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In principle, quantum key distribution (QKD) offers unconditional security based on the laws of physics.
Unfortunately, all previous QKD experiments assume perfect state preparation in their security analysis.
Therefore, the generated key is not proven to be secure in the presence of unavoidable modulation errors. The
key reason that modulation errors are not considered in previous QKD experiments lies in a crucial weakness of
the standard Gottesman-Lo-Lütkenhaus-Preskill (GLLP) model, namely, it is not loss tolerant and Eve may in
principle enhance imperfections through losses. Here, we propose a QKD protocol that is loss tolerant to state
preparation flaws. Importantly, we show conclusively that the state preparation process in QKD can be much less
precise than initially thought. Our method can also be applied to other quantum cryptographic protocols.
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I. INTRODUCTION

Quantum key distribution (QKD) [1] allows two distant
parties, Alice and Bob, to share a secret key. This field
has progressed very rapidly over the last years, and it now
offers practical systems that can operate in realistic envi-
ronments [2,3]. In principle, QKD is unconditionally secure
[4–11], i.e., its security does not depend on the computational
power and technologies of the eavesdropper, Eve. In practice,
however, there is a gap (or so-called security loopholes)
between the security proofs of QKD and its practical imple-
mentations. This is so because the photon-detection unit and
the sending device do not necessarily operate as the security
proofs require. Fortunately, thanks to the recent proposal of
measurement-device-independent QKD (MDIQKD) [12–14],
any security loophole in the photon-detection unit is now
closed. If MDIQKD is widely deployed, which seems to
be likely [15], it will shift the focus of quantum hackers to
attacking the source. Here we address this important problem
of securing the source in QKD.

Most QKD protocols, such as the Bennett-Brassard 1984
(BB84) [16] and the six-state [17] protocols (in either
prepare-and-measure or in their MDI version), encode the key
information in the state of single photons. Ideally, therefore,
the sending device has to satisfy two conditions: it should
emit only single photons, and it should encode the information
without introducing errors. Unfortunately, however, a practical
sending device, such as a phase-randomized weak coherent
pulse source, fails to satisfy those requirements. That is, it
can emit multiphoton pulses and, due to inevitable imperfec-
tions of phase, amplitude, and polarization modulators, the
state preparation process is flawed, e.g., the polarization or
the relative phase of the pulses is different from the ideal one.
When the state of the single-photon part is independent of the
amplitude of the coherent pulse, the first imperfection, i.e.,
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multiphoton emissions of the source, can be solved by com-
bining the security analysis of Gottesman, Lo, Lütkenhaus,
and Preskill (GLLP) [18] with the decoy-state method [19]
(henceforth referred to as the GLLP decoy). It provides a tight
estimation of the detection rate of the single-photon part (i.e.,
the single-photon pulses emitted by Alice), together with its bit
error rate. As a result, both the achievable rate and distance are
significantly improved. GLLP propose as well a technique to
deal with the second type of source imperfection, namely, state
preparation flaws (SPFs) in the single-photon emissions. This
method (henceforth referred to as the GLLP-SPF method) can
be combined as well with the GLLP decoy. It has, however, a
severe limitation: it is not loss tolerant. That is, the GLLP
method pessimistically assumes that Eve can enhance the
flaw in the single-photon part by exploiting the losses of
that part, which leads to a severe degradation of the system
performance; e.g., see Fig. 1. Unfortunately, one can see this
degradation with the methods proposed in [10,22] as well.
Thus, the claimed security of the key generated in all existing
QKD experiments is not fully justified as they do not consider
this flaw, which is a crucial problem in the field.

In this paper, we provide a general technique that applies
to any SPF in phase-randomized sources. In particular, when
our technique is applied to QKD implementations with decoy
states, it makes the key from such QKD implementations
secure again. In sharp contrast to the GLLP-SPF method, our
method is loss tolerant; e.g., see Fig. 2 where we consider
modulation errors just as an example of SPFs. Our technique
is compatible with the use of the GLLP decoy, and it can
be employed for both MDIQKD and prepare-and-measure
schemes. When it is combined with MDIQKD it provides a
QKD system that takes both modulation and detector flaws
into account, yet the secret key rate remains almost the
same [23]. Therefore, we hope that our analysis will become
a standard tool for future QKD experiments. Our work builds
on a simple observation: the phase error rate, a quantity
that measures the information leakage to Eve in Koashi’s
proof [11], can be obtained by estimating the transmission
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FIG. 1. Lower bound on the secret key rate R of the decoy-state
BB84 protocol based on the GLLP-SPF method for different values
of δ, which is the phase modulation deviation from the intended
value. This is an example of SPFs, and we consider experimental
parameters from [20]. The solid, dashed, and dotted lines correspond,
respectively, to the cases δ = 0, 0.063 (which is equivalent to 3.62◦),
and 0.126. The case δ � 0.063 corresponds to an experimentally
available value [21]. For each line, we optimize the intensity of the
signals to maximize the key rate. One can see a significant decrease
of the key rates when the modulation errors increase.

rate of a fictitious quantum signal sent by Alice. To obtain the
rate, we exploit the basis mismatch events [24] (“rejected-data
analysis” in [24] was not loss tolerant but we make it loss
tolerant).

In so doing, we can (i) dramatically improve the key rate
and achievable distance of QKD with SPFs; (ii) show that
the three-state scheme [25,26] gives precisely the same key
rate as the BB84 protocol [16]. This result is surprising, as it
implies that one of the signals sent in BB84 [16] is actually
redundant [27]. In addition, our technique is (iii) applicable
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FIG. 2. Lower bound on the secret key rate R of the three-state
protocol with decoy states based on our technique. It coincides with
that of the decoy-state BB84 protocol (based also on our method)
up to the overall factor corresponding to the probability of the basis
matched events. For each line, the intensity is optimized, and we
use the same experimental parameters and phase modulation error
δ as in Fig. 1. Importantly, the three lines almost overlap, i.e., Eve
cannot enhance the SPFs by exploiting the channel loss. This shows
a dramatic improvement when compared to the results illustrated in
Fig. 1.

to MDIQKD; (iv) applicable to many QKD schemes with
phase-randomized sources (QKD-PRS schemes) (it can be
shown, for instance, that a particular four-state scheme can
postprocess its data following the specifications of the six-state
protocol [17] to outperform the standard BB84 protocol);
(v) applicable to other quantum cryptographic applications
(e.g., bit commitment based on the noisy storage model [28]).

To simplify the discussion, we assume collective attacks,
i.e., Eve applies the same quantum operation to each signal.
However, our results also hold against coherent attacks by just
applying Azuma’s inequality [29–31] (see Appendix A) or
the quantum De Finetti theorem [32]. Moreover, we study
the asymptotic scenario where the number of signals and
decoy pulses is infinite. As the decoy-state method applies
to any phase-randomized source, this scenario gives Alice
and Bob all the statistics associated with the single-photon
part. Also, we assume that Bob’s measurement device satisfies
two conditions: random basis choice and basis-independent
detection efficiency. The former is fulfilled if Bob selects
at random between two or more measurement settings. The
latter is satisfied if the detection rate is independent of Bob’s
choice of the basis. With MDIQKD, we can waive these two
conditions and allow the detection system to be untrusted.
To illustrate how our general technique works, it is easier
to consider a particular example. Specifically, in Sec. II we
analyze a prepare-and-measure three-state protocol with SPFs,
and in Sec. III we simulate its key generation rate based
on our technique and on the GLLP decoy. For comparison,
we also plot the key generation rate of this scheme based
on the GLLP-SPF and GLLP decoy methods. Next, to see
how our method can be applied to MDIQKD, we consider
MDIQKD with SPFs in Sec. IV. Finally, we conclude our paper
in Sec. V.

II. PREPARE-AND-MEASURE THREE-STATE PROTOCOL

In this section, we consider a prepare-and-measure
three-state protocol with SPFs. In the single-photon part of
this scheme, Alice is supposed to prepare three states from
the Z- and X-basis eigenstates. We assume that she actually
prepares imperfect states represented by the density matrices
ρ̂0Z , ρ̂1Z and ρ̂0X, which she selects at random, for instance
with probability 1/3, for each signal, and she sends them to
Bob. We denote the coefficients of the Bloch vector of ρ̂jα ,
with j ∈ {0,1} and α ∈ {X,Z}, as (P jα

X ,PY ,P
jα

Z ). Here, we
use the fact that by choosing the Y axis appropriately, we can
always set the Y components of all the three Bloch vectors
equal to a certain PY . Also, we assume that the terminal points
of the Bloch vectors form a triangle. That is, all the terminal
points cannot be located on a single straight line. On Bob’s
side, he measures the signals received using either the Z or
the X basis, which he selects at random, for instance with
probability 1/2, for each incoming signal. After that, Alice
and Bob announce their basis choices, and they generate sifted
bits and a secure key from those instances where both of them
select the Z basis, while the events where Bob chooses the X
basis are used for the phase error rate estimation.

Note that this protocol can be regarded as a BB84 scheme
with extremely high SPFs since one of the four BB84 states is
missing and the state preparation is imperfect. The three states
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can be mixed, the purification is assumed to be possessed by
Alice, and the flaw is independently and identically distributed
over the different trials of the state preparation. Moreover,
Bob’s measurements are not necessarily precise Z and X-basis
measurement on a single photon. We denote Bob’s positive-
operator valued measure (POVM) associated with the basis
β ∈ {X,Z} as {M̂0β,M̂1β,M̂f }, where M̂f and M̂0β (M̂1β)
correspond, respectively, to an inconclusive outcome and to
the bit value 0 (1). The essential assumption here is that M̂f is
the same for both bases [11].

In the following, we present a precise phase error rate
estimation technique. First, we introduce some notation.
Let |φjα〉

AeB
denote a purification of ρ̂jα , with B and Ae

representing, respectively, the system to be sent to Bob and
the extended system possessed by Alice. The emission of
ρ̂jZ (ρ̂0X) is, thus, equivalently expressed by the prepara-
tion of |�Z〉AAeB

= 1√
2

∑
j=0,1 |jZ〉A|φjZ〉

AeB
(|�X〉AAeB

=
|0X〉A|φ0X〉AeB

) followed by a Z-basis (X-basis) measure-
ment on system A and then sending only system B. Here,
|jX〉 := [|0Z〉 + (−1)j |1Z〉]/√2. The essential quantity in the
proof [11] is the phase error rate eX, which is a fictitious bit
error rate in the X basis, and this is defined as eX = (Y (Z)

0X,1X
+

Y
(Z)
1X,0X

)/(Y (Z)
0X,0X

+ Y
(Z)
1X,0X

+ Y
(Z)
0X,1X

+ Y
(Z)
1X,1X

), where Y
(Z)
sβ ,jα

, with
s,j ∈ {0,1}, denotes the joint probability that Alice (Bob)
obtains a bit value j (s) given the state preparation of
|�Z〉AAeB

and when her (his) basis choice is α = X (β = X).
Importantly, if NZ denotes the number of reconciled sifted
bits, a secure key can be generated by sacrificing NZh(eX) bits
in the privacy amplification (PA) [11]. Our technique will give
the following theorem.

Theorem. The phase error rate eX is exactly obtained in the
prepare-and-measure three-state protocol.

To see the implication, consider the BB84 scheme with
perfect state preparation. From the theorem, we can conclude
that even if Alice does not send out one of the BB84 states,
the performance remains the same, as the exact values of eX

and the bit error rate eZ can be obtained from the observed
data. That is, one of the BB84 states seems to be unnecessary.
This means, for instance, that in those implementations of the
BB84 protocol that use four laser sources [33] one could keep
one laser just as backup in case one of them fails, without any
decrease in performance. This also reduces the consumption
of random numbers to select the sources. Our security analysis
differs from that provided in Ref. [26] in that (i) Ref. [26]
considers only a particular set of states and (ii) our analysis
requires less PA, which leads to a higher secret key rate. Next,
we present the proof of the theorem.

Proof. We first consider the case with PY = 0. In this
case, we can choose |φjZ〉

AeB
, the purification of ρ̂jZ , and

|�Z〉AAeB
as real-valued vectors in the Z basis. To calculate

eX, we consider a virtual protocol where Alice first prepares
|�Z〉AAeB

and then both Alice and Bob measure systems A
and B in the X basis. In this virtual protocol, Alice sends Bob
the virtual (unnormalized) state σ̂B;jX,vir = TrAAe

[P̂ (|jX〉A) ⊗
1̂AeBP̂ (|�Z〉AAeB

)], where P̂ (|x〉) := |x〉〈x| and TrAAe
rep-

resents the partial trace over the systems A and Ae. Since
|�Z〉AAeB

is a real-valued vector, the virtual state is also
real valued. Therefore, the virtual states lie on the X-Z
plane, i.e., they can be expressed as a linear combination

of the matrices σ̂t , where σ̂t , with t ∈ {Id,X,Z}, denotes,
respectively, the identity and two of the Pauli operators.
Therefore, the Bloch vectors of the normalized virtual states
are given by (P jX,(vir)

X ,0,P
jX,(vir)
Z ), which are known vectors.

To obtain the terms Y
(Z)
sX,jX

, we consider its expression

Y
(Z)
sX,jX

= Tr[σ̂B;jX,vir]Tr[D̂sX
σ̂ ′

B;jX,vir]/2, where 1/2 is the prob-
ability that Bob chooses the X basis, Tr[σ̂B;jX,vir] is the
probability that the virtual state σ̂B;jX,vir is emitted, σ̂ ′

B;jX,vir is

the normalized version of σ̂B;jX,vir, and D̂sX
:= ∑

k Â
†
kM̂sX

Âk

with Âk being an arbitrary operator representing Eve’s action
(see Appendix A). This means that if the transmission rate
of σ̂t , which we define as qsX |t = Tr(D̂sX

σ̂t )/2, is obtained,
then we can obtain the transmission rate of the virtual states
Y

(Z)
sX,jX

as Tr[σ̂B;jX,vir](qsX |Id + P
jX,(vir)
X qsX |X + P

jX,(vir)
Z qsX |Z).

To calculate qsX |Id, qsX |X, and qsX |Z , recall that the actual
three states lie also on the X-Z plane, and we have the
following linear equations from the experimentally available
data: (Y (Z)

sX,0Z
,Y

(Z)
sX,1Z

,Y
(X)
sX,0X

) = (qsX |Id,qsX |X,qsX |Z)Â/6, where
1/6 is the joint probability of sending one of the three states
and Bob chooses the X basis, and Â := ( 	V T

0Z, 	V T
1Z, 	V T

0X) with
	Vjα := (1,P

jα

X ,P
jα

Z ) with T representing the transpose. Since
the three Bloch vectors form a triangle, there exists Â−1

to obtain (qsX |Id,qsX |X,qsX |Z) = 6(Y (Z)
sX,0Z

,Y
(Z)
sX,1Z

,Y
(X)
sX,0X

)Â−1. It

follows that Y
(Z)
sX,jX

can be expressed precisely as a function of

Y
(Z)
sX,0Z

,Y
(Z)
sX,1Z

, and Y
(X)
sX,0X

, leading to the exact phase error rate.
The generalization of the above proof to the case where

PY 
= 0 is straightforward. In this case we consider a
filter operation whose successful operation is described
by F̂ := q|0Y 〉〈0Y | + (1 − q)|1Y 〉〈1Y |, with 0 � q � 1 and
q 
= 1/2. That is, this operation uniformly lifts up all the states
on the X-Z plane of the Bloch sphere and transforms a state
	̂, with Bloch vector {PX,0,PZ}, to the state F̂ 	̂F̂ †, whose
Bloch vector is {f (q)PX,(2q − 1)/(1 − 2q + 2q2),f (q)PZ}
with f (q) = 2(1 − q)q/(1 − 2q + 2q2). Moreover, the
success probability p of the filtering operation is the
same for all the states on the X-Z plane, where p is
given by p = q2 − q + 1/2. These facts suggest that any
normalized qubit state ρ̂ can be expressed by F̂ ρ̂XZF̂ †/p,
where ρ̂XZ is the density operator on the X-Z plane.
From this, we can rewrite the transmission rate of the actual
states as Tr[ρ̂XZD̂′

sX
], where D̂′

sX
:= F̂ †D̂sX

F̂ /p. This means
that even if Alice sends out ρ̂ in reality, we are allowed to
work on ρ̂XZ , that is, we can convert the problem with PY 
= 0
to the case with PY = 0. This is so because the proof with
PY = 0 is valid for any matrix D̂sX

. This ends the proof. �
By generalizing the discussion above, it can be seen that

when the terminal points of the Bloch vectors of four states
form a triangular pyramid (tilted four states), one can obtain
the transmission rate of σ̂Y as well, and it follows that the
transmission rate of any qubit state is also obtained (see
Appendix B). In prepare-and-measure QKD-PRS protocols,
this implies that when Bob receives qubit states [17] and
performs a measurement in the Y basis, then Alice and Bob
could use the fictitious bit error rate in the Y basis to improve
the secret key rate by applying the data postprocessing of the
six-state protocol [17]. Also, note that the qubit assumption
could be avoided by using techniques introduced in [34–36].
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III. SIMULATION

In this section, we evaluate the performance of a three-state
protocol based on phase-randomized weak coherent pulses
together with an infinite number of decoy states. As an example
of SPFs, we assume modulation errors in the phase-coding
scheme; however, our analysis applies as well to any coding
scheme. More precisely, we consider that Alice sends Bob
signals of the form |eiξ

√
α〉r |ei(ξ+θA+δθA/π)√α〉s , where ξ ∈

[0,2π ) is a random phase, θA ∈ {0,π/2,π} encodes Alice’s
information, the term δθA/π with δ � 0 models an instance
of phase modulation errors, and |eiξ

√
α〉r is a coherent state

with mean photon number α. The subscripts r and s are used
to denote, respectively, the reference and signal modes. In
addition, we assume the same error model on Bob’s side,
i.e., his phase modulation is θB − δθB/π when he chooses
θB ∈ {0, − π/2}. Note that Bob does not need to characterize
his modulation errors, and since δ � 0, Alice’s and Bob’s
modulation errors do not cancel each other.

The resulting lower bound on the secret key rate R for
different values δ is shown in Fig. 2 (see Appendix C).
For comparison, Fig. 1 shows R for the asymptotic decoy-
state BB84 protocol with the same phase modulation model
with θA ∈ {0,π/2,π,3π/2}; its analysis is based on the
GLLP-decoy and GLLP-SPF methods [8,10,18,22]. In this
protocol, we assume that Alice and Bob choose the bases with
probability 1/2 for each pulse. Importantly, since the Bloch
vectors of the three states, which are defined in the subspace
containing a single photon in modes rs, form a triangle on the
X-Z plane, we can obtain the phase error rate precisely. In fact,
as shown in Fig. 2, our technique significantly outperforms
the GLLP-SPF method in the presence of modulation errors.
While the key rate based on the GLLP-SPF method decreases
rapidly when δ increases (since it considers the worst-case
scenario where losses can increase the fidelity flaws [13]), our
method produces an almost constant key rate independently of
δ. The slight performance decrease of the three-state protocol
is due to the slight increase of the error rates with the increase
of δ.

IV. MEASUREMENT-DEVICE-INDEPENDENT QKD

In this section, in order to see that our method is ap-
plicable to MDIQKD, we consider the three-state protocol
in the MDIQKD setting, i.e., Alice and Bob send Eve the same
three states described above. Eve performs a measurement on
those states, and then she announces the results. Alice and
Bob keep the data associated with the successful results, and
Bob applies a bit flip to part of his data [12]. They use the Z
basis for key distillation, and the remaining data for parameter
estimation.

In the following, we apply our method to MDIQKD.
Now, eX = (Y (Z)

φ+,0X1X
+ Y

(Z)
φ+,1X0X

)/(Y (Z)
φ+,0X1X

+ Y
(Z)
φ+,1X0X

+
Y

(Z)
φ+,0X0X

+ Y
(Z)
φ+,1X1X

), where Y
(Z)
φ+,jXsX

denotes the joint
probability that Alice (Bob) obtains j (s) in the virtual X-basis
measurement on system A (B) given the state preparation of
|�Z〉AAeC

(|�Z〉BBeC ′), and Eve declares an outcome |φ+〉
of her measurement on systems C and C ′ sent by Alice
and Bob. This probability can be expressed as Y

(Z)
φ+,jXsX

=
Tr[σ̂C;jX,vir]Tr[σ̂C ′;sX,vir]Tr[D̂φ+ σ̂ ′

C;jX,vir ⊗ σ̂ ′
C ′;sX,vir], where

D̂φ+ is Eve’s POVM element corresponding to the
announcement of the outcome |φ+〉. Here, Tr[σ̂C;jX,vir]
and Tr[σ̂C ′;sX,vir] are known probabilities, and, therefore, once
we have qφ+|t,t ′ = Tr(D̂φ+ σ̂t ⊗ σ̂t ′)/4, with t ′ ∈ {Id,X,Z}, we
can obtain the exact value of Y

(Z)
φ+,jXsX

. This is so because
σ̂ ′

C;jX,vir ⊗ σ̂ ′
C ′;sX,vir can be expressed as a linear combination

of σ̂t ⊗ σ̂t ′ . Since the experiment gives us nine linear and
independent equations with nine unknown parameters qφ+|t,t ′
(see Appendix D), we can obtain qφ+|t,t ′ and the exact phase
error rate. By generalizing this idea, we have that the tilted
four states provide us with the fictitious bit error rate in the
Y basis, which improves the key rate by applying the data
postprocessing of the six-state protocol.

V. DISCUSSION AND CONCLUSION

We have analyzed the phase error rate estimation problem
that affects the PA step of a QKD-PRS protocol. To generate
a secure key, however, it is also important that the bit error
rate, which affects the error correction step, is small enough.
In this respect, our analysis suggests that while it is important
to have a precise state preparation in the key generation basis,
that of the other basis is not as essential, which simplifies
experimental implementations. For instance, with our results,
MDIQKD needs to align only one basis well and can tolerate
substantial errors in the alignment of the other bases.

Finally, we would like to emphasize that our technique
requires a complete characterization of the signal states that
are transmitted [37]. In practice, however, it might be easier
to estimate a set of states that very likely contains the signals
prepared. In this case, one could directly apply our method by
just selecting the signals from that set that minimize the key
rate.

To conclude, we have introduced a general phase error rate
estimation method that makes the effect of state preparation
flaws in phase-randomized sources negligible. We have applied
this technique to different QKD protocols and we have shown
that it can provide a substantial improvement (in both the
achievable rate and distance) when compared to previous
results introduced in the GLLP method. Our work constitutes
an important step towards secure QKD with imperfect devices.
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APPENDIX A: THREE-STATE PROTOCOL AND
COHERENT ATTACKS

Here we present the security proof for the three-state
protocol. We consider that Alice and Bob distill key only from
those events where both of them use the Z basis, while the
events where Bob employs the X basis are used for parameter
estimation.

As already introduced in the main text, the preparation of
the Z-basis states can be equivalently described as follows.
Alice first generates |�Z〉AAeB

= 1√
2

∑
j=0,1 |jZ〉A|φjZ〉

AeB
,

and, afterwards, she measures system A in the Z basis,
keeps system Ae, and sends Bob system B. We denote this
Z-basis measurement as ẐA. Likewise, the preparation of the
signal |0X〉 can also be formulated as a two-step process, i.e.,
Alice first produces |�X〉AAeB

= |0X〉A|φ0X〉AeB
and then she

measures system A in the X basis and sends system B to Bob.
This X-basis measurement is denoted as X̂A. To prove the
security of the bit values generated from the events where Alice
and Bob choose the Z basis given the preparation of |�Z〉AAeB

,
we need to estimate the phase error rate, which is defined
through the virtual events where Alice and Bob choose the X
basis rather than the Z basis, given the preparation of |�Z〉AAeB

.

In these virtual events, Alice sends out σ̂
(1)
B := σ̂B;0X,vir and

σ̂
(2)
B := σ̂B;1X,vir. An essential assumption is that the operator

M̂f , which corresponds to the failure event of outputting a
bit value, is the same for both bases X and Z. Conceptually,
this means that Bob could have heralded the receipt of a state
from Alice before he decides the measurement basis. This
conceptual ability to postpone the measurement basis choice is
crucial for the security proof to go through. For the estimation
of the phase error rate, we exploit the events where Alice sends
out the three actual states, that is, σ̂ (3)

B := ρ̂0Z , σ̂ (4)
B := ρ̂1Z , and

σ̂
(5)
B := ρ̂0X, and Bob performs the X-basis measurement. This

situation is illustrated in Fig. 3. In this figure, we show Bob’s
Z-basis measurement to illustrate the actual event, but we do
not use this event for the phase error rate estimation.

State
preparation

Bob’s measurement 
setting

x

x

x

x

x

FIG. 3. This diagram illustrates Alice’s state preparation process
together with Bob’s POVM M̂X , the signal state sent by Alice
(denoted as “state preparation”), and Bob’s measurement setting.
The upper two lines correspond to the virtual protocol; the phase
error rate eX is defined in terms of its outcomes. The signals σ̂

(c)
B with

c = 1,2 (c = 3,4,5) represent the virtual states (the states defined in
the protocol). We do not use M̂Z for the phase error estimation.

In what follows, we consider the probability distribution for
the different paths in Fig. 3. The selection of the state that is
sent to Bob can be equivalently represented by the preparation
of

|ϕ〉s1s2B :=
5∑

c=1

1∑
n=0

√
P (c)Pc(n)|c〉s1|n〉s2|φ(c,n)〉B , (A1)

followed by an orthogonal measurement using the basis {|c〉}
on the first shield system s1 possessed by Alice. Here, P (c) is
the probability that Alice sends σ̂

(c)
B , and the second shield

system s2 represents a system in Alice’s laboratory that
contains the noise information, i.e.,

∑
n=0,1 Pc(n)P̂ (|φ(c,n)〉) =

σ̂
(c)
B with P̂ (|x〉) := |x〉〈x|, where the index c = 1,2, . . . ,5

identifies the five possible “sending states” shown in Fig. 3.
That is, σ̂ (1)

B := σ̂B;0X,vir, σ̂
(2)
B := σ̂B;1X,vir, σ̂

(3)
B := ρ̂0Z , σ̂ (4)

B :=
ρ̂1Z , and σ̂

(5)
B := ρ̂0X.

Suppose that Alice prepares many systems of the form
given by Eq. (A1) and sends system B to Bob through the
quantum channel. Also, suppose that Alice and Bob measure
in order the shield and B systems using respectively the basis
{|c〉} and the POVM M̂X, and let us consider the lth run of the
protocol. According to Azuma’s inequality, once we obtain
the probabilities for the different paths of Fig. 3 in the lth run
conditioned on all previous measurement outcomes, we can
determine the actual occurrence number of the corresponding
events (see Refs. [30,31] for a proof of this statement).

Next, we calculate these conditional probabilities. For this,
let |�〉s1s2B = |ϕl−1〉s1s2B |ϕl〉s1s2B |ϕr〉s1s2B denote the state
prepared by Alice in an execution of the protocol. Here,
|ϕl−1〉s1s2B , |ϕl〉s1s2B , and |ϕr〉s1s2B represent, respectively,
Alice’s signals in the first l − 1 runs, in the lth run, and in
the rest of runs.

This state evolves according to Eve’s unitary transformation
V̂BE on Bob’s system B and on her system E as follows:

V̂BE|�〉s1s2B |0〉E =
∑

k

B̂kB |�〉s1s2B |k〉E, (A2)

where B̂kB is a Kraus operator acting on system B. Importantly,
V̂BE and B̂kB are independent of the state preparation process.
This is so because the classical communication between Alice
and Bob is done after finishing the measurements. Let the joint
operator

Ôl−1,s1B = ⊗l−1
u=1M̂s1uBu

, (A3)

where M̂s1u,su
denotes the Kraus operator associated with the

uth measurement outcome of the first shield system s1 and
Bob’s uth measurement outcome B. The normalized state of
the lth system s1B conditioned on the measurement outcomes
Ol−1 of the first l − 1 joint systems, then becomes

ρ̂B
l|Ol−1

= σ̂ B
l|Ol−1

/p(l) ,

σ̂ B
l|Ol−1

:=
∑

n

∑
c,c′

√
P (c)Pc(n)P (c′)Pc′ (n)

×
∑

k

∑
	xl−1,	xr

Â
(	xl−1,	xr )
k,B|Ol−1

|φ(c,n)〉B〈φ(c′,n)|Â†(	xl−1,	xr )
k,B|Ol−1

,

p(l) : = Tr
(
σ̂ B

lc|Ol−1

)
, (A4)

052314-5



TAMAKI, CURTY, KATO, LO, AND AZUMA PHYSICAL REVIEW A 90, 052314 (2014)

where

Â
(	xl−1,	xr )
k,B|Ol−1

:= 〈	xr |〈	xl−1|Ôl−1,s1s2BB̂kB |ϕl−1〉s1s2B |ϕr〉s1s2B.

Here {〈	xr |} ({〈	xl−1|}) represents a basis for all the systems
s1s2B after the lth run (for all the systems s1s2B for the
first l − 1 runs). Importantly, Eq. (A4) states that the lth joint
system is subjected to Eve’s action and her action depends on
all the previous measurement outcomes on the first l − 1 joint
systems.

Now, the probability of obtaining c and the bit value sX

conditioned on Ol−1 is given by

PsX,c|Ol−1 = P (c ∧ X)

p(l)

∑
k

∑
	xl−1,	xr

Tr
[
Â

(	xl−1,	xr )
k,B|Ol−1

σ̂
(c)
B

× Â
†(	xl−1,	xr )
k,B|Ol−1

M̂sX

]
:= P (c ∧ X)

p(l)
Tr

[
D̂sX |Ol−1 σ̂

(c)
B

]
, (A5)

where we use
∑

n=0,1 Pc(n)P̂ (|φ(c,n)〉) = σ̂
(c)
B , P (c ∧ X) is the

joint probability that Alice obtains c and Bob chooses the X
basis, and D̂sX |Ol−1 is defined by

D̂sX |Ol−1 =
∑

k

∑
	xl−1,	xr

Â
†(	xl−1,	xr )
k,B|Ol−1

M̂sX
Â

(	xl−1,	xr )
k,B|Ol−1

.

Notice that PsX,c|Ol−1 , with c = 1,2 (c = 3,4,5), is the same as
P (Z)Y (Z)

sX,jX
(P (α)Y (α)

sX,jα
) in the main text except that PsX,c|Ol−1

is the conditional probability, where P (Z) (P (α)) is the
probability that Alice chooses the Z (α) basis. Also, note that
the discussions in the main text use the probability P (c ∧ X)
given in Eq. (A5) but do not employ the explicit form of D̂sX

.
Therefore, the relationships among Y

(Z)
sX,jX

, Y
(Z)
sX,0Z

,Y
(Z)
sX,1Z

, and

Y
(X)
sX,0X

in the main text can be interpreted as linear relationships
between the lth conditional probabilities PsX,c|Ol−1 . This is
so because the normalization factor p(l) does not affect
this interrelation. Thus, by taking the summation of such
probabilities over l, Azuma’s inequality [30,31] gives the
actual occurrence number of such events and the phase error
rate in the virtual protocol can be estimated. This concludes
the proof.

APPENDIX B: TILTED FOUR-STATE PROTOCOL

In this section we apply our phase error rate estimation
technique to a tilted four-state protocol, which is a variant of
the BB84 scheme. Suppose that Alice sends Bob four states
given by

ρ̂jα = 1

2

(
1̂ +

∑
t=x,y,z

P
jα
t σ̂t

)
, (B1)

where j ∈ {0,1} and α ∈ {X,Z}. Moreover, let us assume that
the vectors 	Vjα , with 	Vjα = (1,P

jα

X ,P
jα

Y ,P
jα

Z ), are mutually
linearly independent. From the viewpoint of the Bloch sphere,
this means that the terminal points of the four Bloch vectors
associated with the four states form a triangular pyramid.
Suppose also that Alice and Bob distill key from the Z basis and
use the events where Bob employs the X basis for parameter
estimation. In this scenario, let |φjZ〉

Ae,B
denote a purification

of ρ̂jZ , with Ae and B representing, respectively, Alice’s shield
system and the system that is sent to Bob. With this notation,
Alice’s state preparation process in the Z basis can be described
by using either of the following two source states:

|�Z〉AAeB
= 1√

2

∑
j=0,1

|jZ〉A|φjZ〉
AeB

, (B2)

|�Z〉AAeB
= 1√

2

∑
j=0,1

|jZ〉A|φ(j⊕1)Z〉
AeB

, (B3)

where A is a virtual qubit system of Alice and the symbol
⊕ denotes the modulo-2 addition. If Alice measures system
A in the Z basis she prepares the desired state at site B,
while she keeps the shield system Ae. Here, the difference
between Eqs. (B2) and (B3) is just a bit flip. Since a bit flip is a
symmetry in the problem, Alice is allowed to choose either of
the two equations above [Eqs. (B2) and (B3)] in constructing
the purifications with the goal of optimizing the key generation
rate.

To calculate the phase error rate eX we consider the virtual
protocol where Alice and Bob measure |�Z〉AAeB

in the X
basis. In this virtual protocol, Alice emits

σ̂B;jX,vir = TrA,Ae
[P̂ (|jX〉A) ⊗ 1̂AeBP̂ (|�Z〉AAeB

)].

We denote these signals σ̂B;jX,vir as virtual states, and we
define the normalized state σ̂ ′

B;jX,vir = σ̂B;jX,vir/Tr(σ̂B;jX,vir).
Then the joint probability that Alice sends σ̂B;jX,vir and Bob
detects the bit value sX given the state preparation of |�Z〉AAeB

is expressed by Y
(Z)
sX,jX

= Tr[σ̂B;jX,vir]Tr(D̂sX
σ̂ ′

B;jX,vir)/2. Note
that the value of Tr[σ̂B;jX,vir] is known from the protocol as
well as Eqs. (B2) and (B3). The phase error rate eX is given by

eX = Y
(Z)
0X,1X

+ Y
(Z)
1X,0X

Y
(Z)
0X,0X

+ Y
(Z)
1X,0X

+ Y
(Z)
0X,1X

+ Y
(Z)
1X,1X

. (B4)

Now, since σ̂ ′
B;jX,vir can also be written as

σ̂ ′
B;jX,vir = 1

2

(
1̂ +

∑
t=X,Y,Z

P
jX,(vir)
t σ̂t

)
, (B5)

where P
jX,(vir)
t is the t component of the Bloch vector, in

order to obtain Y
(Z)
sX,jX

(and thus eX) it is enough to calculate

qsX |t = Tr(D̂sX
σ̂t )/2 with t ∈ {Id,X,Y,Z}. For this, note that

in the actual experiment we have the following constraints:

Y
(α)
sX,jα

= P (jα)Tr
(
D̂sX

ρ̂jα

)/
2

= P (jα)
(
qsX |Id + P

jα

X qsX |x + P
jα

Y qsX |y + P
jα

Z qsX |z
)/

2.

(B6)

Here, P (jα) is the probability that Alice sends ρ̂jα . Then, as
long as the vectors 	Vjα are mutually linearly independent,
we can solve the set of linear equations given by Eq. (B6)
and obtain the parameters qsX |Id, qsX |x , qsX |y , and qsX |z. That
is, we can determine the exact transmission rate of any
state, including the signal σ̂B;jX,vir, which gives the phase
error rate.

Moreover, if Bob’s POVM elements act on a qubit space
and he performs a measurement in the Y basis, Alice and Bob
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can also estimate the Y-basis error rate. To see this, note that
in the discussion above one needs to change only the terms sX

with sY and define the Y-basis virtual state as

σ̂B;jY ,vir = TrAAe
[P̂ (|jY 〉A) ⊗ 1̂AeBP̂ (|�Z〉AAeB

)].

By following the same argument as in the main text, it is easy
to see that the use of the tilted four states in MDIQKD permits
estimation of the fictitious Y-basis error rate there also.

APPENDIX C: SIMULATION FOR THE
THREE-STATE PROTOCOL

In this section we present the calculations used to obtain
Fig. 2 in the main text. We begin with the single-photon
components of the signals sent by Alice. In particular, we have
that the single-photon part of |eiξ

√
α〉r |ei(ξ+θA+δθA/π)√α〉s is

given by (|1〉r |0〉s + ei(θA+δθA/π)|0〉r |1〉s)/
√

2, where 0 and 1
represent, respectively, the photon number. The set of two pure
states {|1〉r |0〉s ,|0〉r |1〉s} forms a qubit basis. Therefore, we can
choose the Z basis such that Alice’s Z-basis states and X-basis
state are expressed as

|φ0Z〉 = |0Z〉,
|φ1Z〉 = − sin

δ

2
|0Z〉 + cos

δ

2
|1Z〉, (C1)

|φ0X〉 = cos

(
π

4
+ δ

4

)
|0Z〉 + sin

(
π

4
+ δ

4

)
|1Z〉,

where |0Z〉 := (|0Y 〉 + |1Y 〉)/√2 and |1Z〉 := (−i|0Y 〉 +
i|1Y 〉)/√2 with |0Y 〉 := |1〉r |0〉s and |1Y 〉 := |0〉r |1〉s . In order
to discuss the security, we need to consider the virtual
protocol where Alice generates the state (|0Z〉A|φ0Z〉B +
|1Z〉A|φ1Z〉B)/

√
2 and sends system B to Bob. From this,

one can see that Alice sends out the virtual state |φ′
jX〉

B

with probability [1 − (−1)j sin δ
2 ]/2. Here, the Bloch vector

of |φ′
jX〉

B
is 	Vφ′

jX
:= [(−1)j cos δ

2 , − (−1)j sin δ
2 ] where the

first (second) element corresponds to the X (Z) component of
the Bloch vector.

For our simulations, we consider a channel model where
the conditional probabilities VsX ||θ〉 [i.e., the conditional prob-
ability that Bob obtains sX given that Alice sent him the state
|θ〉 := cos θ/2|0Z〉 + sin θ/2|1Z〉] are given by

VsX ||θ〉 = (1 − L)Cs,θ (1 − ed ) + Led(1 − ed )

+ 1

2

[
(1 − L)ed + Le2

d

]
, (C2)

where Cs,θ := Tr[P̂ (|θ − π/2 + δ/2〉)P̂ (|sZ〉)], ed is the dark
count rate of Bob’s detectors, and L denotes the total loss rate
of the channel, Bob’s single-photon detectors, and the 50% loss
of Bob’s Mach-Zehnder interferometer. Here, −π/2 + δ/2
represents Bob’s phase modulation with an imperfect phase
modulator, and the first (second) term models a single detection
click at Bob’s side produced by a photon (dark count), while
the last term represents simultaneous clicks. Note that in this
last case (simultaneous clicks), Bob assigns a random bit value
to the measurement result. From VsX ||θ〉 as well as the fact that
Alice sends out all the three states with probability 1/3, we
can readily obtain the experimental data Y

(Z)
sX,jZ

and Y
(X)
sX,0X

. By
applying the technique introduced in the main text, we can

also obtain the precise phase error rate. Note that by using the
basis-independent detection efficiency the single-photon gain
Q

(1)
Z is given by

Q
(1)
Z = 1

3
e−2αα

∑
s,j

VsX ||φjZ〉/2, (C3)

where 1
3 is the probability that both of Alice and Bob choose

the Z basis, and 1/2 is the probability that Alice sends |φjZ〉
given she chooses the Z basis.

Similarly, one can obtain the overall gain QZ and the bit
error rate eZ in the Z basis. These parameters have the forms

QZ = 1
3 [P0|0(1 − P1|0) + (1 − P0|0)P1|0 + P0|0P1|0]

+ 1
3 [P0|1(1 − P1|1) + (1 − P0|1)P1|1 + P0|1P1|1],

(C4)

wZ = 1
3 [P1|0(1 − P0|0) + P1|0P0|0/2 + P0|1(1 − P1|1)

+P0|1P1|1/2],

eZ = wZ/QZ, (C5)

where Ps|j is the conditional probability that Bob obtains a
bit value s given that Alice sent him a bit value j . These
probabilities can be written as

P0|0 = ed + (1 − ed )[1 − e−α(1−L)], (C6)

P1|0 = ed, (C7)

P0|1 = ed + (1 − ed)
[
1 − e−α(1−L) sin2 (δ/2)

]
, (C8)

P1|1 = ed + (1 − ed )
[
1 − e−α(1−L) cos2 (δ/2)

]
. (C9)

Finally, the asymptotic key generation rate is given by

R = Q
(1)
Z [1 − h(eX)] − QZh(eZ) , (C10)

where h(x) is the binary entropy function. For each value of
the distance, we optimize the parameter α to maximize the key
rate. The result is shown in Fig. 2 in the main text.

APPENDIX D: THREE-STATE MDIQKD

Here, we present the set of linear equations that are
obtained from an MDIQKD experiment based on the three-
state protocol, which are expressed as

Y
(ZZ)
φ+,jZsZ

= γ

9
Tr[D̂φ+ ρ̂jZ ⊗ ρ̂sZ], (D1)

Y
(XZ)
φ+,0XsZ

= 1
9 Tr[D̂φ+ ρ̂0X ⊗ ρ̂sZ], (D2)

Y
(ZX)
φ+,jZ0X

= 1
9 Tr[D̂φ+ ρ̂jZ ⊗ ρ̂0X], (D3)

Y
(XX)
φ+,0X0X

= 1
9 Tr[D̂φ+ ρ̂0X ⊗ ρ̂0X], (D4)

where ρ̂jα = 1
2 (1̂ + P

jα

X σ̂X + P
jα

Z σ̂Z) and γ

9 (with 0 < γ < 1)
is the probability that Alice and Bob send Charles ρ̂jZ and
ρ̂sZ , respectively, and they sacrifice such instances as test bits.
Note that unlike the prepare-and-measure three-state protocol,
Alice and Bob have to sacrifice the test bits for the estimation
of the phase error rate, and they generate a key from the rest
of the instances where they choose the Z basis and Charles
declares φ+. Importantly, these equations are independent of
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each other as we have assumed that the terminal points of the
Bloch vectors of the three states form a triangle. Therefore,

we can precisely obtain qφ+|t,t ′ and the exact phase error
rate.
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