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The accessible information and the informational power quantify the amount of information extractable
from a quantum ensemble and by a quantum measurement, respectively. So-called spherical quantum 2-designs
constitute a class of ensembles and measurements relevant in testing entropic uncertainty relations, quantum
cryptography, and quantum tomography. We provide lower bounds on the entropy of 2-design ensembles and
measurements, from which upper bounds on their accessible information and informational power follow, as
a function of the dimension only. We show that the statistics generated by 2-designs, although optimal for the
above-mentioned protocols, never contains more than 1 bit of information. Finally, we specialize our results to
the relevant cases of symmetric informationally complete sets and maximal sets of mutually unbiased bases, and
we generalize them to the arbitrary-rank case.
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I. INTRODUCTION

Quantum theory is arguably the most complete and success-
ful description of the inherent evolution of physical systems. At
the same time, any information we can access about physical
systems is ultimately classical. The interface between the
quantum and classical domains is constituted by quantum
ensembles and quantum measurements, the former capable
of preparing quantum states upon input of some classical
information, the latter capable of extracting some classical
information from quantum systems.

From the fundamental viewpoint, it is thus crucial to char-
acterize ensembles and measurements in terms of the maximal
amount of extractable information, leading to results such as
entropic uncertainty relations [1–5] and device-independent
quantum information processing [6]. This characterization
has deep consequences in a plethora of applications, such as
information locking [7], quantum cryptography [8], tomog-
raphy [9], communication [10], witnessing [11,12], private
decoupling [13,14], purification of noisy measurements [15],
and error correction [16,17], where the efficiency—or the
success itself—of the protocol depends on the generated
input-output statistics.

In this paper we address the problem of quantifying the
maximal amount of information that can be extracted from a
quantum ensemble, or by a quantum measurement. The former
problem, known as the accessible information problem, was
introduced [18–23] almost half a century ago, while the latter,
known as the informational power problem, is much more
recent [24–30].

We will focus on a relevant class of ensembles and
measurements, known as spherical quantum 2-designs [31],
whose distinctive feature is to share many properties with
the uniform distribution. Relevant examples of 2-designs are
so-called symmetric informationally complete (SIC) measure-
ments [32,33] and maximal sets of mutually unbiased bases
(MUBs) [34,35]. They play a crucial role in our understanding
of the state space [36,37], in quantum Bayesianism [38–41],
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and are key ingredients in many of the above-mentioned
quantum information processing protocols.

We derive lower bounds on the entropy of the input distri-
bution of 2-design ensembles and of the output distribution of
2-design measurements. From these results, we derive upper
bounds on the accessible information and the informational
power of 2-design ensembles and measurements, as a function
of the dimension of the system only. As a consequence,
we show that, perhaps surprisingly, the statistics generated
by 2-designs, although optimal for the above-mentioned
protocols, never contains more than 1 bit of information.
As particular cases, we provide the accessible information
and informational power of SIC and MUB ensembles and
positive operator-valued measures (POVMs) (analytically for
dimensions 2 and 3, numerically otherwise). Finally, we
extend our results to generalizations of SICs and MUBs with
arbitrary rank.

The paper is structured as follows. Preliminary concepts
are summarized in Sec. II. Lower bounds on the entropy
of 2-designs are derived in Sec. III, from which bounds on
accessible information and informational power of 2-designs
are derived in Sec. IV. Our results are specialized to the
cases of SICs and MUBs in Sec. V, and generalized to
the arbitrary-rank case in Sec. VI. We conclude the paper
discussing some open problems in Sec. VII.

II. FORMALISM

Let us recall some basic facts [42] from quantum informa-
tion theory. Any quantum system is associated with a Hilbert
spaceH, and we denote with L(H) the space of linear operators
on H. We consider only finite-dimensional Hilbert spaces. A
quantum state ρ is a positive semidefinite operator in L(H)
such that Tr[ρ] � 1. Any preparation of a quantum system
is described by an ensemble, namely, an operator-valued
measurable function E = {ρx} from real numbers x to states
ρx ∈ L(H), such that

∑
x Tr[ρx] = 1.

A quantum effect � is a positive semidefinite operator
in L(H) such that � � 1. Any measurement on a quantum
system is described by a POVM, namely, an operator-valued
measurable function P = {�y} from real numbers y to effects
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�y ∈ L(H), such that
∑

y �y = 1, where 1 denotes the
identity operator. Given an ensemble E = {ρx} and a POVM
P = {�y}, the joint probability px,y of state ρx and outcome
�y is given by the Born rule, namely, px,y = Tr[ρx�y].

A. Accessible information and informational power

Let us recall some basic definitions [43] from classical
information theory. A random variable X is a function that
maps from its domain, the sample space, to its range, the real
numbers, according to a probability distribution px . Given a
random variable X, its Shannon entropy H (X) defined as

H (X) := −
∑

x

px log2 px

is a measure of the lack of information about the outcome
of X. We write log2 for binary logarithms and ln for natural
logarithms, and we express informational quantities in bits.

Given two random variables X and Y , their joint Shannon
entropy H (X,Y ) defined as

H (X,Y ) := −
∑
x,y

px,y log2 px,y

is a measure of the lack of information about the joint
outcomes of X and Y . The conditional Shannon entropy
H (Y |X) defined as H (Y |X) := H (X,Y ) − H (X) is a measure
of the lack of information about the outcome of X given the
knowledge of the outcome of Y . The mutual information
I (X; Y ) defined as I (X; Y ) := H (X) + H (Y ) − H (X,Y ) =
H (Y ) − H (Y |X) = H (X) − H (X|Y ) is a measure of how
much information about each random variable is carried by
the other one. Given an ensemble E = {ρx} and a POVM P =
{�y}, we denote with I (E,P ) the mutual information I (X; Y )
between random variables X and Y distributed according to
px,y = Tr[ρx�y].

The accessible information [18–21] is a measure of how
much information can be extracted from an ensemble.

Definition 1 (Accessible information). The accessible in-
formation A(E) of an ensemble E is the supremum over any
POVM P of the mutual information I (E,P ), namely,

A(E) := sup
P

I (E,P ).

The informational power [24] is a measure of how much
information can be extracted by a POVM.

Definition 2 (Informational power). The informational
power W (P ) of a POVM P is the supremum over any ensemble
E of the mutual information I (E,P ), namely,

W (P ) := sup
E

I (E,P ).

We recall some results about accessible information and
informational power that will be useful in the following.

Lemma 1. For any POVM P = {�y}, the informational
power W (P ) is the supremum over normalized states ρ of the
accessible information of the ensemble {ρ1/2�yρ

1/2}, namely,

W (P ) = sup
ρ

A({ρ1/2�yρ
1/2}). (1)

Proof. See Refs. [24,29]. �

Lemma 2. For any ensemble E of pure states and for any
POVM P with rank-1 elements, the accessible information
A(E) and the informational power W (P ) are bounded as
follows:

0 � A(E) � log2 d, (2)

log2 d − 1

ln 2

d∑
n=2

1

n
� W (P ) � log2 d. (3)

Proof. See Refs. [19,23,29]. �

B. Spherical quantum 2-designs

A spherical quantum t design is a discrete probability
distribution over quantum states that shares some properties
with the uniform distribution.

Definition 3 (Spherical quantum t design). A spherical
quantum t design {px,|φx〉}Nx=1 is a probability distribution
px over normalized pure states |φx〉 such that

N∑
x=1

px (|φx〉〈φx |)⊗s =
∫

(|φ〉〈φ|)⊗s dφ (4)

holds for any s � t , where the integral is over the Haar
measure.

We recall some results about quantum t designs that will
be useful in the following.

Lemma 3. The integral over the Haar measure in Eq. (4) is
given by ∫

(|φ〉〈φ|)⊗s dφ = 1

M
Psym, (5)

where Psym is the projector over the symmetric subspace and
M = (s + d − 1

s ) is its norm.
Proof. See Ref. [31]. �
A t design is called uniformly distributed (or unweighted)

if px = 1/N for all x. In this work we will focus on
2-designs. An ensemble E = {ρx} of pure states is a 2-design
ensemble if {px,|φx〉} is a 2-design, with px := Tr[ρx]
and |φx〉〈φx | := ρx/ Tr[ρx]. Notice that upon setting s = 1
in Eqs. (4) and (5) it follows that the average state of
any 2-design ensemble is 1/d. This allows us to define
2-design POVMs as follows. A POVM P = {�y} with rank-1
elements is a 2-design POVM if {qy,|πy〉} is a 2-design, with
qy := Tr[�y]/d and |πy〉〈πy | := �y/ Tr[�y].

Noticeable examples of uniformly distributed 2-designs are
symmetric informationally complete (SIC) sets [32], for which
N = d2, and d + 1 mutually unbiased bases (MUBs) [34], for
which N = d(d + 1).

Definition 4 (SIC). A d-dimensional SIC set {px,|φx〉}d2

x=1 is
a uniform probability distribution px = 1/d2 over normalized
pure states |φx〉 such that

|〈φx |φy〉|2 = dδx,y + 1

d + 1
. (6)

Definition 5 (MUB). A d-dimensional (d + 1)-MUB
{pb,x,|φb,x〉}d+1,d

b=1,x=1 is a uniform probability distribution
pb,x = 1/(d(d + 1)) over normalized pure states |φb,x〉 such
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that

|〈φb,x |φb′,x ′ 〉|2 = δb,b′δx,x ′ + 1

d
(1 − δb,b′ ). (7)

III. ENTROPIC BOUNDS FOR 2-DESIGNS

In previous literature, entropic bounds for SICs and MUBs
were discussed [44]. We generalize those results by providing
bounds for arbitrary uniformly distributed 2-designs.

Theorem 1. The Shannon entropy H (E,�) of any 2-
design ensemble E = {ρx}Nx=1 uniformly distributed (namely,
Tr[ρx] = 1/N for all x) with respect to effect � is bounded as
follows:

H (E,�) � log2

(
N (d + 1)

d

Tr[�]2

Tr[�]2 + Tr[�2]

)
. (8)

Proof. Let |φx〉〈φx | := Nρx . By setting s = 2 in Eqs. (4)
and (5) it follows that∑

x

1

N
(|φx〉〈φx |)⊗2 = 1 + S

d(d + 1)
,

where we used the fact that the projector on the symmetric
subspace of H⊗2 is Psym = 1

2 (1 + S) and S is the swap
operator.

Multiplying both sides by d2

N
�⊗2

Tr[�]2 and taking the trace we
get

∑
x

d2

N2

(〈φx |�|φx〉)2

Tr[�]2
= d

N (d + 1)

Tr[�]2 + Tr[�2]

Tr[�]2
, (9)

where we used the fact that Tr[�⊗2S] = Tr[�2] for any
effect �.

Since the probability of state ρx given effect � is given by

px|� = d

N

〈φx |�|φx〉
Tr[�]

,

the negative logarithm of the left-hand side of Eq. (9) can be
upper bounded by means of Jensen’s inequality as follows:

− log2

∑
x

p2
x|� � −

∑
x

px|� log2 px|�.

The right-hand side is the Shannon entropy H (E,�) of
ensemble E with respect to effect �, so the statement
follows. �

Theorem 2. The Shannon entropy H (P,ρ) of any 2-
design POVM P = {�y}Ny=1 uniformly distributed (namely,
Tr[�y] = d/N for all y) with respect to state ρ is bounded as
follows:

H (P,ρ) � log2

(
N (d + 1)

d

Tr[ρ]2

Tr[ρ]2 + Tr[ρ2]

)
. (10)

Proof. Let |πy〉〈πy | := N/d�y . By setting s = 2 in Eqs. (4)
and (5) it follows that∑

y

1

N
(|πy〉〈πy |)⊗2 = 1 + S

d(d + 1)
,

where we used the fact that the projector on the symmetric
subspace of H⊗2 is Psym = 1

2 (1 + S) and S is the swap
operator.

Multiplying both sides by d2

N

ρ⊗2

Tr[ρ]2 and taking the trace we
get

∑
y

d2

N2

(〈πy |ρ|πy〉)2

Tr[ρ]2
= d

N (d + 1)

Tr[ρ]2 + Tr[ρ2]

Tr[ρ2]
, (11)

where we used the fact that Tr[ρ⊗2S] = Tr[ρ2] for any
state ρ.

Since the probability of outcome �y given state ρ is given
by

qy|ρ = q

N

〈πy |ρ|πy〉
Tr[ρ]

,

the negative logarithm of the left-hand side of Eq. (11) can be
upper bounded by means of Jensen’s inequality as follows:

− log2

∑
y

q2
y|ρ � −

∑
y

qy|ρ log2 qy|ρ.

The right-hand side is the Shannon entropy H (P,ρ) of POVM
P with respect to state ρ, so the statement follows. �

By direct inspection it follows that state- and effect-
dependent lower bounds in Eqs. (8) and (10) are independent
of the norms of � and ρ, so without loss of generality
we can set Tr[ρ] = Tr[�] = 1. Furthermore, those bounds
can be made state and effect independent by minimizing the
right-hand side of Eqs. (8) and (10) over � and ρ, respectively,
with minimum achieved when � and ρ are rank 1 (namely,
Tr[ρ2] = Tr[�2] = 1).

IV. ACCESSIBLE INFORMATION AND INFORMATIONAL
POWER OF 2-DESIGNS

In previous literature, the accessible information and the
informational power of SICs were derived for dimension
2 [24,25,28] and 3 [29,30], and tight bounds were provided
for any dimension [29]. Bounds are also known for maximal
sets of MUBs [1,7]. In this section we generalize those results
by providing bounds for 2-designs in any dimension.

Upper bounds on the accessible information and informa-
tional power of uniformly distributed 2-designs can be derived
from Theorems 1 and 2. However, in order to bound the
accessible information of 2-designs in Theorem 3 we use an
alternative derivation which holds for arbitrary (not necessarily
uniformly distributed) 2-design ensembles.

Theorem 3. The accessible information A(E) of any
d-dimensional 2-design ensemble E = {ρx} (not necessarily
uniformly distributed) is bounded as follows:

A(E) � log2
2d

d + 1
. (12)

Proof. Let px := Tr[ρx] and |φx〉〈φx | := ρx/ Tr[ρx]. By
setting s = 2 in Eqs. (4) and (5) it follows that∑

x

px(|φx〉〈φx |)⊗2 = 1 + S

d(d + 1)
,

where we used the fact that the projector on the symmetric
subspace of H⊗2 is Psym = 1

2 (1 + S) and S is the swap
operator.

By Davies’s theorem [22] it suffices to optimize over
POVMs with rank-1 elements. Let P = {�y} be such a
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POVM and let qy := Tr[�y]/d and |πy〉〈πy | := �y/ Tr[�y].
Multiplying both sides by d2 ∑

y qy(|πy〉〈πy |)⊗2 and taking
the trace we get

∑
x,y

pxqyd
2|〈φx |πy〉|4 = 2d

d + 1
, (13)

where we used the fact that Tr[�⊗2S] = Tr[�2] for any
effect �.

Since the joint probability of state ρx and outcome �y

is px,y = pxqyd|〈φx |πy〉|2, and its marginals are px and qy

(we recall that
∑

x px |φx〉〈φx | = 1/d), the logarithm of the
left-hand side of Eq. (13) can be lower bounded by means of
Jensen’s inequality as follows:

∑
x,y

px,y log2
px,y

pxqy

� log2

(∑
x,y

px,y

px,y

pxqy

)
.

The left-hand side is the mutual information I (E,P ) between
ensemble E and POVM P , namely,

I (E,P ) :=
∑
x,y

px,y log2
px,y

pxqy

� log2
2d

d + 1
.

Since A(E) := supP I (E,P ), the statement follows. �
Theorem 4. The informational power W (P ) of any 2-design

POVM P = {�y} uniformly distributed (namely, Tr[�y] =
d/N for all y) is bounded as follows:

W (P ) � log2
2d

d + 1
. (14)

Proof. Let |πy〉〈πy | := N/d�y . By a Davies-like theo-
rem [24] it suffices to optimize over ensembles of pure states.
Let E = {ρx} be such an ensemble and let px := Tr[ρx] and
|φx〉〈φx | := ρx/ Tr[ρx]. The joint probability of outcome �y

given state ρx is then px,y = pxd/N |〈φx |πy〉|2.
Let X and Y be random variables with X distributed

according to px and Y such that p(X = x,Y = y) = px,y .

Then one has

W (P ) � I (E,P ) = H (Y ) −
∑

x

H (Y |X = x).

One can trivially upper bound H (Y ) as H (Y ) � log2 N . Due
to the state-independent version of Theorem 2, we have
that H (Y |X = x) � log2

N(d+1)
2d

, from which the statement
follows. �

V. THE CASE OF SICS AND (d + 1)-MUBS

Almost 40 years ago it was conjectured [22], and it was very
recently proved [24,29], that the accessible information and
the informational power of 2-dimensional SIC ensembles and
POVMs (tetrahedral configuration) are given by log2 4/3, with
optimality achieved by the antipodal tetrahedral configuration.
Very recently, the accessible information and the informational
power W (P ) of three-dimensional SIC ensembles and POVMs
were proven [29,30] to be given by log2

3
2 , with optimality

achieved by an orthonormal configuration. We notice that these
results follow as corollaries from Theorems 3 and 4.

Very recently, it was also proven [28] that the accessible
information and the informational power of two-dimensional
3-MUB ensembles and POVMs are given by 1/3, with opti-
mality achieved by a 3-MUB configuration. In this section we
extend those results by deriving the accessible information and
informational power of three-dimensional 4-MUB ensembles
and POVMs.

Corollary 1. The accessible information A(E) of any three-
dimensional 4-MUB ensemble E and the informational power
W (P ) of any three-dimensional 4-MUB POVM P are given
by

A(E) = W (P ) = log2
3

2
. (15)

The POVM attaining A(E) is a SIC POVM and the ensemble
attaining W (P ) is a SIC ensemble.

Proof. The three-dimensional 4-MUB ensemble E or
POVM P is unique [35] up to unitary transformations and
permutations of elements. For some fixed orthonormal basis
and up to a normalization, the coefficients of the vectors of E

and P are given by the columns of the following matrix:

1√
3

⎛
⎝

√
3 0 0 1 1 1 1 1 1 1 1 1

0
√

3 0 1 ω ω2 ω ω2 1 ω2 ω 1
0 0

√
3 1 ω2 ω ω 1 ω2 ω2 1 ω

⎞
⎠ ,

where ω = ei2π/3.
Denote with Q and F , respectively, the POVM and

ensemble whose vectors are given, up to a normalization, by
the columns of the following matrix:

1√
2

⎛
⎝ 0 0 0 1 1 1 −1 ξ ξ ∗

−1 ξ ξ ∗ 0 0 0 1 1 1
1 1 1 −1 ξ ξ ∗ 0 0 0

⎞
⎠ ,

where ξ = eiπ/3. It is immediate to verify that Q and F are a
SIC POVM and ensemble, respectively.

By direct inspection it follows that I (E,Q) = I (F,P ) =
log2 3/2. Since by Definitions 1 and 2 we have I (E,Q) �
A(E) and I (F,P ) � W (P ), and by Theorems 3 and 4 we have
that A(E),W (P ) � log2 3/2, the statement follows. �

We now compare the optimal strategies attaining the
accessible information and the informational power, with
the so-called pretty-good strategies [45–48]. Given a d-
dimensional 2-design ensemble E = {ρx}, its pretty-good
POVM is P = {�x} with �x = dρx ; analogously, given a
d-dimensional 2-design POVM P = {�y}, its pretty-good
ensemble is E = {ρy} with ρy = �y/d.
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FIG. 1. (Color online) Upper and lower bounds [thick (black)
continuous lines] and their asymptotes [horizontal (black) dashed
lines] on accessible information A(E) and informational power W (P )
of any 2-design ensemble E and uniformly distributed 2-design
POVM P , as a function of the dimension d , as given by Theorems
3 and 4. Accessible information and informational power of SIC
ensembles and POVMs (red continuous line with circles), and
corresponding pretty-good (PG) strategy [lower (red) dashed line]
as in Eq. (16). Accessible information and informational power of
(d + 1)-MUB ensembles and POVMs (blue continuous line with
asterisks), and corresponding pretty-good (PG) strategy [upper (blue)
dashed line] as in Eq. (17). For red and blue continuous lines (with
circles and asterisks, respectively), values are analytically derived
for d = 2,3 (see Corollary 1), and numerically derived for d � 4.
Numerical optimization was performed over SICs (up to dimension
15) and (d + 1)-MUBs (up to dimension 5; no example is known in
dimension 6) as provided in Refs. [33,35].

For SIC ensembles and POVMs the mutual information
given by the pretty-good strategy is

I (E,dE) = I (P/d,P ) = log2 d − d − 1

d
log2(d + 1). (16)

The right-hand side of Eq. (16) is smaller than the lower bound
in Eq. (2) for any d. Then the pretty-good strategy for SIC
ensembles and POVMs is suboptimal for any d.

For (d + 1)-MUB ensembles and POVMs the mutual
information given by the pretty-good strategy is

I (E,dE) = I (P/d,P ) = log2 d

d + 1
. (17)

The right-hand side of Eq. (17) coincides with the optimal
value 1/3 for d = 2. However, it is smaller than the value
log2 3/2 provided by Corollary 1 for d = 3, and it is smaller
than the lower bound in Eq. (2) for any d � 4. Then the
pretty-good strategy for (d + 1)-MUB ensembles and POVMs
is optimal for d = 2 and suboptimal for d � 3.

We report the results of this section in Fig. 1.

VI. ARBITRARY-RANK SICS AND (d + 1)-MUBS

Symmetric informationally complete sets and mutually
unbiased bases were generalized [49,50] to the case of
arbitrary-rank states and elements in the following way.

Definition 6 (Arbitrary-rank SIC set). A d-dimensional
arbitrary-rank SIC set {px,ρx}d2

x+1 is a uniform probability
distribution px = 1/d2 over mixed states ρx such that

Tr[ρxρx ′ ] = δx,x ′d2a + (1 − δx,x ′ )
d(1 − da)

d2 − 1
(18)

for some 1/d3 � a � 1/d2 and
∑

x ρx = d1.
Notice that the rank-1 case is recovered for a = 1/d2, while

for a = 1/d3 one has a set of maximally mixed operators.
An ensemble E = {σx} is an arbitrary-rank SIC ensemble if
{px,ρx} is an arbitrary-rank SIC set, with px := Tr[σx] and
ρx := σx/ Tr[σx]. A POVM P = {�y} is an arbitrary-rank SIC
POVM if {qy,ρy} is an arbitrary-rank SIC set, with qy :=
Tr[�y]/d and ρy := �y/ Tr[�y].

Definition 7 (Arbitrary-rank (d + 1)-MUB set).
A d-dimensional arbitrary-rank (d + 1)-MUB set
{pb,x,ρb,x}b=1,...d+1,x=1,...d is a uniform probability distribution
px = 1/d(d + 1) over mixed states ρb,x such that

Tr[ρb,xρb′,x ′ ] = δb,b′δx,x ′k + δb,b′ (1 − δx,x ′ )

× 1 − k

d − 1
+ 1 − δb,b′

d
(19)

for some 1/d � k � 1 and
∑

b,x ρb,x = (d + 1)1.
Notice that the rank-1 case is recovered for k = 1, while

for k = 1/d one has a set of maximally mixed operators.
An ensemble E = {σb,x} is an arbitrary-rank (d + 1)-MUB
ensemble if {pb,x,ρb,x} is an arbitrary-rank (d + 1)-MUB set,
with pb,x := Tr[σb,x] and ρb,x := σb,x/ Tr[σb,x]. A POVM
P = {�y} is an arbitrary-rank MUB POVM if {qb,y,ρb,y} is an
arbitrary-rank (d + 1)-MUB set, with qb,y := Tr[�b,y]/d and
ρb,y := �b,y/ Tr[�b,y].

Theorem 5. The accessible information A(E) of any
arbitrary-rank SIC ensemble E = {ρx} and the informational
power W (P ) of any arbitrary-rank SIC POVM P = {�y} are
bounded as follows:

A(E),W (P ) � log2
d(d2a + 1)

d + 1
. (20)

Proof. Let us first prove the statement for W (P ); then the
statement for A(E) will immediately follow from Lemmas 1
and 3.

By a Davies-like theorem [24] it suffices to optimize
over ensembles of pure states. Let F = {σx} be such an
ensemble and let px := Tr[σx] and |φx〉〈φx | := σx/ Tr[σx].
The joint probability of state σx and outcome �y is then
px,y = px〈φx |�y |φx〉.

Let X and Y be random variables with X distributed
according to px and Y such that the joint probability of X

and Y is px,y . Then one has

W (P ) � I (E,P ) = H (Y ) −
∑

x

pxH (Y |X = x).

One can trivially upper bound H (Y ) as H (Y ) � log2 d2. It was
proven [51] that

H (Y |X = x) � − log2

(
ad3 − ad2 + d − 1

d(d2 − 1)

)
,

from which the statement follows. �
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Theorem 6. The accessible information A(E) of any gener-
alized (d + 1)-MUB ensemble E = {ρx} and the informational
power W (P ) of any generalized (d + 1)-MUB POVM P =
{�y} are bounded as follows:

A(E),W (P ) � log2
d(k + 1)

d + 1
. (21)

Proof. Let us first prove the statement for W (P ); then the
statement for A(E) will immediately follow from Lemmas 1
and 3.

By a Davies-like theorem [24] it suffices to optimize
over ensembles of pure states. Let F = {σx} be such an
ensemble and let px := Tr[σx] and |φx〉〈φx | := σx/ Tr[σx].
The joint probability of state σx and outcome �y is then
px,y = px〈φx |�y |φx〉.

Let X and Y be random variables with X distributed
according to px and Y such that the joint probability of X

and Y is px,y . Then one has

W (P ) � I (E,P ) = H (Y ) −
∑

x

pxH (Y |X = x).

One can trivially upper bound H (Y ) as H (Y ) � log2(d(d +
1)). It was proven [52] that

H (Y |X = x) � log2
(d + 1)2

k + 1
,

from which the statement follows. �
Notice that bounds on the accessible information and infor-

mational power of rank-1 SIC ensembles and POVMs [29] can
be obtained as a corollary of Theorem 5 by setting a = 1/d2;
analogously, bounds for (d + 1)-MUBs [1,7] can be obtained
as a corollary of Theorem 6 by setting k = 1. In the maximally
mixed case, by setting a = 1/d3 (respectively, k = 1/d) in
Theorem 5 (respectively, Theorem 6), one has that accessible
information and informational power vanish as expected.

VII. CONCLUSION AND OUTLOOK

We derived effect-dependent and effect-independent lower
bounds on the entropy of the input distribution of 2-design
ensembles; analogously, we derived state-dependent and state-
independent lower bounds on the entropy of the output
distribution of 2-design measurements. From these results,
we derived upper bounds on the accessible information and
the informational power of 2-design ensembles and measure-
ments, as a function of the dimension of the system only.
As a consequence, we showed that, perhaps surprisingly, the
statistics generated by 2-designs, although optimal for testing
of entropic uncertainty relations, quantum cryptography, and
tomography, never contains more than 1 bit of information. As
particular cases, we provided the accessible information and
informational power of SIC and MUB ensembles and POVMs
(analytically for dimensions 2 and 3, numerically otherwise).
Finally, we extended our results to generalizations of SICs and
MUBs with arbitrary rank.

We conclude by presenting a few relevant open problems.
Analytically characterizing the accessible information and
the informational power of SIC ensembles and POVMs in
dimensions larger than 3 seems a hard task, as suggested by the
irregular behavior of the corresponding line in Fig. 1. However,
preliminary results seem to suggest that the same task for
(d + 1)-MUB ensembles and POVMs could be feasible.
Indeed, consider the unique [35] (up to unitary transformations
and permutation of elements) four-dimensional (d + 1)-MUB
ensemble E and POVM P , whose coefficients with respect to
some fixed orthonormal basis are given (up to a normalization)
by the columns of the following matrices:

1

2

⎛
⎜⎝

2 0 0 0 1 1 1 1 1 1
0 2 0 0 1 1 −1 −1 −1 −1
0 0 2 0 1 −1 −1 1 −i i

0 0 0 2 1 −1 1 −1 −i i

⎞
⎟⎠ ,

1

2

⎛
⎜⎝

1 1 1 1 1 1 1 1 1 1
1 1 −i −i i i −i −i i i

i −i −i i i −i −1 1 −1 1
−i i −1 1 −1 1 −i i i −i

⎞
⎟⎠ .

The orthonormal POVM Q and ensemble F given by⎛
⎜⎜⎜⎜⎝

1√
2

1
2 0 1

2
i√
2

− i
2 0 − i

2

0 − i
2

i√
2

i
2

0 1
2

1√
2

− 1
2

⎞
⎟⎟⎟⎟⎠

are such that I (E,Q) = I (F,P ) = 3/5, and we conjecture that
this value is optimal, namely, A(E) = W (P ) = 3/5.

Another relevant open problem is whether there exists a
maximally informative 2-design, namely, a 2-design saturating
the upper bound in Theorems 3 and 4 for any dimension d.
We showed that the answer is on the affirmative for d = 2,
where SIC ensembles and POVMs are optimal, and for d = 3,
where both SIC and (d + 1)-MUB ensembles and POVMs are
optimal. However, numerical results presented in Fig. 1 seem
to suggest that, for d � 4, neither SICs nor (d + 1)-MUBs are
maximally informative 2-designs.

Finally, a very interesting open question is how to generalize
arbitrary quantum 2-designs to the arbitrary-rank case, in the
same spirit of the generalizations for SICs and MUBs previ-
ously discussed [49,50], and how to quantify their accessible
information and informational power. We believe that these
tantalizing open problems well deserve future investigation.
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