⊕

m=1

�n+m. (B4)

Analogously, one may deduce the covariance matrices ��1j

and ��2j
by permuting the corresponding matrices �m and

�n+m in the expressions (B3) and (B4), respectively. Doing
so, one obtains

��1j
=

n⊕
m=1

�m+n[vj ]m, (B5)

��2j
=

n⊕
m=1

�m+n−n[vj ]m . (B6)

The same reasoning may be applied to derive the first-
moment vectors, where one interchanges the corresponding
vectors x̄m and x̄n+m in Eqs. (B1) and (B2). These permuta-
tions may be expressed in a compact way with the matrix P

defined in Eq. (17), such that X�1j
and X�2j

may be written
as [52]

X�1j
= X�1 + X�2

2
+ 1

2
Pj

(
X�1 − X�2

)
, (B7)

X�2j
= X�1 + X�2

2
− 1

2
Pj

(
X�1 − X�2

)
. (B8)

APPENDIX C: RESEMBLANCE TO THE PPT CRITERION

1. Two-mode Gaussian case

The standard form of the covariance matrix of any two-
mode Gaussian state reads [7]

V = 1

2

⎛
⎜⎝

a 0 c 0
0 a 0 d

c 0 b 0
0 d 0 b

⎞
⎟⎠ , {a,b,c,d} ∈ R4, (C1)

whereas the covariance matrix of a one-mode pure squeezed
state may be expressed as follows:

�(r) = diag

(
1

4r
,r

)
, (C2)

where r is the squeezing parameter.
After substituting Eqs. (C1) and (C2) in the expression for

the matrix (23), one obtains that the latter takes the following
form:

Z1(r) =

⎛
⎜⎜⎜⎜⎜⎝

(1+2ar)(a(b+2r)−d2)−4cdr2

(a+2r)(b+2r)−d2 0 2r(2r(ad−bc)+d(1+cd)−abc)
(a+2r)(b+2r)−d2 0

0 (a+2r)(a(1+2rb)−2rc2)−cd

(1+2ar)(1+2br)−4c2r2 0 2r(c(1+cd)−abd)+ac−bd

(1+2ar)(1+2br)−4c2r2

2r(2r(bd−ac)+d(1+cd)−abc)
(a+2r)(b+ar)−d2 0 (1+2br)(b(a+2r)−d2)−4cdr2

(a+2r)(b+2r)−d2 0

0 2r(c(1+cd)−abd)+bc−ad

(1+2ar)(1+2br)−4c2r2 0 (b+2r)(b(1+2ra)−2rc2)−cd

(1+2ar)(1+2br)−4c2r2

⎞
⎟⎟⎟⎟⎟⎠ . (C3)

As one may see, the entries of the matrix Z1(r) are rational
functions in terms of the squeezing parameter r , and the limit
r → 0 reads

lim
r→0

Z1(r) =

⎛
⎜⎝

1 0 0 0
0 a2 − cd 0 ac − bd

0 0 1 0
0 bc − ad 0 b2 − cd

⎞
⎟⎠ . (C4)

Similarly, one may derive the expression for Z1(r) in the
limit r → ∞, which corresponds to an infinite squeezing in
position. Doing so, one may replace r in (C3) by 1/r , and then
take the limit r → 0, i.e.,

lim
r→0

Z1

(
1

r

)
=

⎛
⎜⎝

a2 − cd 0 −bc + ad 0
0 1 0 0

−ac + bd 0 b2 − cd 0
0 0 0 1

⎞
⎟⎠ . (C5)
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Both (C4) and (C5) have λ(1)
z = λ(1)

z = 1 as a doubly degenerate eigenvalue. The other two eigenvalues are given by λ(3)
z = 4ν̃2

1

and λ(3)
z = 4ν̃2

1 , as we point out in Sec. III A. This illustrates that the hierarchy expressed in terms of the inequality (20) reproduces
the results of the PPT criterion when we choose infinitely squeezed probe states either in momentum or position.

2. Three-mode Gaussian case

The standard form of a pure three-mode Gaussian state reads [7]

V = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 e+
12 0 e+

13 0

0 a1 0 e−
12 0 e−

13

e+
12 0 a2 0 e+

23 0

0 e−
12 0 a2 0 e−

23

e+
13 0 e+

23 0 a3 0

0 e−
13 0 e−

23 0 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C6)

where a1,a2,a3 ∈ R, and e±
12, e±

13, e±
23 are simple functions of a1,a2, and a3.

The characteristic polynomial reads λ6 + �̃3
1λ

4 + �̃3
2λ

2 + �̃3
3 = 0, and the symplectic invariants {�̃3

l } (l = 1,2,3) are obtained
from [21]

�̃3
l = M2l

(
JT

3 Ṽ
2
1

)
,

where M2l( JT
3 Ṽ

2
1) is the principal minor of order 2l of the matrix JT

3 Ṽ
2
1, i.e., it is the sum of all the determinants of all the 2l × 2l

submatrices obtained by deleting 6 − 2l rows and the corresponding 6 − 2l columns [21]. Since one has to follow the same
procedure for each bipartition, we illustrate here only the case for S1|S2S3, where Sm symbolizes the mth mode (m = 1,2,3).
Although the whole expression of ZS1|S2S3 (r) is straightforwardly derived from (23) by replacing �m = �(r) for m = 1,2,3 (its
entries are again rational functions in terms of the squeezing parameter r), it is rather lengthy so that we only provide the final
expression after taking the limit r → 0,

lim
r→0

ZS1|S2S3 (r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 a2
1 − e+

13e
−
13 − e+

12e
−
12 0 a1e

+
12 − a2e

−
12 − e−

13e
+
23 0 a1e

+
13 − a3e

−
13 − e−

12e
+
23

0 0 1 0 0 0

0 a2e
+
12 − a1e

−
12 + e+

13e
−
23 0 a2

2 − e+
12e

−
12 + e+

23e
−
23 0 a2e

+
23 + a3e

−
23 − e−

12e
+
13

0 0 0 0 1 0

0 a3e
+
13 − a1e

−
13 + e+

12e
−
23 0 a3e

+
23 + a2e

−
23 − e−

13e
+
12 0 a2

3 − e+
13e

−
13 + e−

23e
+
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C7)

This matrix has λ(1)
z = λ(2)

z = λ(3)
z = 1 as a three-times degenerate eigenvalue, and the other eigenvalues are the roots of the

polynomial,

−
(

λz

4

)3

+ �̃3
1

(
λz

4

)2

− �̃3
2

(
λz

4

)
+ �̃3

3 = 0. (C8)

As we have already seen for the two-mode case, the roots of the characteristic polynomial of JT
3 Ṽ

2
1 are related to those of (C8)

through the expression λ = ±i
√

λz/2. Hence, the inequality (20) applied in the bipartition S1|S2S3 reproduces the PPT criterion
for pure three-mode Gaussian states.

Analogously, one may show that this assertion holds for the other bipartitions S2|S1S3 and S3|S1S2. Now the roots of the
corresponding characteristic polynomial are {1,1,1,4ν̃2

S2|S1S3,1
,4ν̃2

S2|S1S3,2
,4ν̃2

S2|S1S3,3
} and {1,1,1,4ν̃2

S3|S1S2,1
,4ν̃2

S3|S1S2,2
,4ν̃2

S3|S1S2,3
},

in terms of the symplectic eigenvalues of the partially transpose covariance matrix corresponding to the bipartitions S2|S1S3 and
S3|S1S2, respectively.

Once again, it is important to note that the assertion also holds for infinite squeezing in position (r → ∞). One gets at the
following matrix for Z1(r), which is analog to (C7),

lim
r→0

ZS1|S2S3

(
1

r

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2
1 − e+

13e
−
13 − e+

12e
−
12 0 a1e

−
12 − a2e

+
12 − e+

13e
−
23 0 a1e

−
13 − a3e

+
13 − e+

12e
−
23 0

0 1 0 0 0 0

a2e
−
12 − a1e

+
12 + e−

13e
+
23 0 a2

2 − e+
12e

−
12 + e+

23e
−
23 0 a2e

−
23 + a3e

+
23 − e+

12e
−
13 0

0 0 0 1 0 0

a3e
−
13 − a1e

+
13 + e−

12e
+
23 0 a3e

−
23 + a2e

+
23 − e+

13e
−
12 0 a2

3 − e+
13e

−
13 + e−

23e
+
23 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C9)

from which one obtains the same characteristic polynomial as given in (C8).
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APPENDIX D: TIME EVOLUTION OF THE WIGNER
FUNCTION

We consider the time evolution of an n-mode system
governed by the Fokker-Plank equation in the interaction
picture [55,66],

∂W (x,t)

∂t
=

((
∂

∂x

)T

	x +
(

∂

∂x

)T

D
∂

∂x

)
W (x,t),

(D1)

with ( ∂
∂x )T =⊕n

l=1( ∂
∂ql

, ∂
∂pl

); 	 and D are 2n × 2n real
symmetric matrices that encode the interaction with the
environment. In the case of interest here, these take the form
	 = γ /2(I ⊕ I) and D = γ (1 + 2Nth)/4(I ⊕ I), where Nth

is the mean photon number of the baths.
Equation (D1) is a linear Fokker-Plank equation with time-

independent coefficients that can be straightforwardly solved
by using the Green function method [67], that permit one to
relate W (x,t) and W (x,0) via

W (x,t) =
∫
R2n

d2nx′ W (x′,0)G(x,x′,t), (D2)

in terms of the Green function G(x,x′,t) which takes the form
(see [67,68]),

G(x,x′,t) = 1

(2π )n
√

det (σ (t))
e− 1

2 (x−b(t)x′)T σ (t)−1(x−b(t)x′),

(D3)

where

b(t) = e−	t , σ (t) = σ (∞) − e−	tσ (∞)e−	t ,

and σ (∞) is the stationary solution of Eq. (D1), which is
obtained from solving

	σ (∞) + σ (∞)	 = 2D.

The integration of expression (D2) with the Wigner function
W (x,0) of the CPS-TSVS state results in the solutions depicted
in Eqs. (28) and (29).

APPENDIX E: EXPERIMENTAL QUANTIFICATION

In this section we will show the derivation of the following
identity:

〈�1|ρ̂|�2〉
= (2π )n

∫
R2n

d2nx W (x)W|�2〉〈�1|(x)

= e−2XT JT
n � Jn X

∫
R2n

d2nω e−2ωT � Jn X p̂(ω; �), (E1)

which has been used to obtain Eq. (30) of Sec. V. To start
with, the probability distribution p(X ; �), corresponding a
Gaussian measurement with covariance matrix � and first-
moment vector X on an n-mode system with Wigner function
W (x), is given by

p(X ; �) =
∫
R2n

d2nx W (x)
e− 1

2 (x−X)T �−1(x−X)

(2π )n
√

det(�)
. (E2)

Introducing a unitary transformation U , such that D = UT �U
(or D−1 = UT �−1U) is a diagonal matrix, permits one to
rephrase this as

p(U X̃ ; D) =
∫
R2n

d2n x̃ W (U x̃)
e− 1

2 (x̃−X̃)T D−1(x̃−X̃)

(2π )n
√

det(D)
,

with x = U x̃ and X = U X̃ , where we have used d2N x̃ =
d2N x since the Jacobian determinant |det(U)| = 1. From here
it becomes clear that p(X ; �) can be considered a multidi-
mensional convolution transform with a Gaussian kernel, and
its inverse formula is well established [69]. Using the latter for
Eq. (E2), one obtains

W (X) = exp
(

−1

2

(
∂

∂ X

)T

�

(
∂

∂ X

))
p(X ; �).

We may derive a more suitable form for this expression by
using the Fourier transform of the Dirac delta function, that is,

W (x) = exp
(

−1

2

(
∂

∂x

)T

�

(
∂

∂x

)) ∫
R2n

d2nu p(u; �)δ(x − u)

= 1

(2π )2n

∫
R2n

∫
R2n

d2nud2nω p(u; �)exp
(

−1

2

(
∂

∂x

)T

�

(
∂

∂x

))
exp(iωT (x − u))

= 1

(2π )2n

∫
R2n

∫
R2n

d2nud2nω p(u; �)exp

(
1

2
ωT �ω

)
exp(iωT (x − u)). (E3)

On the other hand, the phase-space counterpart of |�2〉〈�1| is given by

W|�2〉〈�1|(x) = 1

(2π )n
√

det(�)
e−2XT JT

n � Jn Xe− 1
2 (x−2i� Jn X)T �−1(x−2i� Jn X), (E4)
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according to Eqs. (A5) and (A6) in Appendix A. By replacing Eqs. (E3) and (E4) in the expression for the matrix
element (E1), one obtains

〈�1|ρ̂|�2〉 = (2π )n
∫
R2n

d2nx W (x)W|�2〉〈�1|(x)

= 1

(2π )n

∫
R2n

∫
R2n

d2nωd2nu p(u; �)e−iωT ue
1
2 ωT �ωe−2XT JT

n � Jn X

× 1

(2π )n
√

det(�)

∫
R2n

d2nx eiωT xe− 1
2 (x−2i� Jn X)T �−1(x−2i� Jn X) (E5)

= 1

(2π )n

∫
R2n

∫
R2n

d2nωd2nu p(u; �)e−iωT ue
1
2 ωT �ω 1

(2π )n
√

det(�)

∫
R2n

d2nx e− 1
2 xT �−1 x+i(ω+2 Jn X)T x (E6)

= 1

(2π )n

∫
R2n

∫
R2n

d2nωd2nu p(u; �)e−iωT ue
1
2 ωT �ω(e− 1

2 (ω+2 Jn X)T �(ω+2 Jn X)) (E7)

= e−2XT JT
n � Jn X

∫
R2n

d2nω e−2ωT � Jn X
(

1

(2π )n

∫
R2n

d2nu e−iωT up(u; �)

)
, (E8)

as we wanted to show. To derive Eq. (E8), one can separate the x-dependent function from functions that depend on ω and u
only. Using � = �T , one then arrives at Eq. (E6). Performing the integration of x results in Eq. (E7); rearranging terms yields

to the desired form Eq. (E8). Substituting the explicit expression p(u; �) = exp(− 1
2 uT (V+�)−1u)

(2π)n
√

det(V+�)
in Eq. (E8), and performing the

integrals, we recover

|〈�1|ρ̂|�2〉| = e
−2XT JT

n
1

�−1+V−1 Jn X

√
det(� + V )

,

which is the first term in Eq. (19).
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