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We study discrimination of m quantum measurements in the scenario when the unknown measurement with
n outcomes can be used only once. We show that ancilla-assisted discrimination procedures provide a nontrivial
advantage over simple (ancilla-free) schemes for perfect distinguishability and we prove that inevitably m � n.
We derive necessary and sufficient conditions of perfect distinguishability of general binary measurements.
We show that the optimization of the discrimination of projective qubit measurements and their mixtures with
white noise is equivalent to the discrimination of specific quantum states. In particular, the optimal protocol
for discrimination of projective qubit measurements with fixed failure rate (exploiting maximally entangled test
state) is described. While minimum-error discrimination of two projective qubit measurements can be realized
without any need of entanglement, we show that discrimination of three projective qubit measurements requires
a bipartite probe state. Moreover, when the measurements are not projective, the non-maximally entangled test
states can outperform the maximally entangled ones. Finally, we rephrase the unambiguous discrimination of
measurements as quantum key distribution protocol.

DOI: 10.1103/PhysRevA.90.052312 PACS number(s): 03.67.−a, 03.65.Ta, 03.65.Wj

I. INTRODUCTION

Quantum theory is statistical, hence, any distinction in
the performance of quantum devices is based on statistical
reasoning. However, if the set of possibilities is restricted
to a finite number of alternatives (communication being the
best example), the observations of individual experimental
outcomes represent a nontrivial information. For example,
in communication Alice encodes a letter a by selecting a
preagreed preparation procedure associated with a quantum
state �a . In each communication round, Bob is trying to
estimate which preparation was selected by Alice to recover
the submitted letter a. How often Alice and Bob succeed is
the research subject of optimal state discrimination (see, for
instance, Chap. 11 of [1] or [2] for an overview).

Since the seminal works of Holevo and Helstrom [3,4], a
lot of research effort was invested on the various aspects of
discrimination problems, finding its applications in quantum
communication, quantum cryptography, but also in quantum
computation. For instance, in its essence the famous Grover’s
search algorithm [5] solves the question of optimal and
efficient discrimination of quantum oracles representing the
database elements. No doubt the discrimination problems
represent one of the central conceptual questions of quantum
physics with both practical and foundational implications. The
solutions provide a natural quantitative measure of differ-
ence or similarity of quantum devices with clearly justified
operational meaning. Recently, the variant of discrimination
problem was used to argue the philosophical objectivity of
quantum wave function [6]. It might seem that investigation
of single-shot scenarios for discrimination of measurements
is a bit artificial question because measurements can be
naturally employed many times. Certainly, the same can
be said (typically) also for sources of quantum systems,
nevertheless, in this case the concept of a single copy is
considered to be well established. Let us point out that there
are examples of measurements for which single copy makes

a perfect sense. For example, a photographic plate (being
part of Stern-Gerlach apparatus) cannot be (strictly speaking)
employed again in the measurement. Moreover, except of
the mentioned operational (but mathematical) motivation for
discrimination problems, one meets with the discrimination
questions in cases when random selection of devices plays
some role. This typically happens in quantum communication
and computation applications.

In comparison with the case of states [7–10] and pro-
cesses [11–21], the discrimination of quantum measurements
is rather unexplored. In Ref. [22], authors have shown
that any pair of projective measurements can be perfectly
discriminated in a finite number of runs. The question of
discrimination of measurements with unlabeled outcomes has
been addressed in Refs. [23,24] and experimental realizations
of measurement discrimination protocols have been reported in
Refs. [25,26].

This paper addresses the question of optimal discrimination
of quantum measurements. It is organized as follows. The
problem is formulated in Secs. II and III. In Sec. IV, we
study the conditions of perfect distinguishability. Further, we
continue with discrimination of quantum filters in Sec. V.
We reduce this problem to discrimination of projective
measurements which is then investigated in Sec. VI. Finally,
in Sec. VII we solve unambiguous discrimination of two trine
measurements demonstrating that non-maximally entangled
states can outperform maximally entangled ones. Section VIII
contains the summary of the results.

II. PROBLEM SETTING

Suppose we are given a measurement device we want to
identify, however, we can use it only once. We will assume
that a nontrivial prior knowledge on potential alternatives
is given. In the simplest case we are distinguishing among
two alternatives: the apparatus performs either a measurement
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FIG. 1. (Color online) Possible approaches to discrimination of
a quantum measurement. Part (a) depicts the simple discrimination
scheme, in which a test state ρ is prepared, afterward measured with
the unknown measurement device and based on the obtained outcome
k the measurement device is identified. Part (b) depicts the general
discrimination scheme, in which a bipartite state is prepared; one part
of it is measured with the unknown measurement device and the other
part by a known ancillary measurement chosen conditionally on the
actual outcome k recorded in the unknown measurement.

M or a measurement N with a priori probabilities ηM,
ηN , respectively. Our goal is to design a test that would
(optimally) identify the unknown measurement device. We
will distinguish between two types of tests: simple (ancilla-
free) and general (ancilla-assisted) experimental setting (see
Fig. 1). The simple scheme consists of the preparation of
a test state probing the unknown measurement device and
of a post-processing assignment of a conclusion for each
individual measurement outcome. In contrast, the most general
(ancilla-assisted) scheme begins with a preparation of a
bipartite quantum state part of which is then measured by
the unknown measurement device. The obtained outcome k is
used to determine the measurement of the remaining part of
the bipartite system. Finally, based on the recorded outcomes
the guess on the identity of the unknown measurement device
is made.

If the measurements M, N are not in a specific mutual
relation allowing for perfect discrimination, it is obvious that
all the conclusions can not be always valid. The way how
the imperfections are evaluated and processed is then used for
definition of optimality. Each conclusion is characterized by
the probability of being wrong (error probability). To evaluate
the reliability of the conclusions of the discrimination test,
we use the following three quantities: (i) error probability
pe defined as the average error probability (over all conclu-
sive outcomes); (ii) failure probability pf given as a total
probability of inconclusive outcomes; (iii) success probability
ps = 1 − pf − pe.

When all the outcomes are conclusive, i.e., pf = 0, and we
optimize the average success probability, then we speak about
minimum-error discrimination strategy. On the other side of
the spectrum of discrimination problems we find the unam-
biguous discrimination, for which pe = 0, but inconclusive
outcomes are possible. The optimality is achieved when pf is
minimized. In this paper, we will consider also intermediate
variations of the discrimination problems, which include the
mentioned strategies as “extremal” cases. In particular, we will
consider maximization of average success probability ps for a
fixed value of the failure probability pf .

In such case we say we implement discrimination with
fixed failure rate. We say the measurements can be perfectly
discriminated if pf and pe can vanish simultaneously.

III. MATHEMATICAL FRAMEWORK

Let us denote by Hd the d-dimensional Hilbert space of the
quantum system under consideration. The measurement device
M is a positive-operator-valued measure (POVM) assigning a
positive operator Mj for each j ∈ � = {1, . . . ,n} (we will not
consider measurements with infinite or uncountable number
of outcomes). We can represent any measurement as a specific
measure-and-prepare channel M:

M(ρ) =
∑

j

tr[Mjρ]|j 〉〈j | (1)

mapping states of Hd into diagonal density operators on Hn

(probability distributions on �), where Hn is n-dimensional
Hilbert space spanned by fixed orthonormal basis {|j 〉}.
Further, we will assume that all the measurements we want
to discriminate have the same number of outcomes. Using this
representation of measurements, the problem of discrimination
can be reformulated as a special case of (quantum-classical)
channel discrimination, hence, the general results obtained
for (single-shot) discrimination of channels can be directly
translated into the language of measurements.

In what follows, we demonstrate mathematical formulation
of a discrimination problem for its simplest version when the
measurement device is guaranteed to be one of two known
alternatives. Generalization to any number of measurements
is straightforward. Let us denote by T the test procedure we
use to discriminate between a pair of measurements M and
N (N corresponding to POVM elements {Nj }). We denote by
p(c|M,T ) the conditional probability that if the measurement
M was tested by the test procedure T , conclusion c ∈
{M,N ,f } was obtained. Here, c = f marks that the procedure
has failed and c = M, c = N corresponds to identification of
the measurement device as M, N , respectively. The fact that
the test procedure T fails with fixed probability pf can be
mathematically stated as

pf = ηM p(f |M,T ) + ηN p(f |N ,T ). (2)

We define

pe = ηM p(N |M,T ) + ηN p(M|N ,T ),
(3)

ps = ηM p(M|M,T ) + ηN p(N |N ,T )

the probability of error and the probability of success and
clearly ps + pe + pf = 1. Our goal is to maximize the
probability of success ps for a fixed value of the failure
rate pf . This is equivalent to minimization of the relative
error rate pe/(1 − pf ) or maximization of the relative success
probability ps/(1 − pf ) for fixed value of pf .

The mathematical framework for the description of test pro-
cedures T (so-called quantum testers, or process POVMs) was
introduced and developed in Refs. [27–30]. In this framework,
the measurements are described by Choi-Jamiolkowski oper-
ators [31,32] assigned to corresponding quantum-to-classical
channels. For example, to M defined in Eq. (1) we assign

M = (M ⊗ I)[|φ+〉〈φ+|] =
∑

j

|j 〉〈j | ⊗ MT
j ,

where |φ+〉 = ∑
k |k〉 ⊗ |k〉 ∈ Hd ⊗ Hd is the (unnormalized)

maximally entangled state ({|k〉} is an orthonormal basis in Hd
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and {|j 〉} is an orthonormal basis inHn). Any possible test T is
described by a set of positive operators {Tc} acting onHn ⊗ Hd

such that ∑
c

Tc = In ⊗ ρ , (4)

where ρ is a density operator onHd , i.e., ρ � 0 and tr[ρ] = 1).
Let us define projectors πj ≡ |j 〉〈j | ⊗ Id reflecting the

symmetry of Choi-Jamiolkowski operators of measurement
M, thus, satisfying the identity MT = ∑

j πjM
T πj , where T

denotes a transposition with respect to the basis {|j 〉 ⊗ |k〉}.
Then, for any measurement M the conditional probabilities
satisfy the following identity:

p(c|M,T ) = tr[TcM
T ] =

∑
j

tr[TcπjM
T πj ]

=
∑

j

tr[πjTcπjM
T ] ≡ tr[π (Tc)MT ], (5)

implying that the test procedure formed by operators {π (Tc) ≡∑
j πjTcπj }c is indistinguishable from the test procedure

composed of operators {Tc}c. In other words, without loss
of generality we may assume that the test procedure T is
composed of positive operators of the form

Tc =
∑

j

|j 〉〈j | ⊗ H
(c)
j (6)

for which π (Tc) = Tc and for all j obeying the normalization
[see Eq. (4)] ∑

c

H
(c)
j = ρ . (7)

Consequently, the conditional probability equals

p(c|M,T ) =
∑

j

tr
[
H

(c)
j Mj

]
. (8)

In the considered case of discrimination of a pair of mea-
surements M and N (a priori occurring with probabilities
ηM and ηN , respectively) we have c ∈ {M,N ,f }, hence, the
normalization explicitly reads as

H
(M)
j + H

(N )
j + H

(f )
j = ρ , (9)

for all j = 1, . . . ,n.
After deriving the above expressions, we have all the

mathematical instruments required to formalize and analyze
any particular measurement discrimination problem. In what
follows, we present several cases in which the structure of
the problem allows us to either partly simplify the choice
of the normalization ρ or to completely determine it and to
reduce the optimization of the discrimination of measurements
to discrimination of states.

IV. PERFECT DISCRIMINATION

Let us first address the case of perfect discrimination. This is
an intriguing quantum information theory question because the
maximal number of simultaneously perfectly distinguishable
measurements reveals the information “capacity” of measure-
ment devices. It is known that for states this number coincides
with the dimension of the Hilbert space, thus, provides its

operational meaning. There are d2 perfectly distinguishable
unitary channels (e.g., Pauli operators in case of qubit) and
this property is exploited in superdense coding [33] to double
the information transmission rate of noiseless communication
with d-level systems.

Surprisingly, a nontrivial insight on perfect discrimination
comes from the results of Ref. [34], where the concept of
boundariness was introduced. Based on the close relation
between boundariness and minimum-error discrimination, we
know that perfect discrimination is possible only between
boundary elements (for details see Sec. IV of [34]). Let us
stress that this feature holds also for states and channels. In
particular, the results of Ref. [34] imply that for each mea-
surement M from the boundary there exists a measurement
N (also belonging to the boundary) such that M and N are
perfectly distinguishable.

The channel representation of measurements makes the
problem of discrimination of observables a special case of the
channel discrimination. It follows [35] that for the minimum-
error discrimination of equiprobable measurements M and N
the optimal-error probability is given by the following formula:

pe = 1
2

(
1 − 1

2‖M − N‖cb
)
, (10)

where ‖ . . . ‖cb denotes the completely bounded (CB)
norm [36]. In general, it is difficult to evaluate this norm
because it requires inspection of the behavior of the map when
tensorized with identity channel Ik on k-dimensional Hilbert
space Hk:

‖M − N‖cb = max
k∈N,ρ�0,tr[ρ]=1

‖[(M − N ) ⊗ Ik](ρ)‖tr,

where ‖X‖tr = tr|X| denotes the trace norm. Unfortunately,
the following example demonstrates that although the mea-
surements represent a special type of channels (with classical
outputs), the perfect discrimination can not be, in general,
restricted to simple (ancilla-free) schemes only, i.e.,

‖M − N‖cb > max
ρ�0,tr[ρ]=1

‖M(ρ) − N (ρ)‖tr . (11)

Example 1 (Perfect discrimination without simple scheme).
Let us consider a pair of symmetric three-outcome qubit
measurements

M : M1 = 2
3 |0〉〈0|, M2 = 2

3 |v+〉〈v+|, M3 = 2
3 |v−〉〈v−|,

N : N1 = 2
3 |1〉〈1|, N2 = 2

3 |v⊥
+〉〈v⊥

+|, N3 = 2
3 |v⊥

−〉〈v⊥
−| ,

(12)

where |v±〉 = 1
2 |0〉 ±

√
3

2 |1〉, |v⊥
±〉 =

√
3

2 |0〉 ∓ 1
2 |1〉. Applying

these measurements on one part of a singlet state |ψ−〉 =
(|01〉 − |10〉)/√2 of two qubits, the other part (ancilla) is
projected into two orthogonal states for any of the (equiprob-
able) outcomes j . For example, outcome j = 2 heralds the
ancilla state |v⊥

+〉 in case of measurement M and state |v+〉
in case of N . Thus, for j = 2 the perfect discrimination can
be achieved by distinguishing orthogonal states |v+〉, |v⊥

+〉.
Similarly, for j = 1 (j = 3) we would have states |0〉, |1〉 (|v−〉,
|v⊥

−〉), respectively. We conclude that measurements M, N
can be perfectly discriminated using general (ancilla-assisted)
scheme. It remains to show there is no ancilla-free scheme
for perfect discrimination. Let us denote by μj = tr[Mj�] and
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νj = tr[Nj�] the probabilities of outcomes j given the probe
state is �. For ancilla-free scheme the perfect discrimination
happens if and only if each outcome j is associated either with
conclusion M or N and on top of that the probability of each
outcome is nonvanishing for at most one of the measurements,
i.e.,

∑
j μjνj = 0 (being equivalent to the conditions μjνj =

0 for each j ). For the considered pair of measurements,
it follows that always at least two of the outcomes have
nonvanishing probabilities, thus, the necessary condition for
perfect discrimination (

∑
j μjνj = 0) can not be satisfied. In

conclusion, for the discrimination of measurements, the use
of ancilla provides a nontrivial advantage in comparison with
simple schemes.

A. Binary measurements

In this section, we will focus on perfect discrimination of
two outcomes (binary) measurements. Suppose measurements
M, N are described by effects M1,M2 (M1 + M2 = I ) and
N1,N2 (N1 + N2 = I ), respectively. The following theorem
provides a simple criterion for binary measurements being
perfectly distinguishable. Moreover, it justifies that their
perfect discrimination is achievable by simple schemes.

Theorem 1. A pair of two outcome measurements M and
N can be perfectly discriminated if and only if there exists a
state |ψ〉 such that

〈ψ |Mj |ψ〉 = 1 and 〈ψ |Nj |ψ〉 = 0 , (13)

for either j = 1 or 2.
Proof. We start by proving sufficiency of the condition.

Suppose j = 1, i.e., the identities μ1 = 〈ψ |M1|ψ〉 = 1 and
ν1 = 〈ψ |N1|ψ〉 = 0 hold. The normalization implies μ2 = 0
and ν2 = 1, hence, applying the unknown measurement on
the probe state |ψ〉 and recording the outcome 1 we may
conclude with certainty that the measurement is M. Similarly,
the observation of the outcome 2 implies the unknown
measurement isN , thus, the perfect discrimination is achieved.
The argumentation for the case j = 2 is analogous, only
interpretation of the observed outcomes is switched. This
proves the sufficiency of the identities (13).

Let us proceed and prove their necessity. First, we will show
that perfect discrimination conditions for binary measurements
M and N ,

0 = p(N |M,T ) = tr
[
H

(N )
1 M1

] + tr
[
H

(N )
2 M2

]
,

(14)
0 = p(M|N ,T ) = tr

[
H

(M)
1 N1

] + tr
[
H

(M)
2 N2

]
,

imply tr[�(M1 + N1)] = 1. Since the trace of a product of two
positive operators is non-negative, all four traces in the above
equation vanish. In particular, the condition tr[H (N )

2 M2] =
0 implies tr[H (N )

2 M1] = tr[H (N )
2 (I − M2)] = tr[H (N )

2 ]. Simi-
larly, tr[H (M)

2 N2] = 0 implies tr[H (M)
2 N1] = tr[H (M)

2 ]. Using
the identity

H
(M)
2 + H

(N )
2 = ρ (15)

implied by normalization (7) with tr[ρ] = 1 we obtain the
condition

tr
[
H

(N )
2 M1

] + tr
[
H

(M)
2 N1

] = 1. (16)

Due to Eq. (15) we have H
(N )
2 � ρ and H

(M)
2 � ρ, hence,

1 = tr
[
H

(N )
2 M1

] + tr
[
H

(M)
2 N1

]
� tr[�(M1 + N1)]. (17)

Trace of a product of two positive operators vanishes if and
only if the supports of the two operators are orthogonal. This
implies [Eqs. (14) and (7)]

H
(N )
1 = λ M̃⊥

1 , H
(M)
1 = (1 − λ)Ñ⊥

1 , (18)

where M̃⊥
1 , Ñ⊥

1 are density operators with supports orthogonal
to M1, N1, respectively, and λ = tr[H (N )

1 ] ∈ [0,1]. Clearly, due
to normalization

ρ = H
(M)
1 + H

(N )
1 = λM̃⊥

1 + (1 − λ)Ñ⊥
1 .

Using the identities M̃⊥
1 M1 = O and Ñ⊥

1 N1 = O we obtain

tr[ρ(M1 + N1)] = (1 − λ) tr[Ñ⊥
1 M1] + λtr[M̃⊥

1 N1]

� max{tr[Ñ⊥
1 M1],tr[M̃⊥

1 N1]}. (19)

Since M̃⊥
1 , Ñ⊥

1 are states and M1, N1 are effects (i.e.,
M1,N1 � I ) it follows that tr[ρ(M1 + N1)] � 1. Combining
this inequality with Eq. (17) we may conclude that perfect
discrimination implies tr[�(M1 + N1)] = 1, thus, the upper
and lower bounds are both saturated. For upper bound this
requires an existence either of a state ρ = M̃⊥

1 such that
tr[M̃⊥

1 N1] = 1, tr[M̃⊥
1 M1] = 0, or of a state ρ = Ñ⊥

1 such
that tr[Ñ⊥

1 M1] = 1, tr[Ñ⊥
1 N1] = 0. Finally, let us stress that

the state ρ can be always chosen to be a pure state |ψ〉 being an
eigenvector of M1 (case j = 1) or N1 (case j = 2) associated
with eigenvalue 1 and simultaneously belonging to the kernel
of operators N1, M1, respectively. �

As a consequence of this theorem, a pair of two-outcome
(binary) measurements can be perfectly discriminated only
if one of the POVM elements of M (say M1) has eigen-
value one in a subspace in which N1 has eigenvalue zero,
i.e., M1|ψ〉 = |ψ〉 and N1|ψ〉 = 0. In particular, for binary
qubit measurements the perfect distinguishability implies the
following form of observables:

M1 = |ϕ〉〈ϕ| + q|ϕ⊥〉〈ϕ⊥|, M2 = (1 − q)|ϕ⊥〉〈ϕ⊥|,
N1 = r|ϕ⊥〉〈ϕ⊥|, N2 = |ϕ〉〈ϕ| + (1 − r)|ϕ⊥〉〈ϕ⊥|,

where 0 � r,q � 1 and |ϕ〉, |ϕ⊥〉 form an orthonormal basis
of H2. The optimal probe state reads |ψ〉 = |ϕ〉.

B. More than two measurements

Let us get back to the questions raised at the beginning
of this section. What is the maximum number m of perfectly
distinguishable measurements of d-dimensional quantum sys-
tem? How is this number related to the dimension? In what
follows, we give an example exhibiting a rather surprising fact
that m can be arbitrary, irrelevant of the system’s dimension.

Consider m measurementsMl (l = 1, . . . ,m), each of them
with n � m outcomes (labeled as before by j = 1, . . . ,n)
associated with effects

Mlj =
{|ϕ〉〈ϕ| if j = l,

xlj (I − |ϕ〉〈ϕ|) if j �= l,
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where 0 < xlj < 1 and
∑

j xlj = 1. Using a test state |ψ〉 =
|ϕ〉, the outcome j = l of measurement Ml is observed
with certainty, hence, observation of the outcome j perfectly
identifies the measurement Ml=j . This is an example of m

perfectly distinguishable measurements. Let us stress that the
dimension of the system is not specified and also that no ancilla
is needed. Let us also note that the choice of xlj (for j �= l)
is arbitrary, thus, the measurements Ml are not just mutually
relabeled measurements.

The following proposition relates the maximal number of
perfectly distinguishable measurements m with the number of
outcomes n.

Proposition 1. If n-outcome quantum measurements
M1, . . . ,Mm can be perfectly discriminated, then m � n.

Proof. Similarly, as for the discrimination of two mea-
surements, we can write the conditional probability as
p(c|Ml ,T ) = ∑

j tr[H (c)
j Mlj ]. Since for perfect discrimi-

nation the inconclusive outcome cannot occur, thus, c �=
f , we use c ∈ {1, . . . ,m} indicating the measurement Mc.
The operators H

(c)
j must fulfill the normalization identity∑m

k=1 H
(k)
j = ρ for ∀ j ∈ �. A test T perfectly distinguishes

measurements {Ml} if and only if for all l the following
identity holds: p(c|Ml ,T ) = ∑

j tr[H (c)
j Mlj ] = δcl .

Let us introduce positive operators Ecj ≡ ρ−1/2H
(c)
j ρ−1/2

and Qlj ≡ ρ1/2Mlj ρ1/2 satisfying the identities

∑
c

Ecj = ρ and
n∑

j=1

Qlj = ρ (20)

for all j and l, respectively. We denoted by � the projector
onto the support of �. Then,

p(l|Ml ,T ) =
∑

j

tr[EljQlj ]

�
∑

j

tr[ρQlj ] =
∑

j

tr[Qlj ] = 1, (21)

where we used that Elj � ρ , Qlj � ρ � ρ , Eq. (20), and
tr[ρ] = 1. It follows that the condition p(l|Ml ,T ) = 1 holds
only if tr[EljQlj ] = tr[Qlj ] for all l,j . Since 0 � Elj � ρ

and 0 � Qlj � ρ , this is equivalent to the requirement
Elj � lj , where lj denotes a projector onto a support of the
operator Qlj . Consequently, the multiplicity κlj of eigenvalue
1 in the spectral decomposition of Elj has to be at least the
rank of lj , i.e.,

∀ l,j, κlj � tr[lj ]. (22)

Denote by D = tr[�] the dimension of the support of ρ. Due
to Eq. (20) we have

∑
j tr[lj ] � D because the rank of the

sum of positive operators Qlj is at most the sum of the ranks
of its parts. Combining this with Eq. (22) and summing over l

we obtain ∑
l

∑
j

κlj � mD. (23)

On the other hand, taking into the account the normalization
from Eq. (20) and inequality κlj � tr[Elj ], it follows that

∑
l κlj � D and, consequently,∑

j

∑
l

κlj � nD . (24)

Combining inequalities (23) and (24), we get m � n. �
For nondegenerate projective measurements, a rank-one

projector corresponds to each outcome. By definition, such
measurement has n = d outcomes, where d is the dimension
of Hd . The above Proposition 1 implies there are at most d

perfectly distinguishable nondegenerate projective measure-
ments.

V. QUANTUM FILTERS

A projective two-outcome measurement M is called a
quantum filter if one of its outcomes is described by rank-one
projection. Discrimination of a pair of quantum filters M,N
can appear in two different variations depending on assignment
of rank-one operators to particular labels: either the same
outcome is described by rank-one operators, or exclusive
outcomes are associated with rank-one operators for M and
N .

Let us start with the first case and set the outcome labeled
as “1” to be the one described by rank-one projector, i.e.,

M : M1 = |ϕ〉〈ϕ|, M2 = I − M1;
(25)

N : N1 = |ψ〉〈ψ |, N2 = I − N1.

The reduction theorem formulated in the following section
reduces this problem to discrimination of qubit projective
measurements by identifying a relevant two-dimensional
subspace of Hd . In particular, the statement of the theorem
is more general and allows us to identify irrelevant subspace
for discrimination of arbitrary measurements.

A. Reduction theorem

Consider a pair of n-outcome measurements M and N
on d-dimensional Hilbert space represented by POVMs {Mj }
and {Nj }, respectively. Suppose that ∀ j Qj is a (largest)
projector such that Qj � Mj and Qj � Nj . Due to POVM
normalization, the projectors Qj are mutually orthogonal,
i.e., QjQk = δjkQj . We may define a projector P = ∑

j Qj

and “measurements” M̃ and Ñ with POVM elements {M̃j ≡
Mj − Qj } and {Ñj ≡ Nj − Qj }, respectively, and normalized
to I − P . Let us stress that M̃j = (I − P )Mj (I − P ). The
following theorem shows that the subspace determined by the
support of P plays no role and the original discrimination prob-
lem is equivalent to discrimination of measurements M̃,Ñ
defined on the subspace H̃ ≡ (I − P )Hd ⊂ Hd relevant for
the discrimination.

Theorem 2. Suppose that T and T̃ are optimal solutions
to discrimination with fixed failure rate pf = p̃f between
pairs of measurements M,N and M̃,Ñ , respectively. Then,
ps = p̃s or, equivalently, pe = p̃e. Moreover, optimal T can be
chosen such that T |H̃ = T̃ and vice versa (i.e., given optimal
T optimal test T̃ can be chosen as T |H̃ = T̃ ).

Proof. See Appendix. �
Let us formulate consequences of the above theorem for

quantum filters. We define a two-dimensional Hilbert space
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H̃ as a linear span of vectors |ϕ〉, |ψ〉. Clearly, M2 � P and
N2 � P , where P is a projector onto the subspace H̃⊥. Using
the reduction Theorem 2, the discrimination of filters can be
solved by finding the solution to discrimination of projective
qubit measurements

M̃ : M̃1 = |ϕ〉〈ϕ|, M̃2 = |ϕ⊥〉〈ϕ⊥|;
(26)

Ñ : Ñ1 = |ψ〉〈ψ |, Ñ2 = |ψ⊥〉〈ψ⊥|,
where |ψ⊥〉,|ϕ⊥〉 are vectors from H̃ orthogonal to |ψ〉,|ϕ〉,
respectively. The solution to this problem is given in Sec. VI.
Let us stress that similar reasoning applies also to the case
of discrimination among m quantum filters (with Ml1 being
rank-one projectors). In such case, the problem is equivalent
to discrimination of m quantum filters on m-dimensional
subspace of Hd .

Finally, we discuss the other possible assignment of
outcomes for two quantum filters, i.e., the case

M : M1 = |ϕ〉〈ϕ|, M2 = I − M1;
(27)

N : N1 = I − N2, N2 = |ψ〉〈ψ |,
when rank-one projections correspond to different outcomes.
If the dimension of Hd is two, the problem coincides with
discrimination of two projective qubit measurements, which
we solve in the next section. Otherwise, there exists a state |φ〉
orthogonal to |ψ〉 and |ϕ〉. Measuring |φ〉 with M we always
get outcome 2, while N will always produce outcome 1. Thus,
for dimHd � 3 any pair of (different) quantum filters (27) is
always perfectly distinguishable.

VI. PROJECTIVE QUBIT MEASUREMENTS

In this section, we shall analyze discrimination of projective
qubit measurements, i.e., measurements such as M described
by effects M1 = |ϕ〉〈ϕ| and M2 = I − M1 = |ϕ⊥〉〈ϕ⊥| for
some orthonormal basis {|ϕ〉,|ϕ⊥〉} of H2. As we declared
in Sec. III, our goal is to maximize probability of success ps

for a fixed failure probability pf .

A. Binary discrimination problem

Let us start with the simplest case, when our goal is to
discriminate among a pair of projective measurements

M : M1 = |ϕ〉〈ϕ|, M2 = |ϕ⊥〉〈ϕ⊥|;
(28)

N : N1 = |ψ〉〈ψ |, N2 = |ψ⊥〉〈ψ⊥|.
Suppose T is a test procedure specified by operators
H

(c)
1 ,H

(c)
2 with c ∈ {M,N ,f } such that for all j

∑
c H

(c)
j =

� and T leads to certain values of ps, pe, and pf . Fur-
ther, we will exploit the reflection symmetry of the prob-
lem. In particular, let us denote by � the universal NOT
transformation X �→ X⊥ = tr[X]I − X for any operator X.
In H2, this map is positive (not completely positive) and
trace preserving. Moreover, tr[�(X)Y ] = tr[X�(Y )] for all
operators X, Y and �2 = I.

By properties (positivity) of � it follows that operators

H
′(c)
1 = �

(
H

(c)
2

)
and H

′(c)
2 = �

(
H

(c)
1

)
(29)

form a valid test procedure T ′ with normalization∑
c

H
′(c)
1 =

∑
c

H
′(c)
2 = �(ρ).

For conditional probabilities, we find

p(c|M,T ′) = tr
[
�

(
H

(c)
2

) |ϕ〉〈ϕ| + �(H (c)
1 ) |ϕ⊥〉〈ϕ⊥|]

= tr
[
H

(c)
2 �(|ϕ〉〈ϕ|) + H

(c)
1 �(|ϕ⊥〉〈ϕ⊥|)]

= tr
[
H

(c)
2 |ϕ⊥〉〈ϕ⊥| + H

(c)
1 |ϕ〉〈ϕ|]

= p(c|M,T ) (30)

and analogously p(c|N ,T ′) = p(c|N ,T ). In other words,
both test procedures T and T ′ determine the same probabilities
ps , pe, and pf , thus they both perform equally well in the
considered discrimination problem. Moreover, any convex
combination, in particular T̃ = 1

2T + 1
2T ′ of these tests,

results in the same probabilities ps , pe, and pf . This allows
us to reduce the set of considered test procedures and to fix
their normalization ρ without loss of generality because the
normalization of T̃ is independent of the test T and reads as

∀ j
∑

c

H̃
(c)
j =

∑
c

1

2

(
H

(c)
j + H

′(c)
j

)
= 1

2
[� + �(�)] = 1

2
I. (31)

Moreover,

�
(
H̃

(c)
1

) = �
[

1
2

(
H

(c)
1 + H

′(c)
1

)]
= 1

2

(
H

′(c)
2 + H

(c)
2

) = H̃
(c)
2 , (32)

so the considered test procedures T̃ are completely specified
by operators for a single outcome, i.e., by positive operators
H̃

(c)
1 and by their normalization condition (31). Using this fact,

we obtain formulas

p(c|M,T̃ ) = tr
[
H̃

(c)
1 |ϕ〉〈ϕ| + �

(
H̃

(c)
1

)|ϕ⊥〉〈ϕ⊥|]
= tr

[
2H̃

(c)
1 |ϕ〉〈ϕ|] ≡ tr[Ec|ϕ〉〈ϕ|],

p(c|N ,T̃ ) = tr
[
2H̃

(c)
1 |ψ〉〈ψ |] ≡ tr[Ec|ψ〉〈ψ |], (33)

where we defined positive operators Ec ≡ 2H̃
(c)
1 for each c ∈

{M,N ,f }. Let us stress that Eq. (31) implies

EM + EN + Ef = I.

In other words, the positive operators EM,EN ,Ef form a
POVM coinciding with a measurement discriminating pure
states |ψ〉,|ϕ〉. Indeed, using Eqs. (2), (3), and (33), we can
express ps, pe, and pf as

ps = ηM 〈ϕ|EM|ϕ〉 + ηN 〈ψ |EN |ψ〉,
pe = ηM 〈ϕ|EN |ϕ〉 + ηN 〈ψ |EM|ψ〉, (34)

pf = ηM 〈ϕ|Ef |ϕ〉 + ηN 〈ψ |Ef |ψ〉.
Thus, we managed to reduce the discrimination of projective
qubit measurements (in any version) to discrimination of pure
states. In particular, we may formulate the following theorem.

Theorem 3. The problem of optimal discrimination with
fixed failure rate pf of projective qubit measurements M
and N (determined by vector states |ϕ〉,|ψ〉, respectively) is
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mathematically equivalent to an optimal discrimination with
fixed failure rate pf of pure states |ϕ〉, |ψ〉.

Suppose a POVM associated with effects Ec with c ∈
{ϕ,ψ,f } is the optimal solution (for details see [7–9]) for
the discrimination with a fixed failure rate pf of pure states
|ϕ〉,|ψ〉. Then, the optimal discrimination [see Eq. (28)]
of projective qubit measurements M and N (determined
by vector states |ϕ〉,|ψ〉, respectively) can be implemented
as follows. We prepare a maximally entangled state |φ〉 =
(|00〉 + |11〉)/√2 of two qubits. We measure one of the qubits
by the unknown measurement that we want to identify. If the
outcome 1 is observed, then we perform the measurement
of {ET

c } on the second qubit. If we observe outcome 2, then
the second qubit is measured by POVM {�(Ec)T = �(ET

c )}.
It is straightforward to verify that this procedure results in
conditional probabilities given in Eq. (33) if we associate
conclusions c as ϕ ↔ M, ψ ↔ N . Let us remind that the
reduction Theorem 2 described in the previous section implies
that the same procedure can be used to discriminate (optimally)
quantum filters.

In the following, we illustrate what the results on optimal
discrimination of two states imply for the discrimination of
two qubit measurements.

Example 2 (Minimum-error discrimination). By definition
we set pf = 0. The formula for discrimination of two pure
states is well known due to seminal works of Helstrom and
Holevo [3,4]. Let us denote by η ≡ ηM the a priori probability
for |ϕ〉 (M) and 1 − η ≡ ηN being the a priori probability
for |ψ〉 (N ). The optimal POVM consists of elements
Eϕ = |α〉〈α|, Eψ = |β〉〈β| being projectors onto positive and
negative eigensubspaces of operator � = (1 − η)|ψ〉〈ψ | −
η|ϕ〉〈ϕ|, respectively. The optimal (minimal) probability of
error is given by the famous Helstrom’s formula

pe = 1
2 [1 −

√
1 − 4η(1 − η)|〈ψ |ϕ〉|2]. (35)

The test procedure described above helps us to design the
optimal discrimination of a pair of associated measurements
M and N . However, let us note that the ancilla is not really
necessary to achieve the optimality (which is in accordance
with the discussion at the beginning of Sec. IV). Indeed, it is
sufficient to prepare a test state |α〉. Observing outcome 1 we
conclude that the tested measurement was N and otherwise
we conclude it was M. Alternatively, one can also exploit the
test state |β〉 and inverting the interpretation of the outcomes,
we achieve again the optimal value of the error probability pe.

Example 3 (Unambiguous discrimination). By definition,
we call the discrimination unambiguous if pe = 0. The
solution to unambiguous discrimination of two pure states
was found first for equal prior probabilities by Ivanovic [37],
Dieks [38], and Peres [39] and later by Jaeger and Shi-
mony [40] for the general situation. The solution has three
regimes depending on the relation between the prior probabil-
ity η and overlap F = |〈ψ |ϕ〉|:

pf =

⎧⎪⎨⎪⎩
η + (1 − η)F 2, (1 + F 2)η � F 2;

2
√

η(1 − η)F, F 2 � (1 + F 2)η � 1;

1 − η + ηF 2, (1 + F 2)η � 1.

(36)

If the priors are very unbalanced (first and last intervals), then
one of the states is never detected, so the optimal measurement

has two outcomes and is projective. In the intermediate regime,
when the priors are “comparable” all three outcomes have
nonzero probability of appearance.

This means that also for discrimination of projective qubit
measurements we will have three regimes defined by the same
conditions. For the regime of comparable prior probabilities,
it is clear that we need to use the ancillary measurement since
we need three outcomes. An intuitive scheme for achieving
the optimal performance is based on preparing a singlet state
(|01〉 − |10〉)/√2 of two qubits. Application of the unknown
measurement on one part of the state projects (depending on
the identity of the measurement) the other part into a state
|ϕ⊥〉 or |ψ⊥〉 in case of outcome 1 and into state |ϕ〉 or
|ψ〉 in case of outcome 2. These two pairs of states have
the same overlap (|〈ϕ|ψ〉| = |〈ϕ⊥|ψ⊥〉| = F ) and we can
discriminate within the pairs using the optimal unambiguous
pure state discrimination by Jaeger and Shimony. Thanks to
equal overlap in case of outcome 1, outcome 2 and also on
average we fail with the probability pf given in Eq. (36).

For the remaining (unbalanced) regimes, the optimal
performance can be achieved also by directly measuring
the single partite state with the unknown measurement. If
(1 + F 2)ηM � 1, then we prepare |ψ⊥〉 and the outcome 1
unambiguously indicates that the unknown measurement is
M, whereas the outcome 2 is inconclusive and means that the
test failed. Similarly, if (1 + F 2)ηM � F 2, then we use |ϕ⊥〉
as the test state and outcome 1 unambiguously identifies the
measurement N .

Example 4 (Noisy qubit measurements). Suppose M,N are
defined as convex combinations of a projective measurement
and a trivial observable generating the uniform distribution of
outcomes independently of the measured state, i.e.,

M1 = μ|ϕ〉〈ϕ| + 1 − μ

2
I, M2 = μ|ϕ⊥〉〈ϕ⊥| + 1 − μ

2
I,

N1 = ν|ψ〉〈ψ | + 1 − ν

2
I, N2 = ν|ψ⊥〉〈ψ⊥| + 1 − ν

2
I.

(37)

As the key symmetry �(M1) = M2, �(N1) = N2 holds, we can
directly generalize the arguments used before and conclude
that the optimal test procedure is characterized by POVM
elements EM,EN ,Ef , which thanks to this symmetry define
H̃

(c)
1 = 1

2Ec, H̃
(c)
2 = 1

2�(Ec). We find

ps = ηM tr[EMM1] + ηN tr[ENN1],

pe = ηM tr[ENM1] + ηN tr[EMN1],

pf = ηM tr[Ef M1] + ηN tr[Ef N1].

Let us stress that operators M1,N1 are positive and have
trace one, so they correspond to mixed quantum states. Thus,
for measurements M, N defined by POVM elements from
Eq. (37), we reexpressed the problem as discrimination with
fixed failure rate pf among two mixed states M1, N1. Such
problems were studied in [10] and an upper bound on the
success probability was derived. Notice that for μν �= 0, the
unambiguous discrimination of measurements is not possi-
ble because the states M1,N1 have completely overlapping
supports [41]. For the minimum-error discrimination, the
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optimal-error rate and optimal POVM {Ec} can be again
acquired easily from the work of Helstrom [4].

B. General case

In general, the discrimination of more than two objects is
more complicated than the discrimination among two of them.
However, in our particular case, it turns out that the derivations
in Sec. VI can be trivially generalized to the discrimination of
m projective qubit measurements. In particular, the optimal
discrimination of measurements M1, . . . ,Mm, each of them
associated with effects Ml1 = |ϕl〉〈ϕl| and Ml2 = |ϕ⊥

l 〉〈ϕ⊥
l |,

can be designed by using the optimal measurement discrimi-
nating the pure states |ϕ1〉, . . . ,|ϕm〉. The optimal performance
can be achieved by preparing a maximally entangled state,
measuring one part of it by the unknown measurement and
optimally discriminating the states of the remaining system.
Thus, the optimal relation between success ps and failure
probability pf for the discrimination of projective qubit
measurement apparatuses is given by the solution of (pure)
state discrimination problem. Sugimoto et al. [42] solved the
discrimination with fixed failure rate of three symmetric states
of a qubit, but in general the solution is not known. The special
case of minimum-error discrimination of m pure qubit states
can be solved completely using the result of Ref. [43].

As we discussed earlier in this section, the optimal
discrimination of two projective qubit measurements with
minimum possible error can always be realized by a simple
discrimination scheme. A natural question arises as to whether
a simple scheme can be utilized to perform the optimal
minimum-error discrimination of m quantum measurements.
The following example demonstrates that this is not the case,
so also for projective qubit measurements there are situations
when an ancilla-assisted scheme is necessary for optimization
of minimum-error discrimination.

Example 5 (Minimum-error discrimination of three projec-
tive qubit measurements). Consider projective qubit measure-
ments M1,M2,M3 determined by states |0〉, |v±〉 = 1

2 (|0〉 ±√
3|1〉), respectively, appearing with equal prior probabilities.

Due to the results of Clarke et al. [44], we have the minimal-
error probability for discrimination of these states having
pairwise the same fidelity. In this particular case p

opt
e = 1

3 ,

hence, popt
s = 2

3 and the same holds for optimal minimum-error
discrimination of measurements M1,M2,M3. Let us denote
by � the (ancilla-free) test state and we define xl ≡ tr[Ml1ρ].
We further denote by q(l|j ) the conditional probability of
conclusion l given the outcome j was recorded on the un-
known measurement we would like to identify. By definition,∑

l q(l|j ) = 1 for both outcomes j = 1,2. Then,

ps = 1

3

3∑
l=1

[q(l|1)xl + q(l|2)(1 − xl)]

= 1

3

{
1 +

3∑
l=1

[q(l|1) − q(l|2)]xl

}

� 1

3
[1 + max

l
xl − min

l
xl] <

2

3
= popt

s (38)

because 0 � minl xl �
∑

l q(l|k)xl � maxl xl � 1 and for the
considered operators Mlk we have strict inequality (maxl xl −
minl xl) < 1. In fact, the maximum probability of success
ps = (2 + √

3)/6 for simple scheme strategies is achieved
for pure state � = |ξ 〉〈ξ |, where |ξ 〉 = cos ω|0〉 + sin ω|1〉 and
ω ≈ 0.0833π .

VII. UNAMBIGUOUS DISCRIMINATION OF TWO TRINE
MEASUREMENTS

Based on our previous analysis, it is natural to ask whether
the ancilla-based test procedures with maximally entangled
states are always the ones (although not the unique ones)
optimizing the discrimination figures of merits. In this section,
we will demonstrate an example rejecting such hypothesis.

Consider a symmetric three-outcome qubit measurement

M : M1 = 2
3 |0〉〈0|, M2 = 2

3 |v+〉〈v+|, M3 = 2
3 |v−〉〈v−|,

(39)

where |v±〉 = 1
2 |0〉 ±

√
3

2 |1〉. Rotating this measurement by
an angle θ around the z axis (see Fig. 2) we obtain a
measurementNθ with POVM elements Nj = RθMjR

†
θ , where

Rθ = |0〉〈0| + eiθ |1〉〈1|. In what follows, we will show that
maximally entangled states as test states do not optimize
success probability for unambiguous discrimination of mea-
surements M and Nθ .

In the following, we will use the lower bound on the failure
probability of unambiguous discrimination of two channels
M and N (with Choi operators M and N , respectively):

pf � 2
√

ηMηN tr|
√

M(I ⊗ ρ)
√

N |, (40)

where ρ � 0,tr[ρ] = 1 is a normalization of the test used for
the discrimination [see Eq. (4)]. The above bound was derived
by Ziman et al. in [19] [see Eq. (16) therein]. Our aim is to
evaluate the bound for any normalization ρ and to show that
the bound can be saturated. This will allow us to compare
attainable failure probability for unambiguous discrimination
of measurements M and Nθ for ancilla-based tests with
maximally entangled states and those with optimal bipartite
input states.

1M

2M
3M

1N

2N
3N θ

FIG. 2. (Color online) Two symmetric three-outcome qubit
POVMs in the Bloch representation that are mutually rotated by
angle θ , with respect to axis z.
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For uniform prior probabilities ηM = ηNθ
= 1

2 , the bound
(40) reads as

pf � 3
2 tr|M(I ⊗ ρ)Nθ |, (41)

where we used the fact that
√

M = √
3/2 M ,

√
Nθ =√

3/2 Nθ are the Choi operators of the measurements M and
Nθ , respectively.

Combining the triangle inequality for trace norm and the
invariance of the norm with respect to σz rotation for the term
with j = 3 we can write the inequality

γ = tr|M(I ⊗ ρ)Nθ | =
∑

j

tr
∣∣MT

j ρNT
j

∣∣
� tr

∣∣MT
1 ρNT

1

∣∣ + tr
∣∣MT

2 ρNT
2 + σzM

T
3 ρNT

3 σz

∣∣. (42)

Using the parametrization ρ = q|0〉〈0| + (1 − q)|1〉〈1| +
z|0〉〈1| + z∗|1〉〈0|, the above inequality reads as

γ � 4
9q + 2

9

√
q2 + 9(1 − q)2 + 6p(1 − q) cos θ. (43)

Interestingly, this expression does not depend on z, hence, the
only relevant parameter of ρ is q. Combining Eqs. (41) and
(43) we get

pf � 2q +
√

q2 + 9(1 − q)2 + 6q(1 − q) cos θ

3
, (44)

where 0 � q � 1.
Next, we consider a test procedure with normalization

ρ = q|0〉〈0| + (1 − q)|1〉〈1|, which saturates the above lower
bound for every 0 � q � 1. Consider a test state

|φq〉 = √
q|00〉 +

√
1 − q|11〉. (45)

Performing a trine measurement (either M or Nθ ) on one of
the qubits, the second one ends up either in a conditional state
|ψM

j 〉 or |ψN
j 〉. For j = 1, these conditional states coincide

with |0〉, thus, this outcome is necessarily inconclusive. The
pairs of states to be discriminated for outcomes 2 and 3 are
mutually related by unitary transformation σz, so they have the
same overlap

F = ∣∣〈ψM
2

∣∣ψN
2

〉∣∣ = ∣∣〈ψM
3

∣∣ψN
3

〉∣∣ = |q + eiθ (1 − q)|
3 − 2q

. (46)

Using the results of Ivanovic [37], Dieks [38], and Peres [39],
such pairs of pure equiprobable states can be unambiguously
discriminated with failure probability equal to their overlap F .
Weighting these cases by pj = 〈φq |Mj ⊗ I |φq〉 = 〈φq |Nj ⊗
I |φq〉, the probability of appearance of outcome j , we derive
the average failure probability of the scheme

pf = 2

3
q + 2

3 − 2q

6
F. (47)

Inserting Eq. (46) into (47), we see that the proposed scheme
saturates the lower bound on the failure probability (44)
for any q ∈ [0,1]. Thus, tuning q in order to minimize the
failure probability of the proposed scheme simultaneously
gives the lowest achievable failure probability in general. It
can be shown that the minimum of the right-hand side of
Eq. (44) is achieved for q = [9 − 2

√
3 cos (θ/2) −

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

θ

p f

Optimal strategy

Maximally entangled initial state

FIG. 3. (Color online) Illustration of the difference between max-
imally entangled and optimal input bipartite state for the discrimina-
tion of two symmetric three-outcome qubit POVMs mutually rotated
by angle θ , with respect to axis Z.

3 cos θ ]/(10 − 6 cos θ ) implying that

pf = 1

3

(
1 +

√
3

∣∣∣∣ cos
θ

2

∣∣∣∣ + 4 − 2
√

3 | cos θ
2 |

5 − 3 cos θ

)
. (48)

Finally, let us assume that the test state is any maximally
entangled state. Any such test has normalization ρ = 1

2I

corresponding to q = 1
2 . Thus, by comparing the failure

probability given by Eq. (44) for q = 1
2 and for q minimizing

the failure probability, we can demonstrate that the use of less
than maximally entangled states is needed in order to achieve
the optimal performance. The difference is illustrated in Fig. 3.

VIII. SUMMARY

In this paper, we studied discrimination of quantum
measurements with finitely many outcomes in the scenario
when the unknown measurement can be used only once,
but use of any other resources is allowed. In particular,
we investigated special instances of the discrimination with
fixed failure rate. This class of problems includes perfect dis-
crimination, minimum-error discrimination, and unambiguous
discrimination.

We studied first the conditions for perfect discrimination.
We have shown that the maximal number of distinguishable
measurement apparatuses is bounded by the total number
of outcomes n. Let us stress that the dimension of the
system is irrelevant and one can find arbitrarily many qubit
observables that are single-shot perfectly distinguishable.
Further, we have formulated a reduction theorem excluding
a subspace irrelevant for the discrimination. More precisely,
we showed that any subspace common to a given outcome
of both measurements is irrelevant for the discrimination. We
employed this theorem to relate the discrimination of quantum
filters to discrimination of projective qubit measurements.

We found that the optimization of the discrimination of
projective qubit measurements is mathematically equivalent to
solving discrimination of pure states. Not only the optimal suc-
cess rates are the same, but also the optimal discrimination al-
gorithm for pure state discrimination can be directly exploited
for optimal discrimination of projective qubit measurements.
First, we prepare a singlet state of two qubits and apply the
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unknown measurement on one part of the state. This projects
the second qubit into a pure state determined by the obtained
outcome and the identity of the unknown measurement. Condi-
tionally on the observed outcome, we employ the optimal state
discrimination strategy to identify the projected state of the
second qubit, hence, identifying the measurement used. Using
this “measurement-to-state” reduction, we provide a solution
to optimal minimum-error and unambiguous discrimination of
projective qubit measurements. Let us note that this procedure
was successfully experimentally implemented in a quantum
optical system [45]. We extend this result to the case of
m projective qubit measurements and, in addition, each of
them may be affected by a different level of white noise.
Unfortunately, we have not succeeded to formulate a similar
result in more dimensional Hilbert spaces, where already the
optimal discrimination of projective measurements is left open.

Our results clearly exhibit the added value of maximally
entangled states although we have argued that in the case of
perfect discrimination of binary measurements, the ancilla can
be completely ignored and a simple scheme works as well as
the entangled one. From the algebraic point of view, the mea-
surements are channels mapping quantum (noncommutative)
algebra to a classical (commutative) one, hence, the concepts of
positivity and complete positivity coincide, i.e., tensor product
extensions of such channels are irrelevant for judging this
property. However, we were surprised to find an example
exhibiting the fact that even in case of (perfect) discrimination
between only a pair of measurements, the ancilla, hence,
tensor product extension of the channel, provides an advantage
over the simple (ancilla-free) schemes. It is an intriguing
question to understand in which cases the simple scheme
performs as good as the general one, and when the maximally
entangled states provide the optimal discrimination strategy.
We have shown an explicit example demonstrating situations in
which non-maximally entangled states outperform maximally
entangled ones.

In conclusion, let us mention one interesting application.
The unambiguous discrimination of quantum measurements
can be rephrased as conceptually novel entanglement-based
quantum key distribution protocol. Indeed, suppose Alice
prepares two qubits in the singlet state and sends one part
of it to Bob. Bob randomly chooses to apply either a projective
measurement σz or σx , each with outcomes labeled by ±. After
the measurement is accomplished, he announces publicly the
outcome b to Alice, but keeps the choice of the measurement
secret. Based on this outcome, Alice can perform appropriate
unambiguous state discrimination either between the states
|0〉,|+〉 or |1〉,|−〉. If an inconclusive result is recorded, Alice
and Bob discard this event from their strings. However, if Alice
obtains the conclusive outcome, then she knows Bob’s choice
and perfect correlation (bit of raw key) is established. Up to
this point, we have just described the procedure of optimal
unambiguous discrimination of measurements σx and σz. Let
us stress that no one except Alice (holder of the second qubit
from the singlet pair) can use the transmitted information b

to learn some information on Bob’s selection. Similarly as
in other quantum key distribution protocols (see [46] and
the references therein), a potential eavesdropper necessarily
introduces errors in the raw key. Any attempt to modify the
qubit sent to Bob or the transmitted bit b leads to a degradation

of the performance of the discrimination scheme that can be
verified by uncovering part of the raw key. The analysis of
practical robustness of this protocol is beyond the scope of
this work.
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APPENDIX: PROOF OF LEMMA 2

Suppose that a test procedure T specified by operators
H

(c)
j c ∈ {M,N ,f }, j ∈ � leads to certain values of ps, pe,

and pf . In the first step, our aim is to design a different test
procedure T ′ that would give the same values of ps, pe, and
pf that can be interpreted as a mixture of the subproblem
defined in Sec. V A and a discrimination of two identical
measurements.

We define H
′(c)
j = ∑

k∈ω QkH
(c)
j Qk + (1 − P )H (c)

j (1 −
P ), where we recall P = ∑

k∈ω Qk . By definition, operators
H

′(c)
j are positive semidefinite and they obey the following

normalization:

∀ j
∑

c

H
′(c)
j =

∑
k

QkρQk + (1 − P )ρ(1 − P ) ≡ ρ ′,

where we defined positive-semidefinite operator ρ ′. Moreover,
tr[ρ ′] = 1, so we showed that operators H

′(c)
j specify a valid

test procedure.
Due to Mk � Qk and

∑
k Mk = I , we have Mk = I −∑

l �=k Ml � I − ∑
l �=k Ql , which is equivalent to

Mk − Qk � I − P. (A1)

As a consequence,

QlMkQl = δklQl (A2)

because for k �= l we get 0 � QlMkQl � 0 and case k = l

follows from the definition of Qk . Finally, using Eq. (A1) we
get (1 − P )(Mk − Qk)(1 − P ) = Mk − Qk , which is useful to
write as

Mk = QkMkQk + (1 − P )Mk(1 − P ), (A3)

where we used the above identities and QkQl = δklQl .
Analogously, one can derive relations (A2) and (A3) for

elements Ni . This enables us to show that the test procedure
T ′ leads to the same values of ps, pe, and pf , because the
conditional probabilities p(c|M,T ), p(c|N ,T ) do not change.
Indeed, we have

p(c|M,T ′) =
∑

j

∑
k

tr
[
QkH

(c)
j QkMj

]
+

∑
j

tr
[
(1 − P )H (c)

j (1 − P )Mj

]
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=
∑

j

tr
[
H

(c)
j QjMjQj

]
+

∑
j

tr
[
H

(c)
j (1 − P )Mj (1 − P )

]
=

∑
j

tr
[
H

(c)
j Mj

] = p(c|M,T ), (A4)

where we used Eqs. (A2) and (A3). Analogously, one can
show p(c|N ,T ′) = p(c|N ,T ). Let us introduce Hilbert spaces
H̃ = (1 − P )H, H = PH specified by the projector P and its
complement. From the assumptions of the theorem we have
that M̃ and Ñ form a measurement on the Hilbert space
H̃. If PρP = 0, then H

′(c)
j = H

(c)
j and it already specifies

a discrimination procedure for M̃ and Ñ in H̃. Similarly,
if (1 − P )ρ(1 − P ) = 0 then H

′(c)
j specifies a discrimination

procedure for M = N ↔ {Qj }nj=1 in H. In the rest of the
cases, we define λ = tr[Pρ] and

ρ̃ = (1 − P )ρ(1 − P )

1 − λ
, ρ = 1

λ

∑
k

Qk ρ Qk,

H̃
(c)
j = (1 − P )H (c)

j (1 − P )

1 − λ
, H

(c)
j = 1

λ

∑
k

Qk H
(c)
j Qk.

(A5)

It is now easy to see that operators H̃
(c)
j describe a valid

discrimination procedure T̃ for M̃ and Ñ , while H
(c)
j do the

same for M and N . Using definitions (A5), the conditional
probabilities can be rewritten [see also Eq. (A4)] as

p(c|M,T ′) = (1 − λ)
∑

j

tr
[
H̃

(c)
j Mj

] + λ
∑

j

tr
[
H

(c)
j Mj

]
= (1 − λ)p(c|M̃,T̃ ) + λp(c|M,T ). (A6)

As a consequence, we have

ps = (1 − λ)p̃s + λps,

pe = (1 − λ)p̃e + λpe, (A7)

pf = (1 − λ)p̃f + λpf .

Thus, performance of any test T can be also attained by
a suitable test T ′, which naturally defines operators H̃

(c)
j ,

H
(c)
j for discrimination of measurements M̃, Ñ and M,

N , respectively. Moreover, also the opposite holds, i.e.,

every properly normalized set of operators H̃
(c)
j , H

(c)
j and a

coefficient 0 � λ � 1 defines a valid test T ′.
Next, we want to show that in order to maximize probability

of success ps it suffices to consider tests T ′′ with λ = 0, i.e.,
Pρ ′′P = 0. Such tests of the unknown measurement use input
states that do not probe the subspace of the Hilbert space H
defined by projector P .

Since any pair of measurements can be discriminated at
least as good as two indistinguishable measurements, we can
find operators Ĥ

(c)
j for discrimination of M̃, Ñ with failure

probability p̂f = pf and p̂s � ps . A test T ′′ defined by
operators H

′′(c)
j = (1 − λ)H̃ (c)

j + λĤ
(c)
j has the same failure

probability pf as the test T ′, but it has a higher success
probability (1 − λ)p̃s + λp̂s � ps . Moreover, PH

′′(c)
j P = 0

implies Pρ ′′P = 0, so we showed that it suffices to consider
only tests T ′′ or in other words it suffices to solve the
discrimination problem for measurements M̃, Ñ instead of
the original problem. The optimal discrimination procedure is
the same in both cases except for being formally defined on a
bigger Hilbert space.
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