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Entanglement sharing through noisy qubit channels: One-shot optimal singlet fraction
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Maximally entangled states—a resource for quantum information processing—can only be shared through
noiseless quantum channels, whereas in practice channels are noisy. Here we ask: Given a noisy quantum channel,
what is the maximum attainable purity (measured by singlet fraction) of shared entanglement for single channel
use and local trace preserving operations? We find an exact formula of the maximum singlet fraction attainable
for a qubit channel and give an explicit protocol to achieve the optimal value. The protocol distinguishes between
unital and nonunital channels and requires no local postprocessing. In particular, the optimal singlet fraction is
achieved by transmitting part of an appropriate pure entangled state, which is maximally entangled if and only if
the channel is unital. A linear function of the optimal singlet fraction is also shown to be an upper bound on the
distillable entanglement of the mixed state dual to the channel.
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I. INTRODUCTION

Shared entanglement between two separated observers
(Alice and Bob) is a critical resource for quantum infor-
mation processing (QIP) tasks such as dense coding [1],
cryptography [2], distributed quantum computation [3], and
quantum teleportation [4]. Faithful implementation of QIP
tasks require maximally entangled states, which can only
be shared through noiseless quantum channels, where Alice
prepares a maximally entangled state of two particles (say,
qubits) and sends one of them to Bob through the channel.
In practice, available channels are noisy resulting in mixed
states. Entanglement distillation [5–9] provides a solution
by converting these mixed states to fewer almost-perfect
entangled states of purity close to unity while requiring many
uses of the channel and joint measurements on many copies
of the output. Clearly, the yield in an entanglement distillation
protocol depends on the purity of the mixed states, which in
turn is a function of the amount of noise present in the quantum
channel. Thus, in the simplest case of entanglement sharing, a
basic question is: Given a noisy quantum channel what is the
maximum achievable purity for single use of the channel?

In this work, we answer the above question for qubit chan-
nels within the paradigm of trace-preserving local operations
(TP-LOCC). By restricting to this class of operations, where no
subsystem is thrown away, our results provide the conditions
and an explicit protocol when every single use of the channel
is maximally efficient. Our result also characterizes qubit
channels by quantifying reliable transmission of quantum
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information via teleportation for single channel use and TP-
LOCC.

In the simplest scenario, the general protocol of sharing
entanglement works as follows: Alice prepares a bipartite pure
entangled state |ψ〉 and sends one half of it to Bob through a
quantum channel, say � (which, throughout the present paper,
is assumed to be nonentanglement breaking). This results,
in general, in a mixed entangled state ρψ,� = (I ⊗ �)(ρψ ),
where ρψ = |ψ〉〈ψ |. The purity of this state is characterized
by its singlet fraction [5,7,9,10] defined as

F (ρψ,�) = max
|�〉

〈�|ρψ,�|�〉, (1)

where |�〉 is a maximally entangled state. The singlet fraction
quantifies how close the state ρψ,� is to a maximally entangled
state, and therefore how useful the state is for QIP tasks.
For example, it is related to the teleportation fidelity f for
teleportation of a qudit via the following relation:

f (ρψ,�) = dF (ρψ,�) + 1

d + 1
. (2)

In this work we are interested in the optimal singlet fraction
for the channel � defined as

F (�) = max
|ψ〉

max
L

F (L(ρψ,�)), (3)

where the maximum is taken over all pure state transmissions
and trace-preserving LOCCs L. Note that, by virtue of Eq. (2)
F (�) also quantifies reliable transmission of quantum states
via teleportation, albeit for single channel use, where the
optimal teleportation fidelity for the channel is expressed
as f (�) = dF (�)+1

d+1 . This is in contrast with the known
measures such as channel fidelity [9], which quantifies, on
an average, how close the output state is to the input state,
and entanglement fidelity [11,12], which captures how well
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the channel preserves entanglement [13] of the transmitted
system with other systems.

For qubit channels such as depolarizing [9] and amplitude
damping [14] the value of F (�) is known, but no general
expression has been found yet for a generic qubit channel. In
this work, we obtain an exact formula of F (�) for a qubit
channel and give an explicit protocol to achieve this value.
Surprisingly, we also find that to attain the optimal value no
local postprocessing is required, even though it is known that
local postprocessing can increase the singlet fraction of a state.
In particular, we show that the optimal value is attained by
sending part of a maximally entangled state down the channel
if and only if the channel is unital. This means that for nonunital
channels one must necessarily transmit part of an appropriate
nonmaximally entangled state. We also prove that the optimal
singlet fraction is equal to a linear function of the negativity
[10] of the mixed state ρ�+,�, where |�+〉 = 1√

2
(|00〉 + |11〉).

Thus a linear function of F (�) is an upper bound on the
distillable entanglement of the mixed state ρ�+,�.

Let us note a couple of implications of our results. As
noted earlier, an entanglement distillation [5–9] protocol uses
many copies of the mixed state ρψ,� (for some transmitted
pure state |ψ〉) of purity F (ρψ,�) and converts them to a fewer
number of near-perfect entangled states of purity close to unity.
Following the prescription in this paper, for a given noisy qubit
channel Alice and Bob can now prepare states with maximum
achievable purity for each channel use so as to maximize the
yield in their distillation protocol. Second, by virtue of Eq. (2)
we are able to provide the optimal teleportation fidelity for any
qubit channel, albeit for single channel use.

The paper is organized as follows: In Sec. II we provide
an analytical expression for the optimal singlet fraction of any
qubit channel and a recipe for obtaining the optimal value by
sharing a pure entangled state across the channel. We also
prove that this pure entangled state is maximally entangled if
and only if the channel is unital. In Sec. III we relate the optimal
singlet fraction with the maximum output negativity of a state
that can be shared across the channel. In Sec. IV we show that
for a nonunital qubit channel the singlet fraction obtained by
postprocessing the output of any maximally entangled state is
strictly less than the optimal value. We conclude in Sec. V.

II. OPTIMAL SINGLET FRACTION
FOR QUBIT CHANNELS

A. Preliminaries

A quantum channel � is a trace-preserving completely
positive map characterized by a set of Kraus operators {Ai}
satisfying

∑
A

†
i Ai = I . Its dual �̂ is described in terms of

the Kraus operators {A†
i } (the dual is the adjoint map with

respect to the Hilbert-Schmidt inner product). A channel � is
said to be unital if its action preserves identity: �(I ) = I , and
nonunital if it does not, i.e., �(I ) �= I . A dual channel �̂ is
trace preserving if and only if � is unital. Sending half of a
bipartite pure state |φ〉 down the channel $ ∈ {�,�̂} gives rise
to a mixed state (not necessarily normalized)

ρφ,$ = (I ⊗ $)(ρφ), (4)

where ρφ = |φ〉〈φ|. For the channel $ with a set of Kraus
operators {Ki}, the above equation takes the form

ρφ,$ =
∑

i

(I ⊗ Ki)ρφ(I ⊗ K
†
i ). (5)

Recall that, by transmitting one half of a pure entangled
state |ψ〉 through a noisy channel � results in a mixed state
ρψ,� of singlet fraction F (ρψ,�). Simply maximizing F (ρψ,�)
over all transmitted pure states |ψ〉 may not yield the optimal
value we are looking for because it is known [15–17] that
TP-LOCC can enhance the singlet fraction of two qubit states.
Thus for a given ρψ,�, the maximum achievable singlet fraction
is defined as [17]

F ∗(ρψ,�) = max
L

F (L(ρψ,�)), (6)

where the maximization is over all TP-LOCC L carried out by
Alice and Bob on their respective qubits. Note that, unlike F ,
which can increase under TP-LOCC, F ∗ is an entanglement
monotone [17] and can be exactly computed [17] by solving a
convex semidefinite program for any given two-qubit density
matrix. Maximizing F ∗ over all transmitted pure states |ψ〉
yields the optimal singlet fraction defined earlier in Eq. (3):

F (�) = max
|ψ〉

F ∗(ρψ,�). (7)

It is clear from the above definitions that for any shared pure
state |ψ〉, the following inequalities hold:

F (�) � F ∗(ρψ,�) � F (ρψ,�). (8)

B. Results

Our first result gives an exact formula for the optimal singlet
fraction defined in Eq. (7) and an explicit protocol by which
the optimal value can be achieved. We show that for any
qubit channel � there exists an “optimal” two-qubit pure state
|ψ0〉, not necessarily maximally entangled, such that all the
inequalities in (8) become equalities.

Theorem 1. The optimal singlet fraction of a qubit channel
� is given by

F (�) = λmax(ρ�+,�), (9)

where |�+〉 = 1√
2
(|00〉 + |11〉), and λmax(ρ�+,�) is the max-

imum eigenvalue of the density matrix ρ�+,�. Moreover, the
following equalities hold:

F (�) = F ∗(ρψ0,�) = F (ρψ0,�), (10)

where |ψ0〉 is the eigenvector corresponding to the maximum
eigenvalue of the density matrix ρ�+,�̂.

Proof. We begin by obtaining an exact expression of the
maximum preprocessed singlet fraction. It is defined as

F1(�) = max
|ψ〉

F (ρψ,�) (11)

= max
|ψ〉

max
|�〉

〈�|ρψ,�|�〉, (12)

where |�〉 is maximally entangled. Noting that every maxi-
mally entangled state |�〉 can be written as (U ⊗ V )|�+〉, for
some U,V ∈ SU(2), we can rewrite Eq. (12) as

F1(�) = max
|ψ〉,U,V

〈�+|(U † ⊗ V †)ρψ,� (U ⊗ V ) |�+〉. (13)
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Let, ρψ = |ψ〉〈ψ | and ρ�+ = |�+〉〈�+|. Using the fact that (I ⊗ V )|�+〉 = (V T ⊗ I )|�+〉, we now simplify the above
equation:

F1(�) = max
|ψ〉,U,V

〈�+|(U † ⊗ V †)ρψ,�(U ⊗ V )|�+〉 (14)

= max
|ψ〉,U,V

〈�+|(U † ⊗ V †)
∑

i

(I ⊗ Ai)ρψ (I ⊗ A
†
i )(U ⊗ V )|�+〉

= max
|ψ〉,U,V

〈ψ |
∑

i

(I ⊗ A
†
i )(U ⊗ V )ρ�+ (U † ⊗ V †)(I ⊗ Ai)|ψ〉

= max
|ψ〉,U,V

〈ψ |
∑

i

(I ⊗ A
†
i )(UV T ⊗ I )ρ�+ (V ∗U † ⊗ I )(I ⊗ Ai)|ψ〉

= max
|ψ〉,U,V

〈ψ |(UV T ⊗ I )ρ�+,�̂(V ∗U † ⊗ I )|ψ〉

= max
|ψ〉

〈ψ |ρ�+,�̂|ψ〉. (15)

From Eqs. (14) and (15) it immediately follows that

F1(�) = F (ρψ0,�) = λmax(ρ�+,�̂), (16)

where λmax(ρ�+,�̂) denotes the maximum eigenvalue of ρ�+,�̂

and |ψ0〉 the corresponding eigenvector. Using the result,

λmax(ρ�+,�̂) = λmax(ρ�+,�), (17)

proved in Lemma 5 (Sec. 1 of the Appendix), we have therefore
proven that

F (�) � F1(�) = λmax(ρ�+,�). (18)

The following lemma now gives an upper bound on the optimal
singlet fraction F (�).

Lemma 1. For a qubit channel �,

F (�) � λmax(ρ�+,�), (19)

where λmax(ρ�+,�) denotes the maximum eigenvalue of the
density matrix ρ�+,�.

Proof. Recall that by definition, F (�) = maxψ F ∗(ρψ,�);
in particular,

F ∗(ρψ,�) = max
L

F (L(ρψ,�)) = F (ρ∗
ψ,�), (20)

where ρ∗
ψ,� is the state obtained from ρψ,� by optimal TP-

LOCC associated to ρψ,�. It was shown in Ref. [17] that the
optimal TP-LOCC is a one-way LOCC protocol, where any of
the parties apply a state dependent filter. In the case of success
the other party does nothing, and in the case of failure, Alice
and Bob simply prepare a separable state. We have, therefore,

ρ∗
ψ,� = pρ1 + (1 − p)ρs, (21)

where ρ1 = 1
p

(A ⊗ I )ρψ,�(A† ⊗ I ) with A being the optimal

filter, is the state arising with probability p = Tr[(A†A ⊗
I )ρψ,�] when filtering is successful and ρs is a separable state
which Alice and Bob prepare when the filtering operation is
not successful. F ∗ is given by [17]

F ∗(ρψ,�) = F (ρ∗
ψ,�) = pF (ρ1) + 1 − p

2
(22)

= p〈�+|ρ1|�+〉 + 1 − p

2
. (23)

Observe that the filter is applied at Alice’s end, that is, on the
qubit she holds and not on the qubit that was sent through
the channel to Bob. In Eqs. (22) and (23), the separable state
ρs is chosen so that 〈�+|ρs |�+〉 = 1

2 and optimality of the
filter A implies that F (ρ1) = 〈�+|ρ1|�+〉 (if the latter is not
the case we will get another filter unitarily connected with A

which yields a higher singlet fraction). We will now show that
F (ρ1) � λmax(ρ�+,�). First we observe that

F (ρ1) = 1

p
〈�+|(A ⊗ I )(I ⊗ �)(|ψ〉〈ψ |)(A† ⊗ I )|�+〉

= 1

p
〈�+|(I ⊗ �)[(A ⊗ I )|ψ〉〈ψ |(A† ⊗ I )]|�+〉.

(24)

On the other hand, because � is a trace-preserving map, we
also observe that

p = Tr[(A†A ⊗ I )ρψ,�]

= Tr{(I ⊗ �)[(A†A ⊗ I )|ψ〉〈ψ |]}
= Tr[(A†A ⊗ I )|ψ〉〈ψ |]. (25)

We thus have ρ1 = (I ⊗ �)(|ψ ′〉〈ψ ′|) and thereby from
Eqs. (24) and (25) we get

F (ρ1) = 〈�+|(I ⊗ �)(|ψ ′〉〈ψ ′|)|�+〉
= F (ρψ ′,�), (26)

where |ψ ′〉 = 1√
q

(A ⊗ I )|ψ〉 is a normalized vector with q =
p = 〈ψ |(A†A ⊗ I )|ψ〉. Hence from Eqs. (11), (18), and (26)
we have,

F (ρ1) � F1(�) = λmax(ρ�+,�). (27)

Thus from Eq. (23) we have

F ∗(ρψ,�) � pλmax(ρ�+,�) + 1 − p

2
� λmax(ρ�+,�). (28)

The last inequality follows from the fact that λmax(ρ�+,�) >

1/2 [as the channel is not entanglement breaking, this follows
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by applying Lemma 6 (Sec. 2 of the Appendix) on σAB =
ρ�+,�].

Since inequality (28) holds for any transmitted pure state
|ψ〉, we therefore conclude that

F (�) � λmax(ρ�+,�). (29)

This completes the proof of Lemma 1. �
From Eqs. (18) and (19) we have, F (�) = λmax(ρ�+,�).

Now, as F (�) � F ∗(ρψ0,�) � F (ρψ0,�) from Eqs. (16) and
(18) we have

F (�) = F ∗(ρψ0,�) = F (ρψ0,�). (30)

This completes the proof of Theorem 1. �
What can we say about |ψ0〉? The evidence so far is

mixed: |ψ0〉 can be either maximally entangled (e.g., for
depolarizing channel [9]) or nonmaximally entangled (e.g.,
for amplitude damping channel [14]), but the answer for a
generic qubit channel is not known. The following result
completely characterizes the channels for which |ψ0〉 is
maximally entangled and for which it is not.

Theorem 2. The state |ψ0〉, as defined in Theorem 1, is
maximally entangled if and only if the channel � is unital.

Proof. Recall that |ψ0〉 is the eigenvector corresponding to
the maximum eigenvalue of ρ�+,�̂. Let |ψ ′

0〉 be the eigenvector
corresponding to the maximum eigenvalue of ρ�+.�. The
following lemma establishes the correspondence between the
vectors |ψ0〉 and |ψ ′

0〉.
Lemma 2. Let V be the swap operator defined by the action

V |η〉|χ〉 = |χ〉|η〉. Then V |ψ0〉∗ = |ψ ′
0〉.

Proof. Let us now consider the spectral decomposition of
ρ�+,�:

ρ�+,� =
3∑

k=0

pk|ψ ′
k〉〈ψ ′

k|. (31)

From Eq. (A5) in the Appendix we have

ρ�+,�̂ =
3∑

k=0

λk(V †|ψ ′
k〉〈ψ ′

k|V )
∗
. (32)

For different values of k, (V †|ψ ′
k〉)∗’s are orthogonal as V is

unitary.
Hence we see that Eq. (32) is in fact a spectral decomposi-

tion of ρ�+,�̂ with eigenvectors

|ψk〉 = (V †|ψ ′
k〉)

∗
. (33)

The Schmidt coefficients of |ψ ′
k〉 are the same as that of |ψk〉.

The entanglement of |ψ ′
k〉 is thus also the same as that of |ψα〉.

Let |ψ ′
0〉 be the eigenvector corresponding to the maximum

eigenvalue of ρ�+,�. We have from Eq. (33),

|ψ0〉 = (V †|ψ ′
0〉)

∗
. (34)

This completes the proof of Lemma 2. �
Therefore, if |ψ ′

0〉 is maximally entangled, then so is |ψ0〉
and vice versa. We will prove the theorem by showing that
|ψ ′

0〉 is maximally entangled if and only if � is unital.
We first show that if |ψ ′

0〉 is maximally entangled then �

must be unital. We first note that the Kraus operators of the
channel � can be obtained from the action of the channel on
the maximally entangled state |�+〉.

Now for every k, we can write |ψ ′
k〉 [appeared in Eq. (31)]

as

|ψ ′
k〉 = (I ⊗ Gk) |�+〉, (35)

where Gk is a 2 × 2 complex matrix. It was shown in Ref. [9]
that the channel � can be described in terms of the Kraus
operators {√pkGk}. Noting that (a) 〈ψ ′

i |ψ ′
j 〉 = δij , and (b) for

any operator O, 〈�+|I ⊗ O|�+〉 = 1
2 Tr O, it follows that the

Kraus operators {√pkGk} are trace orthogonal. That is,

Tr A
†
kAl = 2

√
pkplδkl, (36)

where Ak = √
pkGk . The Kraus operators thus obtained

through the spectral decomposition of ρ�+,� are trace orthogo-
nal. They also satisfy

∑
A

†
kAk = I , as � is a trace-perserving

completely positive (TPCP) map.
Suppose now the channel � is nonunital, i.e., �(I ) �= I .

This implies that ∑
AkA

†
k �= I. (37)

None of our considerations change if we consider a channel
U ◦ � with Kraus operators UAk where U ∈ SU(2). This
is because the eigenvectors of ρ�+,� and ρ�+,U� are local
unitarily connected and eigenvalues are the same. Let us
now assume that one of the eigenstates (|ψ ′

0〉, say) in the
spectral decomposition of ρ�+,� in Eq. (31) is maximally
entangled. This necessarily implies one of the Kraus operators
(namely, A0) is proportional to a unitary. Now because of the
postprocessing freedom, without any loss of generality we can
take A0 to be

√
pI , with p ∈ [0,1]. Due to trace orthogonality

[Eq. (36)] we will have

Tr(Ak) = 0, for k = 1,2,3. (38)

We can thus take Ak = −→αk · −→σ , where −→αk ∈ C3 and −→σ =
{σx,σy,σz}, for k = 1,2,3. On using (�σ · �a)(�σ · �b) = (�a · �b)I +
i �σ · (�a × �b) the trace preservation condition

∑
A

†
kAk = I now

becomes

pI +
3∑

k=1

(−→αk
∗ · −→αk )I + i(−→αk

∗ × −→αk ) · −→σ = I, (39)

from which we obtain

p +
3∑

k=1

(−→αk
∗ · −→αk ) = 1,

3∑
k=1

−→αk
∗ × −→αk = 0. (40)

On the other hand, the condition for nonunitality [Eq. (37)] of
the channel gives us

pI +
3∑

k=1

(−→αk
∗ · −→αk )I − i(−→αk

∗ × −→αk ) · −→σ �= I, (41)

which is clearly in contradiction with Eq. (40). Thus ρ�+,�

cannot have a maximally entangled eigenvector if � is
nonunital. Hence, |ψ ′

0〉 is not maximally entangled. Therefore
it follows that if |ψ0〉 is maximally entangled, then the channel
must be unital.
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We will now show that if � is unital, then |ψ ′
0〉 is maximally

entangled. In [18] it was proved that that for any unital
qubit channel �, ρ�+,� is local unitarily connected to the
Bell-diagonal state

∑3
i=0 pi(I ⊗ σi)|�+〉〈�+|(I ⊗ σi) with

σ0 = I , 1 � pi � 0, and
∑

i pi = 1. It immediately follows
that |ψ ′

0〉 is maximally entangled. This completes the proof of
Theorem 2. �

III. OPTIMAL SINGLET FRACTION AND
THE MAXIMUM OUTPUT NEGATIVITY

Here we show that F (�) is related to the negativity of the
density matrix ρ�+,�. We first note that an upper bound on
F ∗(ρψ,�) can be given in terms of its negativity [10] N (ρψ,�):

F ∗(ρψ,�) � 1
2 [1 + N (ρψ,�)], (42)

where N (ρψ,�) = max{0,−2λmin(ρ
ψ,�)} and ρ

ψ,� is the
partially transposed matrix obtained from ρψ,�. Maximizing
over all input states |ψ〉 we get

F (�) � 1
2 [1 + N (�)], (43)

where N (�) = maxψ N (ρψ,�). An interesting question here
is, does the optimal singlet fraction always reach the above
upper bound for all channels �? In order to answer this
question, we first prove the following:

Lemma 3. For a qubit channel �, the optimal singlet
fraction F (�) is related to the negativity N (ρ�+,�) of the
state ρ�+,� by the following relation:

F (�) = 1
2 [1 + N (ρ�+,�)]. (44)

Proof. The proof follows by using the formula of negativity,
simple application of Lemma 6 (see Sec. 2 of the Appendix)
and Theorem 1:

1
2 [1 + N (ρ�+,�)] = 1

2

[
1 − 2λmin

(
ρ

�+,�

)]
= λmax(ρ�+,�) = F (�). (45)

This completes the proof of Lemma 3. �
Next we show that F (�) does not reach the upper bound in

Eq. (43) for all nonunital channels as there are examples for
which N (�) > N (ρ�+,�). Thus, even though the ordering of
negativity may change under one-sided channel action, I ⊗ �

the optimal singlet fraction obeys the bound in Eq. (42) for
maximally entangled input. For unital channels, however, as
the next lemma shows, we have N (�) = N (ρ�+,�).

Lemma 4. For unital qubit channels we have N (�) =
N (ρ�+,�).

Proof. The most general two-qubit pure state in the Schmidt
form is given by |α〉 = √

λ|e1f1〉 + √
1 − λ|e2f2〉 = (U ⊗

V )[
√

λ|00〉 + √
(1 − λ)|11〉], with λ ∈ [0,1] and the 2 × 2

unitary matrices U and V being given by U |0〉 = |e1〉, V |0〉 =
|f1〉, U |1〉 = |e2〉, and V |1〉 = |f2〉.

For λ ∈ [0,1], let

Wλ =
√

λ|0〉〈0| +
√

(1 − λ)|1〉〈1|. (46)

Now using the fact that � is a trace-preserving map it is
easy to show that

ρα,� = (I ⊗ �)(|α〉〈α|)

= (A1 ⊗ I )ρ�+,�(A†
1 ⊗ I )

Tr[(A†
1A1 ⊗ I )ρ�+,�]

, (47)

with the filter A1 = UWλV
T .

For a unital channel �, ρ�+,� is locally unitarily connected
to a Bell-diagonal state (see proof of Theorem 2). In Ref. [19]
it was shown that negativity of a Bell-diagonal state (and
hence, any state locally unitarily connected to it) cannot be
increased by local filtering. Hence, from Eq. (47) for a unital
qubit channel � we have

N (�) = N (ρ�+,�). (48)

This completes the proof of Lemma 4. �

Example of channel for which N(�) > N(ρ�+,�)

Let us consider the amplitude damping channel, with Kraus
operators

K0 =
(

1 0
0

√
1 − p

)
and K1 =

(
0

√
p

0 0

)

with 1 � p � 0. The channel is nonunital.
It was shown in [14] that the optimal input state for

attaining the optimal singlet fraction of the channel is given by

|χ〉 = 1√
(2−p)

|00〉 +
√

1−p

2−p
|11〉.

Using Theorem 1 for the amplitude damping channel �, we
therefore get F (�) = λmax(ρ�+,�) = F ∗(ρχ,�) = F (ρχ,�).
Now from Eq. (42) we get F ∗(ρχ,�) � 1

2 [1 + N (ρχ,�)], while
from Lemma 3 we get F (�) = 1

2 [1 + N (ρ�+,�)]. Hence we
must have N (ρ�+,�) � N (ρχ,�).

For the amplitude damping channels for input states
|φ(λ)〉 = √

λ|00〉 + √
(1 − λ)|11〉 (λ ∈ [0,1]) we have

N (ρφ(λ),�) =
√

p2(1 − λ)2 + 4λ(1 − λ)(1 − p) − (1 − λ)p.

(49)

Thus,

N (ρ�+,�) =
√(

p2

4
+ 1 − p

)
− p

2

and

N (ρφ(1/(2−p)),�) = 1 − p

2 − p
(
√

p2 + 4 − p).

It is easy to see that N (ρ�+,�) < N(ρφ(1/(2−p)),�) for all
1 > p > 0 and hence N (ρ�+,�) < N (�).

IV. NONUNITAL CHANNELS AND MAXIMALLY
ENTANGLED INPUT

It is important to recognize that Theorems 1 and 2 put
together only prescribes a method to attain the optimal singlet
fraction. It does not, however, rule out the possibility that
the optimal singlet fraction for a nonunital channel may still
be attained by sending part of a maximally entangled state
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followed by local postprocessing. As it turns out this is not the
case.

Theorem 3. For a nonunital qubit channel �,

F ∗(ρ�+,�) < F (�). (50)

Proof. Using the bound in Eq. (42) for the density matrix
ρ�+,� we have

F ∗(ρ�+,�) � 1
2 [1 + N (ρ�+,�)]. (51)

It follows from Lemma 3 that to prove Theorem 3 it suffices
to show that for a nonunital channel �,

F ∗(ρ�+,�) < 1
2 [1 + N (ρ�+,�)]. (52)

As shown in [17], for any two-qubit density matrix ρ the
optimal fidelity F ∗(ρ) can be found by solving the following
convex semidefinite program:

maximize F ∗ = 1
2 − Tr(Xρ), (53)

under the constraints

0 � X � I4, (54)

− I4

2
� X � I4

2
, (55)

with X being the partial transpose of X. In addition, the
optimal X is known to be of rank one.

The proof is now by contradiction. Suppose that
F ∗(ρ�+,�) = 1

2 [1 + N (ρ�+,�)]; thus to achieve this equality
we must necessarily have

1
2 − Tr(Xoptρ


�+,�) = 1

2 [1 + N (ρ�+,�)], (56)

from which it follows that

Tr(Xoptρ

�+,�) = −N (ρ�+,�)

2
= λmin(ρ

�+,�). (57)

Using the facts that Xopt is a positive rank-one operator (proved
in [17]) and there is only one negative eigenvalue for ρ

�+,�

(which means λmin is negative), we obtain

Xopt = |α〉〈α|, (58)

where ρ|α〉 = λmin(ρ)|α〉. Clearly Xopt in the above equa-
tion is of rank one and satisfies 0 � X � I4. As eigenvalues
of X and X are invariant under local unitaries it is sufficient
to take

X = P[
√

λ|00〉 +
√

(1 − λ)|11〉], (59)

with P[|a〉] denoting projector on |a〉 and λ ∈ (0,1).
The spectrum of X for X in Eq. (59) is given by

λ(X) = λ,(1 − λ),±
√

λ(1 − λ). (60)

Thus the constraint (55) is only satisfied for λ = 1
2 , i.e, if

|α〉 is maximally entangled. Therefore, under the assumption
F ∗(ρ�+,�) = 1

2 [1 + N (ρ�+,�)], the eigenvector |α〉 corre-
sponding to the negative eigenvalue λmin(ρ

�+,�) is maximally
entangled.

But then this implies that

F (ρ�+,�) = 1
2 [1 + N (ρ�+,�)] = λmax(ρ�+,�) (61)

because for any two-qubit entangled density matrix σ , F (σ ) =
1
2 [1 + N (σ )] if and only if the eigenvector corresponding to
the negative eigenvalue of σ is maximally entangled [10].
The last equality in Eq. (61) follows from Eq. (45).

Now from Theorem 1 we have

F (�) = F (ρψ0,�) = λmax(ρ�+,�), (62)

where |ψ0〉 is the eigenvector corresponding to the maximum
eigenvalue of ρ�+,�̂. Now from Theorem 2 we know that |ψ0〉
is necessarily nonmaximally entangled when the channel � is
nonunital. Thus for a nonunital channel �,

F (ρ�+,�) < F (�) = λmax(ρ�+,�), (63)

which contradicts Eq. (61). This completes the proof of
Theorem 3. �

V. CONCLUSIONS

Shared entanglement is a critical resource for quantum
information processing tasks such as quantum teleportation.
Typically, quantum entanglement is shared by sending part
of a pure entangled state through a quantum channel which,
in practice, is noisy. This results in mixed entangled states,
purity of which is characterized by a singlet fraction. Because
faithful implementation of quantum information processing
tasks require near-perfect entangled states (states with very
high purity), a basic question is the following: What is the
optimal singlet fraction attainable for a single use of a quantum
channel � and trace-preserving local operations?

In this paper, we obtained an exact expression of the
optimal singlet fraction for a qubit channel and prescribed
a protocol to attain the optimal value. The protocol consists of
sending part of a pure entangled state |ψ0〉 through the channel,
where |ψ0〉 is given by the eigenvector corresponding to the
maximum eigenvalue of the density matrix ρ�+,�̂ (�̂ is the
channel dual to the qubit channel �). We have also shown
that this “best” state |ψ0〉 is maximally entangled for unital
channels but must be nonmaximally entangled if the channel
is nonunital. Interestingly, we find that in the optimal case no
local postprocessing is required even though it is known that
TP-LOCC can increase the singlet fraction of a density matrix.

We would also like to mention that recent results [20–22]
have shown that generalized quantum correlations play an
essential role in distribution of entanglement via separable
states. In this setting, the carrier, which always remains
separable with the rest of the system, is transmitted through
a noiseless quantum channel, whereas in practice channels
are noisy. We therefore expect our results to be useful in
a more general treatment of the aforementioned scheme of
entanglement distribution involving noisy quantum channels.
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APPENDIX

1. Technical lemma

Lemma 5. λmax(ρ�+,�̂) = λmax(ρ�+,�).
Proof. We first obtain a relationship between the states

ρ�+,� and ρ�+,�̂. Recall that these states are given by

ρ�+,� =
∑

i

(I ⊗ Ai)|�+〉〈�+|(I ⊗ A
†
i ), (A1)

ρ�+,�̂ =
∑

i

(I ⊗ A
†
i )|�+〉〈�+|(I ⊗ Ai). (A2)

Equation (A2) can be written as

ρ�+,�̂ =
∑

i

[(A†
i )

T ⊗ I ]|�+〉〈�+|(AT
i ⊗ I

)
,

⇒ ρ∗
�+,�̂

=
∑

i

(Ai ⊗ I )|�+〉〈�+|(A†
i ⊗ I ), (A3)

where the complex conjugation is taken with respect to
the computational basis {|00〉,|01〉,|10〉,|11〉}. Now using the
SWAP operator V defined by the action V |ij 〉 = |ji〉, we have

(Ai ⊗ I )|�+〉 = 1√
2

1∑
k=0

Ai |k〉 ⊗ |k〉 and so,

V (Ai ⊗ I )|�+〉 = 1√
2

1∑
k=0

|k〉 ⊗ Ai |k〉

= (I ⊗ Ai)|�+〉. (A4)

Hence,

ρ∗
�+,�̂

= V †ρ�+,�V,

⇒ ρ�+,�̂ = (V †ρ�+,�V )
∗
. (A5)

From the above equation it therefore follows that

λmax(ρ�+,�̂) = λmax(ρ�+,�). (A6)

This completes the proof of Lemma 5. �
Note that Lemma 5 does not assume that � is a qubit

channel. Also, from Eq. (A5) it is clear that ρ�+,�̂ is a valid
state even for a nonunital channel � (and so, the dual channel
�̂ is not trace preserving). But we will get unnormalized states
if the dual channel acts on one side of some nonmaximally
entangled states.

2. Technical lemma

Lemma 6. Let σAB ∈ C2 ⊗ C2 be a bipartite density matrix
such that TrB(σAB) = 1

2I . Then,

λmin(σ
AB) + λmax(σAB) = 1

2 , (A7)

where λmin(X) and λmax(X) denote the minimum and max-
imum eigenvalue of X ∈ {σAB,σ

AB} and  denotes partial
transposition.

Proof. Let σAB ∈ C2 ⊗ C2 be a bipartite density matrix
such that TrB(σAB) = 1

2I . From the Choi-Jamiolkowski iso-
morphism ([23,24]) we have that σAB can be written as

σAB = (I ⊗ �)(|�+〉AB〈�+|),
where � is a TPCP map, mapping B(C2) to itself.

In [18] it was shown that any such map � can be written as

�(ρ) = (U1 ◦ �′ ◦ U2)(ρ) for all ρ ∈ B(C2) (A8)

with �′ being a canonical TPCP map and U1 and U2

being unitary maps. If ρ = 1
2 (I + xσ1 + yσ2 + zσ3) and ρ ′ =

�′(ρ) = 1
2 (I + x ′σ1 + y ′σ2 + z′σ3), then in the Bloch sphere

representation the map �′ is given by

⎡
⎢⎢⎢⎣

1

x ′

y ′

z′

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1

x

y

z

⎤
⎥⎥⎥⎦ , (A9)

with ti and λi being real for all i.
Now as local unitaries do not affect the eigenvalues of

σAB or σ
AB , for the rest of the proof we can focus on (I ⊗

�′)(|�+〉〈�+|) = ρ�+,�′ with the map �′ given by Eq. (A9).
We have

ρ�+,�′ = 1

2

⎡
⎢⎢⎢⎣

a b 0 d

b∗ (1 − a) f 0

0 f c b

d 0 b∗ (1 − c)

⎤
⎥⎥⎥⎦, (A10)

with a = 1+t3+λ3
2 , b = t1−it2

2 , d = (λ1+λ2)
2 , f = (λ1−λ2)

2 , and c =
(1+t3−λ3)

2 . Now complete positivity of �′ implies positivity of
ρ�+,�′ and hence the spectrum of ρ�+,�′ is same as that of
ρ∗

�+,�′ . Now the eigenvalue equation of ρ∗
�+,�′ is

∣∣∣∣∣∣∣∣∣∣

(
a
2 − λ

)
b∗
2 0 d

2
b
2

(
1−a

2 − λ
)

f

2 0

0 f

2

(
c
2 − λ

)
b∗
2

d
2 0 b

2

( (1−c)
2 − λ

)

∣∣∣∣∣∣∣∣∣∣
= 0.

(A11)

Now, the partial transpose with respect to the first party of
ρ�+,�′ is given by

ρ
�+,�′ = 1

2

⎡
⎢⎢⎢⎣

a b 0 f

b∗ (1 − a) d 0

0 d c b

f 0 b∗ (1 − c)

⎤
⎥⎥⎥⎦. (A12)

The eigenvalue equation of ρ
�+,�′ is given by

∣∣∣∣∣∣∣∣∣∣

(
a
2 − λ

)
b
2 0 f

2
b∗
2

( (1−a)
2 − λ

)
d
2 0

0 d
2

(
c
2 − λ

)
b
2

f

2 0 b∗
2

( (1−c)
2 − λ

)

∣∣∣∣∣∣∣∣∣∣
= 0.

(A13)

052304-7



PAL, BANDYOPADHYAY, AND GHOSH PHYSICAL REVIEW A 90, 052304 (2014)

Replacing λ by ( 1
2 − λ′), in Eq. (A13) we have∣∣∣∣∣∣∣∣∣∣

− ( (1−a)
2 − λ′) b

2 0 f

2
b∗
2 − (

a
2 − λ′) d

2 0

0 d
2 − ( (1−c)

2 − λ′) b
2

f

2 0 b∗
2 − (

c
2 − λ′)

∣∣∣∣∣∣∣∣∣∣
= 0. (A14)

In Eq. (A14) performing the interchanges, column 1 ⇔ column 2 and column 3 ⇔ column 4, we have∣∣∣∣∣∣∣∣∣∣

b
2 − ( (1−a)

2 − λ′) f

2 0

− (
a
2 − λ′) b∗

2 0 d
2

d
2 0 b

2 − ( (1−c)
2 − λ′)

0 f

2 − (
c
2 − λ′) b∗

2

∣∣∣∣∣∣∣∣∣∣
= 0. (A15)

In Eq. (A15) performing the interchanges, row 1 ⇔ row 2 and row 3 ⇔ row 4, we have∣∣∣∣∣∣∣∣∣∣

− (
a
2 − λ′) b∗

2 0 d
2

b
2 − ( (1−a)

2 − λ′) f

2 0

0 f

2 − (
c
2 − λ′) b∗

2
d
2 0 b

2 − ( (1−c)
2 − λ′)

∣∣∣∣∣∣∣∣∣∣
= 0. (A16)

Now multiplying the first row by −1, the second column by −1, the third row by −1 and, the fourth column by −1 successively
in Eq. (A16) we get back Eq. (A11). Thus if eigenvalues of ρ�+,�′ are λi with i = 1,2,3,4, those of ρ

�+,�′ are ( 1
2 − λi). Thus we

have

λmin(ρ
�+,�′) = 1

2 − λmax(ρ�+,�′ ),

⇒ λmin(ρ
�+,�′ ) + λmax(ρ�+,�′) = 1

2 ,

⇒ λmin(σ
AB) + λmax(σAB) = 1

2 . (A17)

This completes the proof of Lemma 6. �
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