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Fidelity of measurement-based quantum computation in a bosonic environment
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We investigate the fidelity of measurement-based quantum computation (MBQC) when it is coupled with
a boson environment, by measuring the cluster-state fidelity and gate fidelity. Two schemes of cluster-state
preparation are studied. In the controlled-Z (CZ) creation scheme, cluster states are prepared by entangling all
qubits in |+〉 state with CZ gates at all neighboring sites. The fidelity shows an oscillation pattern over time. The
influence of the environmental temperature is evaluated, and suggestions are given to enhance the performance
of MBQCs realized in this way. In the Hamiltonian creation scheme, cluster states are made by cooling a system
with cluster Hamiltonians, of which the ground states are cluster states. A fidelity sudden-drop phenomenon is
discovered. When the coupling is below a threshold, MBQC systems are highly robust against the noise. Our
main environmental model is one with a single collective bosonic mode.
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I. INTRODUCTION

Measurement-based quantum computation (MBQC) is a
widely accepted scheme for quantum computation [1–3].
Instead of designing complicated quantum gates to manipulate
qubits, MBQC is implemented by executing a sequence of
single-qubit measurements on cluster states consisting of a
group of highly entangled qubits. As a result, one great
difficulty lies in the cluster-state preparation.

There are various proposals for preparing cluster states. In
optics, a fusion operation to bind small cluster states into a
larger cluster state is used [4,5]. For quantum dots, there is
another method [6]. In Ref. [2], Raussendorf et al. pointed out
two general ways to prepare cluster states. The first is to prepare
all qubits in |+〉 state and entangle them into a cluster state
by implementing controlled-Z (CZ) gates on all neighboring
sites. The second is to design a so-called cluster Hamiltonian,
of which the ground state is a cluster state, and then cool
down the system to obtain an approximate cluster state. The
idea of a cluster Hamiltonian has been further explored.
For example, one can encode four physical qubits into one
logical qubit to achieve an experimentally realizable cluster
Hamiltonian [7]. It has also been shown that topologically
protected MBQC can reduce thermal fluctuations [8] in the
Hamiltonian-created cluster state. Experiments on optical
systems have been performed to demonstrate various quantum
algorithms and protocols using the MBQC scheme. In 2005,
Walther et al. reported a demonstrative experiment on four-
qubit cluster states [9]. In 2007, Grover’s search algorithm
for four qubits was reported [10]. Also, Deutsch’s algorithm
was realized by MBQCs on a four-qubit optical system [11].
Remarkably, in the same year, a six-photon cluster state was
successfully entangled by Pan’s group [12]. The one-way
MBQC scheme has even been used to test the quantum version
of the prisoner’s dilemma [13]. A four-photon cluster state
with a very high fidelity is demonstrated in Ref. [14]. The
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realization of MBQCs beyond the cluster state has also been
reported [15].

Unfortunately, cluster states, as a highly entangled system,
are fragile to decoherence. It is thus important to analyze
the noise to ensure that the computation on a cluster state is
reliable. Some works have been done on this topic. In 2006, a
method was proposed for checking the fidelity of a four-qubit
cluster state experimentally [16]. The entanglement sudden
death phenomenon [17], which may affect the fidelity of cluster
states, has also been studied [18]. Recently, Fujii et al. studied
the error appearing in Hamiltonian-created cluster states when
the temperature is nonzero [19]. They discovered that the
fidelity changes suddenly at a certain threshold temperature.

In this paper, we analyze the performance of the MBQC
system when coupled with a boson environment (Fig. 1).
The cluster-state fidelity and four kinds of gate fidelity are
measured, and the gate fidelity is studied in detail.

Due to the threshold theorem of fault-tolerant quantum
computation, if the error in individual quantum gates is below
a certain threshold, quantum computation on a large scale can
be achieved as well [20]. As a result, our analysis works to
protect MBQC systems with arbitrary scales.

The boson environment has long been an issue of concern in
various fields [21]. More importantly, the boson environment,
which is the noise caused by harmonic oscillators, actually
describes a wide range of weak noises. Thus, this noise model
is generic to many quantum computation cases.

A large cluster state can be prepared bit by bit. Therefore,
a strategy against noise is to prepare a portion of a cluster
state right before it is measured. In this paper, we assume that
the cluster state for an individual gate operation is prepared at
one time. With individual gate fidelities being analyzed, the
fidelity of the whole MBQC can then be studied by the scheme
of fault-tolerant quantum computation.

Two preparation schemes for the cluster state are eval-
uated. The first scheme was proposed by Briegel and
Raussendorf [22]. In this scheme, cluster states are prepared by
entangling all qubits previously in the |+〉 state with CZ gates
on neighboring sites. The second scheme was later proposed
by Raussendorf [2], where cluster states are made by cooling
a system with cluster Hamiltonians, and the cluster states are
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FIG. 1. (Color online) A cluster state coupled with a boson
environment.

the ground states. Both preparations are significant and widely
applicable. However, since the two preparation schemes are
quite different, it may not be meaningful to compare the fidelity
between them.

This paper is organized as follows. In Sec. II, we introduce
gate fidelity. In Sec. III, we analyze how the coupling of a
boson environment affects the cluster state entangled by CZ
gates. We first solve the pure phase noise case exactly and
analyze it in detail. Suggestions are given for minimizing the
damage caused by the coupling. Then we consider both phase
noise and amplitude noise, which is a more general case. We
solve this problem numerically. In Sec. IV, we analyze the
influence of a boson environment on the cluster Hamiltonian
situation, with both phase and amplitude noise considered.
We also discover a threshold coupling coefficient at which the
fidelity drops dramatically. Section V presents the discussion.
We address the difference between the gate fidelity and the
corresponding cluster-state fidelity. The collective character of
our noise model is also discussed. We present our conclusions
in Sec. VI.

II. INTRODUCTION TO THE FIDELITY FOR GATE
OPERATIONS

The fidelity for a cluster state [2] is defined straightfor-
wardly,

F = Tr(|�C〉〈�C |ρ), (1)

where |�C〉 is a perfect cluster state, and ρ is the state being
judged. The form and utility of a cluster state |�C〉 are reported
in Ref. [2].

However, we are often more concerned with how well a
gate operation is implemented by an MBQC system, and the
cluster-state fidelity fails to answer this question. It is thus
necessary to define the fidelity for gate operations. A good
definition employs a process called gate teleportation.

The basic idea of gate teleportation is simple: if you apply
some unitary operations to an EPR pair and use the pair to
teleport a qubit, rather than getting the original information
from the transported qubit, you will receive transformed
information. By applying the proper gate to the EPR pair,
we can get the transported qubit transformed by a desired
unitary operator. For example, if you would like to have a
qubit with Hadamard gate applied, rather than teleporting
it by a regular EPR pair (|00〉 + |11〉), we teleport it by

FIG. 2. (Color online) Using a five-qubit linear cluster state to
produce the gate teleportation resource state for Z rotation.

(I ⊗ H )(|00〉 + |11〉). Readers may refer to the original paper
on gate teleportation [23] to get a full understanding.

It turns out that a cluster state can be used to prepare
resource states for gate teleportation by implementing a
one-way scheme. This fact offers a way to define gate
fidelity [19,24]. We take a Z-rotation gate as an example to
illustrate this process. The Z-rotation operation is defined as

Rθ =
(

ei θ
2 0

0 e−i θ
2

)
, (2)

and the resource state for it is Rθ,2(|00〉 + |11〉)12.
We prepare the resource state from a five-qubit linear cluster

state (Fig. 2). The resource state is prepared by a similar
measurement sequence to implement a Z-rotation gate in an
MBQC system. First, measure qubit 2 on the basis of the Pauli
X operator. The resulting state is

|±〉2X
m2
1 (|00〉 + |11〉Z4)13(|0〉 + |1〉Z5)4(|0〉 + |1〉)5. (3)

When the outcome of the measurement is |ψ〉2 = |+〉, m2 = 0;
when the outcome is |ψ〉2 = |−〉, m2 = 1. Then we measure
qubit 3 on the basis of

cos θ̃X + sin θ̃Y = e−i θ̃
2 ZXei θ̃

2 Z. (4)

Here, θ̃ = ±θ when |ψ〉2 = |±〉, respectively. The eigenstate
of this operator is

|ϕ+〉 = cos
θ̃

2
|+〉 − i sin

θ̃

2
|−〉, (5)

|ϕ−〉 = cos
θ̃

2
|−〉 − i sin

θ̃

2
|+〉. (6)

After the measurement of qubit 3, the system becomes

|ϕ±〉3X
m2
1 Z1

m3 (|0〉ei θ̃
2 + |1〉e−i θ̃

2 Z4)1

× (|0〉 + |1〉Z5)4(|0〉 + |1〉)5

= |ϕ±〉3X
m2
1 Z1

m3Rθ̃,1(|0〉 + |1〉Z4)1

× (|0〉 + |1〉Z5)4(|0〉 + |1〉)5. (7)
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Next, measure qubit 4 on the X basis. The resulting state will
be

|±〉4X
m2
1 Z1

m3Rθ̃,1X
m4
1 (|00〉 + |11〉)15

= |±〉4
(
X

m2
1 Rθ̃,1X

m2
1

)
X

m2
1 Z

m3
1 X

m4
1 (|00〉 + |11〉)15

= |±〉4Rθ,1X
m2
1 Z1

m3X
m4
1 (|00〉 + |11〉)15. (8)

We rewrite the state of qubits 1 and 5 as

X5
m4Z5

m3X5
m2Rθ,5(|00〉 + |11〉)15. (9)

After correcting Pauli errors, Bm = X5
m2Z5

m3X5
m4 on qubit

5, we get the resource state for Z rotation.
We define fidelity for a gate operation as

FU = Tr ρU |�U 〉〈�U |, (10)

where |�U 〉 is the perfect resource state, and ρU is the state
we measure. From our example we know that

ρU = Trp
∑

m

BmPmρPmB†
m, (11)

where m is the measuring outcome sequence, Pm is the
projection operator, and Bm is the error-correction operator.
Trp, the partial trace operation, traces out qubits other than
the qubits in the resource state. Returning to our Z-rotation
resource state, Pm stands for the measurement sequence
on qubits 2, 3, and 4, and Bm stands for the correction
operator X5

m2Z5
m3X5

m4 . After the measurement and Pauli-
error correction, a partial trace is taken so only qubits 1 and 5
exist in ρU .

If our qubit chain is in a perfect cluster state, we will have
ρU = |�U 〉〈�U |, so our fidelity defined above turns out to be
1 in this case, coinciding with the perfect application of a Z-
rotation operation. As the supplementary material in Ref. [19]
points out, Jamiolkowski isomorphism ensures the correctness
of the gate fidelity so defined.

Finally, it is enlightening to write the gate fidelity as

FU = Tr

(
ρU

S1 + I

2

S2 + I

2

)
, (12)

where S1 and S2 are stabilizers of |�U 〉. Equation (12) can be
further simplified for each type of gate (see Eqs. (18)–(21) in
the supplementary material in Ref. [19]), which simplifies the
calculation greatly.

III. CZ-GATE CREATION SCHEME

In 2001, Briegel and Raussendorf proposed the first scheme
to create cluster states [22]. First, prepare all qubits in state
|+〉. Then entangle them by applying the Ising Hamiltonian
for a certain time interval, of which the accumulated ef-
fect is a CZ operation for each pair of neighboring sites.
After these two steps, a cluster state is prepared. In fact,
one can easily generalize this preparation: any method that
applies CZ operations to all neighboring sites can fulfill this
scheme.

A cluster state prepared in this way will deteriorate with
time. We study the deterioration process in this section. We
assume that the creation process produces a perfect cluster
state. After the state is prepared, the system evolves over time
and deteriorates because of coupling to a boson environment.

A. Pure phase noise: The exactly solvable case

We first limit the coupling term to pure phase noise.
Without the presence of amplitude noise, we can solve the
time-evolution problem exactly. We take amplitude noise into
consideration in Sec. III C. The Hamiltonian here reads

H =
N∑

n=1

εnσ
(n)
z +

∑
k

ωka
†
kak +

∑
n,k

σ (n)
z (gka

†
k + g∗

kak),

(13)
where N is the qubit number, εn is half of the energy gap
between the |0〉 and the |1〉 states of the nth qubit, and σ (n)

z is
the Pauli Z operator of the nth qubit. ωk is the frequency or
energy of a boson mode. We set � = 1 in this paper. a

(†)
k is the

annihilation (creation) operator. The third term is the coupling
term, with gk being the coupling coefficient. This Hamiltonian
is similar to the Dicke model [25], and the coupling term has
been comprehensively studied in the single-qubit case [26].
Presumably, the coupling is weak in quantum computation
situations, but our analysis applies to all coupling strengths.

Our qubits are initially prepared in a perfect cluster state:

ρQ(t = 0) = |�C〉〈�C |. (14)

Our boson environment is initially set in a thermal state,

ρB(t = 0) = exp
(−β

∑
k εka

†
kak

)
Tr

[
exp

(−β
∑

k εka
†
kak

)]
=

∏
k

exp(−βεka
†
kak)

1 + 〈
Nωk

〉 , (15)

where β = 1/kBT , and 〈Nωk
〉 is the mean boson number with

frequency ωk in the thermal state.
We solve the time-evolution problem in the interaction

picture. Choosing H0 as

H0 =
N∑

n=1

εnσ
(n)
z +

∑
k

εka
†
kak, (16)

we get the interaction part of the Hamiltonian,

VI (t) = eiH0t

(∑
n,k

σ (n)
z (gka

†
k + g∗

kak)

)
e−iH0t

=
∑
n,k

σ (n)
z (gke

iωkt a
†
k + g∗

ke
−iωkt ak). (17)

The unitary time-evolution operator is

UI (t) = T̂ exp

[
−i

∫ t

0
VI (t ′)dt ′

]

= exp

{∑
n,k

[
gkσ

(n)
z ϕωk

(t)a†
k − g∗

kσ
(n)
z ϕ∗

ωk
(t)ak

]}

× exp

{
i
∑

k

∑
m,n

|gk|2σ (m)
z σ (n)

z s(ωk,t)

}
, (18)
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where

ϕωk
(t) = 1 − eiωkt

ωk

, (19)

s(ωk,t) = ωkt − sin(ωkt)

ωk
2

. (20)

We present the detailed derivation of this part in the Appendix
(Sec. 1). The reduced density matrix of the qubit part evolves
as

ρ
Q
I (t) = TrE

[
UI (t)ρQ

I (0) ⊗ ρE
I (0)UI

†(t)
]
. (21)

After some calculation, we get the component form of the
density operator,

ρ
Q
I,{in,jn}(t) ≡ 〈i1,i2, . . . ,iN |ρQ

I (t)|j1,j2, . . . ,jn〉

= exp

⎧⎨
⎩−�(t,T )

[
N∑

n=1

(in − jn)

]2
⎫⎬
⎭

× exp

⎧⎨
⎩i�(t)

⎡
⎣(

N∑
n=1

in

)2

−
(

N∑
n=1

jn

)2
⎤
⎦

⎫⎬
⎭

× ρ
Q
I,{in,jn}(0). (22)

The subscript I indicates the interaction picture. The expres-
sion of �(t,T ) and �(t) and the detailed calculation of Eq. (21)
are presented in the Appendix (Sec. 2). We proceed to take the
continuum limit in the Appendix, after which gk is contained in
the spectral density. Afterwards, we assume an ohmic spectral
density here:

I (ω) = ηωe−ω/ωc . (23)

After some calculation, we reach

�(t,T ) = η ln
(
1 + ωc

2t2
) + η ln

(
β

πt
sinh

πt

β

)
, (24)

�(t) = ηωct − η arctan(ωct). (25)

The fidelity of a cluster state here is defined as

F = Tr(|�C〉〈�C |ρQ(t)). (26)

Here ρQ is the reduced density operator of the qubits.
Remember that if the perfect cluster state is in the Schrödinger
picture, we of course require ρQ to be presented in the
Schrödinger picture. Rewriting the equation using the density
operator in the interaction picture, we have

F (t) = Tr
(|�C〉〈�C |e−iH0t ρ

Q
I (t)eiH0t

)
. (27)

We plot a seven-qubit linear cluster state coupled with a
boson environment (Fig. 3). The parameters are η = 1/1000,
ωc = 100, and β/π = 1. There are three lines in the figure:
εn = 3 [solid (green)], εn = 0.9 [dashed (blue)], and εn = 0
[dash-dotted (red)].

Two factors contribute to the oscillation of fidelity over
time: the � function and the H0 part. If the two oscillation
frequencies are close, the oscillation pattern is highly unpre-
dictable [see the dashed (blue) lines]. For any real systems,
this case should be avoided. We emphasize that when coupling
does not exist, the fidelity still oscillates due to the H0 part, but

FIG. 3. (Color online) Fidelity-time relation of a seven-qubit
linear cluster state. Solid (green) lines, εn = 3; dashed (blue) lines,
εn = 0.9; and dash-dotted (red) lines, εn = 0. (a) εn = 3. (b) εn = 0.9.
(c) εn = 0. (d) Zoom-in on the whole figure, with the three εn values
presented.

the peak of the oscillation is always 1. Another fact is that even
when the temperature of the boson environment is 0, there is
still a fidelity drop at the peak. This is easy to understand, since
the coupling term still works for the system, even though all
modes of the boson environment are in the vacuum state.

To be more specific, we analyze the fidelity for various gate
operations:

FU = Tr(ρU (t)|�U 〉〈�U |). (28)

The fidelity-time dependence for a five-qubit identity gate,
an eight-qubit Hadamard gate, a Z-rotation gate, and a CZ
gate are plotted in Fig. 4. The parameters are η = 1/1000,
ωc = 100, and β/π = 1. Because a medium εn will result in
an unpredictable time-evolution pattern, this kind of fidelity
curve is not presented. Different gate operations show different
oscillation patterns, due to their own lattice structures and
sizes.

Figure 4 shows that when εn is large, all types of gates
exhibit a fidelity peak uniformly at t ≈ 8, which is better than
the εn = 0 case. This is because when εn is large, the H0 causes
the fidelity to oscillate rapidly, which leaves the gate-type-
independent � function to shape the envelope of the fidelity.
Therefore, if the measurement can be implemented rapidly, a
strong εn is preferred.

B. Suggestions for enhancing the performance of the CZ-gate
creation scheme

Because of the advantage listed above, we chose the solid
(green) line in Fig. 4 to conduct our investigation here. In
this section, we focus on making suggestions for enhancing
the performance of MBQCs realized by the CZ-gate creation
scheme.
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FIG. 4. (Color online) Fidelity-time dependence. Solid (green)
lines, εn = 5; dash-dotted (red) lines, εn = 0. (a) Five-qubit identity
gate. (b) Eight-qubit Hadamard gate. (c) CZ gate. (d) Z-rotation gate,
ζ = π/8.

If the gate operation is implemented as soon as the cluster
state is prepared, one would be concerned about the drop rate
of the fidelity in the first several fidelity peaks. We treat the
fidelity drop rate as

�F

�t

∣∣∣∣
t→0

= F (t = t1) − F (t = 0)

t1
, (29)

where t1 is the time to the first peak of fidelity after t = 0.
We calculate the fidelity drop rate versus the temperature
of the boson environment. Our result is shown in Fig. 5.
As the figure reveals, the fidelity drop rate curves decrease
as the temperature increases, but the decrease is slow and
nonlinear. When the environmental temperature gets lower,
the decrease becomes even slower. This process eventually
stops at T = 0, where the fidelity drop rates reach a nonzero
value. Utilizing this fact, we can save cooling equipment, since

FIG. 5. (Color online) The derivative of fidelity as a function
of temperature. Dash-dotted (red) lines, five-qubit identity gate;
solid (green) lines, eight-qubit Hadamard gate; dashed (blue) lines,
Z-rotation gate; and dotted black lines, CZ gate. (a) The derivative of
four gate operations. (b) Extraction: the derivative of the five-qubit
identity gate only.

FIG. 6. (Color online) Peak statistics. Dash-dotted (red) lines,
five-qubit identity gate; solid (green) lines, eight-qubit Hadamard
gate; dashed (blue) lines, Z-rotation gate; and dotted black lines, CZ
gate. (a) Arrival time of the peak dependent on the temperature, with
the solid (green) line and the dotted black line overlapping. (b) Peak
fidelity dependent on the temperature.

there is little room for the fidelity drop rates to decrease at low
temperature.

If a cluster state could be kept for some time before
measuring it, we would ask where the fidelity peaks become
high enough. This question fits the situation when a part of
the computation must wait until other parts are finished, and
the cluster state is already prepared. From Fig. 4 we learn that
the fidelity peaks in the first peak of the envelope (see the set of
fidelity peaks near t ≈ 8) may be suitable for our purpose. To
evaluate this area, we calculate the arrival time of the highest
peak in it and the fidelity of the highest peak.

Our calculation (see Fig. 6) proves the suitability of this area
in two respects. First, the fidelity of the highest peak is high
enough. From Fig. 6, we see that the fidelities are all above
0.8 when T < 0.5. We also work out the fidelity-temperature
dependence at very low temperatures (see Fig. 7). When the
temperature goes even lower, the fidelity no longer changes,
stopping at a value lower than 1 at T = 0. Therefore, again,
we need not cool down the temperature with great effort. In
our parameter setting, ωT = 0.1 is good enough to ensure a
high fidelity for the highest peak.

Second, the arrival time of the highest peak is almost
independent of the environmental temperature and completely
independent of the gate type, which simplifies its utilization.
The highest peak may switch from one to another among
several neighboring peaks, as happens for the identity gate and
the Z-rotation gate in Fig. 7, but this fact does not complicate

FIG. 7. (Color online) Fidelity-temperature dependence. Dash-
dotted (red) lines, five-qubit identity gate; solid (green) lines, eight-
qubit Hadamard gate; dashed (blue) lines, Z-rotation gate; and dotted
black lines, CZ gate. (a) Four types of gates. (b) Extraction: five-qubit
identity gate only.
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our procedure. Since several peaks near the highest peak are
almost equally good and the temperature should not vary much,
we can just stick with one of the peaks. The fact that the
highest peak arrives uniformly regardless of T is because the
oscillation is mainly controlled by the � function and H0, both
of which do not depend on the environmental temperature at
all. The arrival time is also independent of gate type. Again,
it is because of the � function, which remains invariant under
changes in gate type, qubit number, and lattice shape of the
cluster state.

C. Generalized noise: Numerical results

Until now, we have only evaluated pure phase noise. From
the perspective of noise theory, pure phase noise fails to
describe all circumstances. As a result, we generalize our
Hamiltonian to consider both phase and amplitude noise in
this section:

H =
N∑

n=1

εnσ
(n)
z +

∑
k

ωka
†
kak

+
∑
n,k

(
cos(θ )σ (n)

z − sin(θ )σ (n)
x

)
(gka

†
k + g∗

kak). (30)

With amplitude noise added, we can no longer solve the time-
evolution problem analytically. Instead, we seek numerical
solutions, trying to figure out the character of the generalized
noise. For simplicity, we calculate a single-mode boson
environment, with the frequency resonant with the energy gap
of a two-level qubit:

H = ε

N∑
n=1

σ (n)
z + 2εa†a

+ g(a† + a)
∑

n

(
cos(θ )σ (n)

z − sin(θ )σ (n)
x

)
. (31)

This single-frequency model is reasonable, because naturally
the resonant frequency mode causes more damage. The only
drawback of this model is that it fails to describe the situation
when ε = 0, in which case a boson would have zero energy,
which is impossible.

For cluster states consisting of several qubits, we write a
program to calculate the time evolution of the density operator:

ρQ(t) = e−iH tρQ(0)eiHt . (32)

In the system, the boson environment is infinite-dimensional.
In our program, however, we adopt a cutoff approximation,
setting the maximum boson number to some large number.

The gate fidelity is still defined by Eq. (10). We show the
calculation outcomes for the five-qubit identity gate, eight-
qubit Hadamard gate, Z-rotation gate, and CZ gate. We set
g = 0.1, ε = 5, and T = 1, with different θ ’s considered (see
Fig. 8).

The fidelity curves in Fig. 8 show some common patterns.
First, all angles θ result in similar oscillation patterns, with
the same oscillation frequency. The reason is transparent.
Since the coupling is weak, we are safe to assume that the
oscillation frequency is mainly governed by the H0 part of the
Hamiltonian, which remains independent of the noise type (or,
equivalently, the parameter θ ).

FIG. 8. (Color online) Fidelity-time dependence. Solid (green)
lines, θ = π/2; dashed (blue) lines, θ = π/4; and dash-dotted (red)
lines, θ = 0. (a) Five-qubit identity gate. (b) Eight-qubit Hadamard
gate. (c) CZ gate. (d) Z-rotation gate, ζ = π/8.

An interesting fact is that phase noise imposes less damage
than amplitude noise. According to Fig. 8, the case where
θ = 0 has its peak fidelity near 1 even after a long time.
This character can be understood through some qualitative
reasoning. Since a Z error cannot change the energy of the
qubits, while the boson environment must add or subtract its
boson number by 1 to impose an error, the total energy of the
system is changed by 2ε. In contrast, an X error changes the
energy of the qubits by 2ε, which compensates for the energy
change in the boson environment and maintains the energy of
the whole system unchanged. Since X errors do not require the
energy of the system to change, they occur much more easily
than Z errors.

IV. CLUSTER HAMILTONIAN CREATION SCHEME

A cluster state can also be created by cluster Hamiltoni-
ans [2,7], of which the cluster state is the ground state. The
simplest cluster Hamiltonian is

Hf C = −J
∑

i

Ki, (33)

where J > 0, and Ki are the stabilizers of the cluster state:

Ki = Xi

∏
neigh

Zj . (34)

The product is over all sites neighboring site i. Since the ground
state |g〉 must be a state where

Ki |g〉 = |g〉, ∀i, (35)

we claim that |g〉 = |�C〉. Therefore, upon cooling this system,
we obtain a thermal state close to a cluster state.

To construct an appropriate model for noise, we need to
study the energy level of Hamiltonian (33). The eigenstate of
Hf C is just the common eigenstates of all cluster stabilizers

052306-6



FIDELITY OF MEASUREMENT-BASED QUANTUM . . . PHYSICAL REVIEW A 90, 052306 (2014)

FIG. 9. (Color online) Energy levels of HC , with g = 0.

{Ki}. The first excited state, |e1〉, will be the eigenstate with
eigenvalue −1 of a certain Ki and the eigenvector with
eigenvalue 1 of Kj,∀j �= i. Its energy is 2J higher than the
ground state. Following this reasoning, we conclude that the
energy gaps between neighboring energy levels are all 2J .
Degeneracy of this model can also be deduced. For example,
since |e1〉 can only have one eigenvalue −1, and there are n

stabilizers for a certain cluster state, we conclude that the first
excited state is N-fold degenerate. Applying the same method,
one can calculate the degeneracy of higher excited states. We
remark that the ground state is nondegenerate.

Now we can construct a single-mode boson environment,
with the mode frequency resonant with the gap between the
nearest energy levels:

HC = −J
∑

i

Ki + 2Ja†a + g(a† + a)

×
∑

n

(
cos(θ )σ (n)

z − sin(θ )σ (n)
x

)
. (36)

FIG. 10. (Color online) Fidelity of a five-qubit identity gate,
dependent on T and g. (a) θ = π/2. (b) θ = π/4. (c) θ = 0.

FIG. 11. (Color online) Fidelity of an eight-qubit Hadamard gate,
dependentg on T and g. (a) θ = π/2. (b) θ = π/4. (c) θ = 0.

The energy level structure of this Hamiltonian, with g = 0, is
plotted in Fig. 9. In the figure, |0〉, |1〉, and |2〉 are the boson
number states in Fock space. The ground state is a cluster state,
|g〉 = |�C〉, coupled with a vacuum |0〉, and the first excited
state is either |e1〉 with a vacuum or |g〉 with one boson. The
gap between the nearest energy levels is also 2J .

The density operator for the thermal state is

ρth = e−βHC / Tr(e−βHC ). (37)

Again, we compute the fidelity for gate operations of this
density operator. At low temperatures, the thermal state mainly
comprises the lowest several energy levels. As a result, we
again use a cutoff on the boson number in our computation.

In Figs. 10 and 11, we plot the fidelity of a five-qubit identity
gate and an eight-qubit Hadamard gate as a function of the
temperature T and coupling coefficient g. For clarity, we also
present the fidelity-g dependence for different T ’s in Fig. 12,
setting θ = π/2.

We find that the Hamiltonian creation scheme produces
cluster states robust against the boson environment, when the

FIG. 12. Fidelity-g dependence. Different lines vary only in
temperature. θ = π/2. (a) Five-qubit identity gate. (b) Eight-qubit
Hadamard gate. For small g, the fidelity drop is negligible.
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FIG. 13. (Color online) Fidelity-g dependence for different θ .
Solid (green) lines, θ = π/2; dashed (blue) lines, θ = π/4;
and dash-dotted (red) lines, θ = 0. (a) Five-qubit identity gate.
(b) Eight-qubit Hadamard gate.

coupling is below a certain threshold amount, whether it is
under phase or amplitude noise. The fidelity is close to 1
as long as g and T are below a critical coupling coefficient
value, depending on the gate type (see Fig. 13). Further, a
small g value does not deteriorate the fidelity even when the
temperature T is high. This is shown in Fig. 12, where, with
small g, the curves overlap greatly.

When the coupling becomes gradually stronger, a sudden
drop in fidelity is observed. This character is similar to the
sudden change in fidelity when T goes high, which is well
treated in Ref. [19]. Figures 12 and 13 show that for a five-qubit
identity gate, gc ≈ 2.9, while for an eight-qubit Hadamard
gate, gc ≈ 2.4. Below these critical coupling coefficients, the
fidelity does not suffer from the coupling effect. For example,
setting θ = π/4 and ε = 5, the fidelity of a five-qubit identity
gate at g = 0, T = 1.83 is 0.9874, while at g = 2.4, T = 1.83
it is 0.9203, which means the fidelity only drops by 0.0671 with
superstrong coupling. Actually, g/J ∼ 1, known as ultrastrong
coupling, and requiring special design to be achieved in
experiments [27], would not occur in a quantum computation
task. As a result, the sudden drop in fidelity does not harm
the gate operations evaluated here. However, in a large cluster
state, this character may become an issue. Since gc depends
on the cluster size, it is probable that a large cluster state has a
small critical value. In this case, one must calculate the critical
coefficient carefully and restrict the coupling effect to below
this level in the MBQC system.

V. DISCUSSION

In this section we first analyze the difference between gate
fidelity and cluster-state fidelity. We then discuss the collective
character of our environment.

One may wonder why the gate fidelity is different from
the corresponding cluster-state fidelity, as their definitions are
similar. The first observation to answer this question is that, to
get a correct gate teleportation resource state by the procedure
shown in Fig. 2, one does not necessarily need a cluster state.
Again, we take the Z-rotation gate as an example. If there are
X errors on both qubit 2 and qubit 4, the resource state can also
be correctly prepared:

ρU = Trp
∑

m

BmPm(X2 ⊗ X4)|�C〉〈�C |(X2 ⊗ X4)PmB†
m

= Trp
∑

m

(X2 ⊗ X4)BmPm|�C〉〈�C |PmB†
m(X2 ⊗ X4)

= Trp
∑

m

BmPm|�C〉〈�C |PmB†
m, (38)

where the relationship Pm(X2 ⊗ X4) = (X2 ⊗ X4)Pm holds,
since the measurement of qubits 2 and 4 is under the X basis.
In this section, we denote the Pauli X operator as X and the
Z operator as Z. The same reasoning holds when the error is
Z2 ⊗ Z4. It is thus natural that the gate fidelity does not equal
to the corresponding cluster-state fidelity.

Further, we quantify the difference by the eigenstates of
the cluster state’s stabilizers, since they form a complete
orthonormal basis. We denote the eigenstates

|ψi〉, ∀i ∈ {1,2, . . . ,2n}, (39)

with n being the qubit number. We denote the cluster state in
it |ψ1〉, satisfying

Kj |ψ1〉 = 1, ∀j ∈ {1,2, . . . ,n}. (40)

We decompose an arbitrary density matrix as

ρ =
∑
i,j

aij |ψi〉〈ψj |. (41)

For the cluster-state fidelity,

F = Tr(|�C〉〈�C |ρ) = Tr(|ψ1〉〈ψ1|ρ) = a11. (42)

For the gate fidelity, in contrast,

FU = Tr(|�U 〉〈�U |ρU ) = Tr

(
|�U 〉〈�U | Trp

∑
m

BmPmρPmB†
m

)

= Tr

(
|�U 〉〈�U | Trp

∑
m

BmPma11|ψ1〉〈ψ1|PmB†
m

)
+ Tr

⎛
⎝|�U 〉〈�U | Trp

∑
m

BmPm

∑
i,j

′
aij |ψi〉〈ψj |PmB†

m

⎞
⎠ , (43)

where the primed sum does not go over i = j = 1.
By the process of gate teleportation, the first part
on the right-hand side equals a11. The second part,
which is nonzero generally, results in the difference be-

tween the gate fidelity and the corresponding cluster-state
fidelity.

We plot four fidelity-temperature curves to give a direct
demonstration; see Fig. 14. The gate fidelities here all go above
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FIG. 14. (Color online) Comparison between the gate fidelity
[solid (green) lines] and the corresponding cluster fidelity [dash-
dotted (red) line], with εn = 5. (a) Five-qubit identity gate. (b)
Eight-qubit Hadamard gate. (c) CZ gate. (d) Z-rotation gate, θ = π/8.

the corresponding cluster-state fidelities, but generally they
show the same pattern.

Now we analyze the collective character of our noise
models. Our Hamiltonians, such as Eq. (30), do not distinguish
qubits from each other and, thus, remain invariant when the
qubits are permuted. In Ref. [28], this is called the “collective
decoherence” case, to distinguish it from the individual
decoherence case. The collective character of our Hamiltonian
may result in an outcome that is different from the individual
case. As evidence, we evaluate the fidelity drop versus the qubit
number in a linear cluster state. We use Hamiltonian (30). We
set θ = π/2, g = 0.1, ε = 5, and the temperature of the boson
environment T = 1. The typical fidelity oscillation pattern is
like Fig. 15. Again, the fidelity peaks occur at a certain time,
indifferent to a change in the qubit number.

FIG. 15. A typical oscillation pattern in this setting, showing the
fidelity-time relationship for a six-qubit linear cluster state.

FIG. 16. Cluster fidelity for the first four peaks versus qubit
number n. The fidelity drop turns out to be linear.

As expected in the independent case, the fidelity drops
exponentially with an increase in qubits. However, here, the
fidelity only drops linearly with the increase in qubit number
(Fig. 16). This fact may just be due to the character of our
“collective” noise model.

VI. CONCLUSION

In this paper, we analyze the fidelity of the MBQC scheme
when the system is coupled with a boson environment. Two
specific schemes, the CZ creation scheme and the Hamiltonian
creation scheme, are studied.

In the CZ creation scheme, we solve the time evolution of
the fidelity. We provide the exact solution for the pure phase
noise case and calculate numerically for the generalized noise
case. We study four kinds of gate fidelity in detail and propose
two suggestions to enhance the performance under coupling.

In the Hamiltonian creation scheme, the phenomenon of
a sudden change in fidelity is discovered. Below a certain
threshold coupling coefficient value, the damage caused by the
boson environment is negligible. The threshold value depends
on the gate type and cluster size. For individual gates consisting
of several qubits, the threshold value is large so one will not
worry about the effect caused by coupling. We conclude that
the Hamiltonian creation method is robust against this kind of
noise under a threshold coupling value.

MBQC is a promising quantum computation scheme, and
the findings in this paper may be significant for the practical
implementation of MBQC systems.
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APPENDIX A: DERIVATIONS OF TWO FORMULAS

For completeness, we next present the detailed calculations
for two formulas in the text. The calculations here are similar
to those in Refs. [28] and [29]. One may also refer to Ref. [30]
for some parts of the calculations. This part is self-consistent
and is presented in the same style as in the text.

1. Derivation of the unitary evolution operator

The fact that UI (t) can be solved exactly is due to the pure
dephasing character of the Hamiltonian interaction part. In this
section, we prove formula (18). Substituting Eq. (17) into UI ,
we get

UI (t) = T̂ exp

[
−i

∫ t

0

∑
n,k

σ (n)
z (gke

iωkt
′
a
†
k + g∗

ke
−iωkt

′
ak)dt ′

]
. (A1)

In order to simplify the expression, we here prove the useful formula

T̂ exp

[ ∫ t

0
dt1(Â(t1) + B̂(t1))

]
= exp

[ ∫ t

0
Â(t1)dt1

]
T̂ exp

{ ∫ t

0

[
exp

(
−

∫ t1

0
Â(t2)dt2

)
B̂(t1) exp

( ∫ t1

0
Â(t2)dt2

)]
dt1

}
.

(A2)

First, we denote X̂(t) = T̂ exp[
∫ t

0 Â(t1) + B̂(t1)dt1],Ŷ (t) = exp[
∫ t

0 Â(t1)dt1], and Ẑ(t) = Ŷ−1(t)X̂(t). We have

dX̂/dt = [Â(t) + B̂(t)]X̂(t), (A3)

dŶ dt = Â(t)Ŷ (t). (A4)

As a result,

dẐ/dt = −Â(t)Ŷ−1(t)X̂(t) + Ŷ−1(t)(Â(t) + B̂(t))X̂(t) = Ŷ−1(t)B̂(t)X̂(t) = [Ŷ−1(t)B̂(t)Ŷ (t)]Ẑ(t). (A5)

Integrating this equation, we have

Ẑ(t) = 1 +
∫ t

0
[Ŷ−1(t1)B̂(t1)Ŷ (t1)]Ẑ(t1)dt1. (A6)

Iterating this equation repeatedly, we get

Ẑ(t) = 1 +
∫ t

0
dt1V̂ (t1) +

∫ t

0
dt1

∫ t1

0
dt2V̂ (t1)V̂ (t2) + · · · = T̂ exp

[ ∫ t

0
V̂ (t1)dt1

]
, (A7)

where V̂ (t) = Ŷ−1(t)B̂(t)Ŷ (t). We can rewrite this equation as

X̂(t) = Ŷ (t) exp

[ ∫ t

0
Ŷ−1(t)B̂(t)Ŷ (t)dt1

]
. (A8)

Substituting the expressions of X̂(t) and Ŷ (t) into it, we prove formula (A2).
Now we evaluate UI (t) in Eq. (A1). Setting

Â(t) = −i
∑
n,k

σ (n)
z gke

iωkta
†
k, (A9)

B̂(t) = −i
∑
n,k

σ (n)
z g∗

ke
−iωkt ak, (A10)

(A2) becomes

UI (t) = T̂ exp

[ ∫ t

0
dt1(Â(t1) + B̂(t1))

]

= exp

[ ∫ t

0
Â(t1)dt1

]
T̂ exp

{ ∫ t

0

[
exp

(
−

∫ t1

0
Â(t2)dt2

)
B̂(t1) exp

( ∫ t1

0
Â(t2)dt2

)]
dt1

}
. (A11)

Applying the Baker-Hausdorff formula eÂB̂e−Â = B̂ + [Â,B̂] + [Â,[Â,B̂]]/2! + . . . and noting that [Â,[Â,B̂]] = 0, we
conclude that

exp

(
−

∫ t1

0
Â(t2)dt2

)
B̂(t1) exp

( ∫ t1

0
Â(t2)dt2

)
= B(t1) −

∑
n,m,k

|gk|2(1 − e−iωkt1 )

iωk

σ (n)
z σ (m)

z . (A12)
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As a result, time ordering is no longer required in the third line of Eq. (A11), and we rewrite it as

UI (t) = exp

[ ∫ t

0
Â(t1)dt1

]
exp

{∫ t

0

[
B(t1) −

∑
n,k

|gk|2(1 − e−iωkt1 )

iωk

σ (n)
z σ (m)

z

]
dt1

}

= exp

[ ∫ t

0
Â(t1)dt1

]
exp

[∫ t

0
B(t1)dt1 −

∑
n,m,k

|gk|2
(
t − e−iωk t−1

−iωk

)
iωk

σ (n)
z σ (m)

z

]

= exp

[ ∫ t

0
Â(t1)dt1

]
exp

[ ∫ t

0
B(t1)dt1

]
exp

[
−

∑
n,m,k

|gk|2
(
t − e−iωk t−1

−iωk

)
iωk

σ (n)
z σ (m)

z

]
. (A13)

When [Â,[Â,B̂]] = [B̂,[Â,B̂]] = 0, we have eÂ+B̂ = eÂeB̂e−[Â,B̂]/2. Applying this formula, we get

exp

[ ∫ t

0
Â(t1)dt1

]
exp

[ ∫ t

0
B(t1)dt1

]
= exp

[ ∫ t

0
A(t1) + B(t1)dt1

]
exp

(
1

2

∫ t

0
dt1

∫ t

0
dt2[A(t1),B(t2)]

)

= exp

[ ∫ t

0
A(t1) + B(t1)dt1

]
exp

( ∑
n,m,k

|gk|2
2ωk

2
(2 − eiωkt − e−iωkt )σ (n)

z σ (m)
z

)
. (A14)

Substituting this into Eq. (A13), we finally get

UI (t) = exp

[ ∫ t

0
A(t1) + B(t1)dt1

]
exp

[
i

∑
n,m,k

|gk|2σ (n)
z σ (m)

z

ωk
2

(ωkt − sin ωkt)

]
, (A15)

which proves Eq. (18).

2. Derivation of the reduced density operator of the qubits

In this section, we present the detailed calculation for Eq. (22). The density operator for the whole system is

ρI (t) = UI (t)ρQ
I (0) ⊗ ρB

I (0)U †
I (t), (A16)

where the subscript I indicates the interaction picture, and the superscripts Q and B indicate qubits and the boson environment,
respectively. What we really care about is the reduced density matrix of the qubits:

ρ
Q
I (t) = TrB

[
UI (t)ρQ

I (0) ⊗ ρB
I (0)UI

†(t)
]
. (A17)

We now evaluate each matrix element of ρ
Q
I (t). We define

ρ
Q
I,{in,jn}(t) ≡ 〈i1,i2, . . . ,iN |ρQ

I (t)|j1,j2, . . . ,jn〉, (A18)

where N is the total number of qubits, and in = ±1 is the state of the nth qubit in the cluster state. We have

ρ
Q
I,{in,jn}(t) = Tr

[
ρB

I (0)U †{jn}
I (t)U {in}

I (t)
]
ρ

Q
I,{in,jn}(0),

(A19)

where

U
{in}
I (t) = exp

[
i
∑

k

|gk|2s(ωk,t)
∑
n,m

inim

]
exp

{∑
n,k

[gkϕωk
(t)ina

†
k − g∗

kϕ
∗
ωk

(t)inak]

}
(A20)

satisfies

UI (t)|{in}〉 = U
{in}
I (t)|{in}〉. (A21)

Explicit calculation reveals that

U
†{jn}
I (t)U {in}

I (t) = exp

[
i
∑

k

|gk|2s(ωk,t)
∑
n,m

(inim − jnjm)

]
exp

[∑
n,k

[g∗
kϕ

∗
ωk

(t)jnak − gkϕωk
(t)jna

†
k

]

× exp

[∑
n,k

[gkϕωk
(t)ina

†
k − g∗

kϕ
∗
ωk

(t)inak

]
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= exp

[
i
∑

k

|gk|2s(ωk,t)
∑
n,m

(inim − jnjm)

]

× exp

[∑
n,k

[g∗
kϕ

∗
ωk

(t)(jn − in)ak − gkϕωk
(t)(jn − in)a†

k]

]
. (A22)

We here, again, use the fact that eÂ+B̂ = eÂeB̂e−[Â,B̂]/2 when [Â,[Â,B̂]] = [B̂,[Â,B̂]] = 0. Substituting Eq. (15), the initial
density operator of the boson environment, into it, we have

TrB

[
ρB

I (0) exp

{∑
k

(φkb
†
k − φ∗

kbk)

}]
=

∏
k

exp

[
−|gk|2 1 − cos(ωkt)

ω2
k

coth

(
ωk

2kBT

) ∑
m,n

(im − jm)(in − jn)

]
, (A23)

where

φk ≡ gkφωk
(t)

∑
n

(in − jn). (A24)

This equation leads to

ρ
Q
I,{in,jn}(t) = exp

[
−

∑
k,m,n

|gk|2c(ωk,t) coth

(
ωk

2kBT

)
(im − jm)(in − jn)

]
exp

[
i

∑
k,m,n

|gk|2s(ωk,t)(imin − jmjn)

]
ρ

Q
I,{in,jn}(0),

(A25)

where

c(ωk,t) = 1 − cos(ωkt)

ωk
2

. (A26)

Taking the continuum limit, we get the form of Eq. (22), with

�(t) =
∫

dωI (ω)s(ω,t), (A27)

�(t,T ) =
∫

dωI (ω)c(ω,t) coth

(
ω

2ωT

)
. (A28)

Here, ωT ≡ kBT is called the thermal frequency, and the spectral density

I (ω) ≡
∑

k

δ(ω − ωk)|gk|2 ≡ dk

dω
G(ω)|g(ω)|2, (A29)

with G(ω) being the density of states. Assuming an ohmic spectral density,

I (ω) = ηωe−ω/ωc , (A30)

we get Eqs. (24) and (25).
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