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Single-scan quantum process tomography
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The standard procedure for quantum process tomography (QPT) requires a series of experiments. Each
experiment involves initialization of the system to a particular basis state, applying the quantum process ε on
the system, and finally characterizing the output state by quantum state tomography (QST). The output states
collected for a complete set of basis states enable us to calculate the χ matrix characterizing the process ε. The
standard procedure for QST itself requires independent experiments, each involving measurement of a set of
commuting observables. Thus QPT procedure demands a number of independent measurements and, moreover,
this number increases rapidly with the size of the system. However, in ensemble systems, the total number of
independent measurements can be greatly reduced with the availability of ancilla qubits. Ancilla-assisted process
tomography (AAPT) has earlier been shown to require a single QST of system-ancilla space. Ancilla-assisted
quantum state tomography (AAQST) has also been shown to perform QST in a single-scan measurement of an
ensemble system. Here we combine AAPT with AAQST to realize a single-scan QPT (SSPT), a procedure to
characterize a general quantum process in a single ensemble measurement. We demonstrate experimental SSPT
by characterizing several single-qubit processes using a three-qubit NMR quantum register. Furthermore, using
the SSPT procedure, we experimentally characterize the twirling process and compare the results with theory.
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I. INTRODUCTION

An open quantum system may undergo an evolution due to
intentional control fields as well as unintentional interactions
with stray fields caused by environmental fluctuations. In
practice, even a carefully designed control field may be
imperfect to the extent that one might need to characterize
the overall process acting on the quantum system. Such a
characterization, achieved by a procedure called quantum
process tomography (QPT), is crucial in the physical real-
ization of a fault-tolerant quantum processor [1,2]. Quantum
process tomography is realized by considering the quantum
process as a map from a complete set of initial states to
final states and experimentally characterizing each of the final
states using quantum state tomography (QST) [3]. Since the
spectral decomposition of a density matrix may involve non-
commuting observables, Heisenberg’s uncertainty principle
demands multiple experiments to characterize the quantum
state. Thus QST by itself involves the measurement of a series
of observables after identical preparations of the system in
the quantum state. Hence, QPT in general requires a number
of independent experiments, each involving initialization of
the quantum system, applying the process to be characterized,
and finally QST. Furthermore, the total number of independent
measurements required for QPT increases exponentially with
the size of the system undergoing the process.

The physical realization of QPT has been demonstrated on
various experimental setups such as NMR [4,5], linear op-
tics [6–9], ion traps [10,11], superconducting qubits [12–17],
and nitrogen-vacancy center qubit [18]. Several developments
in the methodology of QPT have also been reported [19,20].
In particular, it has been shown that ancilla-assisted process
tomography (AAPT) can characterize a process with a single
QST [6,7,21,22]. However, it still requires multiple mea-
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surements, each taken over a set of commuting observables.
On the other hand, if sufficient ancilla qubits are available,
QST can be carried out with a single ensemble measurement
(i.e., a single scan) over the entire system-ancilla space.
This procedure, known as ancilla-assisted quantum state
tomography (AAQST), has been studied both theoretically
and experimentally [23–27]. Here we combine AAPT with
AAQST and realize a single-scan quantum process tomogra-
phy (SSPT), which can characterize a general process in a
single ensemble measurement of the system-ancilla state.

In the next section, after briefly revising QPT and AAPT, we
describe the SSPT procedure. In Sec. III we illustrate SSPT
using a three-qubit NMR quantum register. We characterize
certain unitary processes corresponding to standard quantum
gates. We also characterize a nonunitary process, namely,
twirling operation. Finally, we summarize in Sec. IV.

II. THEORY

A. Quantum process tomography

A process ε maps a quantum state ρ to another state
ε(ρ). Here we consider an n-qubit system with N2- (=22n)
dimensional Liouville space S. In order to characterize ε, we
let the process act on each linearly independent element of a
complete basis set {ρ1,ρ2, . . . ,ρN2}. Expressing each output
state in the complete basis, we obtain

ε(ρj ) =
∑

k

λjkρk, (1)

where the complex coefficients λjk can be extracted after QST.
The outcome of a trace-preserving quantum process ε also

has an operator-sum representation

ε(ρ) =
∑

i

EiρE
†
i , (2)
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where the Kraus operators Ei satisfy the completeness relation∑
i E

†
i Ei = 1. To assist experimental characterization of the

process, we utilize a fixed set of basis operators {Ẽm} and
express Ei = ∑

m eimẼm. The process is now described by

ε(ρ) =
∑
mn

ẼmρẼ†
nχmn, (3)

where χmn = ∑
i eime∗

in form a complex matrix that com-
pletely characterizes the process ε. Since the set {ρk} forms a
complete basis, it is also possible to express

Ẽmρj Ẽ
†
n =

∑
k

βmn
jk ρk, (4)

where βmn
jk can be calculated theoretically. Equations (1), (3),

and (4) lead to

ε(ρj ) =
∑

k

λjkρk =
∑

k

∑
mn

βmn
jk χmnρk. (5)

Exploiting the linear independence of {ρk}, one obtains the
matrix equation

βχ = λ, (6)

from which the χ matrix can be extracted by standard methods
in linear algebra.

For example, in the case of a single qubit, one can choose
the linearly independent basis {|0〉〈0|,|0〉〈1|,|1〉〈0|,|1〉〈1|} [see
Fig. 1(a)]. While the middle two elements are non-Hermitian,
they can be realized as a linear combination of Hermitian
density operators [28]. A fixed set of operators {I,X, − iY,Z}
can be used to express the χ matrix. Thus the standard single-
qubit QPT procedure requires four QST experiments.

Quantum process tomography on an N -dimensional system
requires N2 QST experiments, where a single QST involves
several quantum measurements, each taken jointly over a set of
commuting observables. The exact number of measurements
required for QST may depend on the properties of available
detectors.

In NMR, a single-scan experiment allows us to detect all the
single-quantum elements of the density matrix (see Fig. 1). For
example, the real NMR signal of a two-qubit system consists
of four transitions corresponding to the four observables {σx ⊗
|0〉〈0|,σx ⊗ |1〉〈1|,|0〉〈0| ⊗ σx,|1〉〈1| ⊗ σx}. Thus a quadra-
ture detected NMR signal directly provides information about
four density-matrix elements [29]. To measure other elements,
one needs to transform the density matrix by a known unitary
and again record the four transitions. The intensities of these
transitions are proportional to linear combinations of various
elements of the density matrix. In principle, two experiments
suffice for a two-qubit QST [26]. In the case of an n-qubit
NMR system with a well-resolved spectrum, QST requires
� �N

n
� measurements, where �� rounds the argument to the

next integer [26]. Therefore, n-qubit QPT needs a total of
MQPT � N2�N

n
� measurements. Estimates of M for a small

number of qubits shown in the first column of Table I illustrate
the exponential increase of MQPT with n.

B. Ancilla-assisted process tomography

If a sufficient number of ancillary qubits are available,
AAPT can be carried out by simultaneously encoding all
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FIG. 1. (Color online) Illustration of (a) single-qubit QPT requir-
ing a total of eight NMR scans, (b) AAPT requiring two NMR
scans, and (c) SSPT requiring a single-scan NMR experiment. In each
case, dotted lines are used to indicate the single-quantum elements
of the density matrix that are directly observable. Other elements
are observed by converting them to observable single-quantum
coherences by using certain unitary operations in a subsequent scan
(or scans).

the basis elements onto a higher-dimensional system-ancilla
Liouville space A ⊗ S [6,7,21,22]. Ancilla-assisted process
tomography requires a single final QST, thus greatly reducing
the number of independent measurements. For example, a
single-qubit process tomography can be carried out with the
help of an ancillary qubit by preparing the two-qubit Bell state
|φAS〉 = (|0A〉|0S〉 + |1A〉|1S〉)/

√
2, applying the process on

the system qubit, and finally carrying out QST of the two-qubit
state [see Fig. 1(b)]. While the choice of the initial state for
AAPT is not unique, the above choice provides a simple way to
represent all the four (2 × 2)-dimensional basis states directly
onto different subspaces of the (4 × 4)-dimensional density
operator [see Figs. 1(a) and 1(b)].

TABLE I. Comparison of the number of scans and the number of
ancilla qubits (in parentheses) required for n-qubit QPT, AAPT, and
SSPT.

n MQPT MAAPT (nA) MSSPT (nA,nB )

1 8 2 (1) 1 (1,1)
2 32 4 (2) 1 (2,2)
3 192 11 (3) 1 (3,3)
4 1024 32 (4) 1 (4,5)
5 7168 103 (5) 1 (5,6)
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FIG. 2. (Color online) Quantum circuit for SSPT.

For an n-qubit system, all the N2 basis elements can be
encoded simultaneously in independent subspaces of a single
N2 × N2 Liouville operator belonging to a 2n-qubit space
A ⊗ S. A simple choice for the initial state is of the form
|φAS〉⊗n. The quantum circuit for the preparation of this state
is shown in the first part of Fig. 2. Thus exactly n ancilla qubits
are needed to carry out AAPT on an n-qubit system.

Although only two independent measurements are needed
for a two-qubit QST, this number grows exponentially with the
total number of qubits. An n-qubit AAPT involves a 2n-qubit
QST and accordingly requires MAAPT � �N2

2n
� scans [26].

The minimum number of scans for a few system qubits are
shown in the second column of Table I. While AAPT requires
significantly fewer measurements compared to QPT, it still
scales exponentially with the number of system qubits.

C. Single-scan process tomography

It has been shown earlier that, if a sufficient number
of ancillary qubits are available, QST of a general density
matrix of arbitrary dimension can be performed with a single
scan [24–26]. This method, known as ancilla-assisted quantum
state tomography, is based on the redistribution of all elements
of the system density matrix onto a joint density matrix in
the combined system-ancilla Liouville space. Initially the
ancilla register for AAQST is prepared in a maximally mixed
state, thus erasing all information in it, and redistribution of
matrix elements is achieved by an optimized joint unitary
operator [26]. By combining AAPT with AAQST, process
tomography can be achieved with a single-scan measurement
of all the qubits [see Fig. 1(c) and column 3 of Table I]. If
AAQST is carried out with an ancilla space B of nB qubits,
the combined space B ⊗ A ⊗ S corresponds to ñ = 2n + nB

qubits. A single-scan measurement suffices if the total number
of observables is equal to or exceeds the number of real
unknowns (i.e., N4 − 1) in the 2n-qubit density matrix, i.e., if
ñÑ � N4 − 1, where Ñ = 2ñ [26]. However, if only pairwise
interactions are used between the system and ancilla of the
same dimension, then also a single experiment suffices for
AAQST [27]. The numbers of ancillary qubits nA and nB

required for SSPT are shown in column 6 of Table I.
The complete circuit for SSPT is shown in Fig. 2. It involves

two ancilla registers, one for AAPT and the other for AAQST.

Initially the AAQST register is prepared in a maximally
mixed state and the other two registers are set to |0〉⊗n states.
Hadamard gates on the AAPT ancilla followed by C-NOT gates
(on system qubits controlled by the ancilla) prepare the state
|φAS〉⊗n, which simultaneously encodes all the basis elements
required for QPT. A single application of the process ε on the
system qubits acts simultaneously and independently on all
the basis elements {ρj }. The final AAQST operation allows
estimation of all the elements of the 2n-qubit density matrix∑

j A(j ) ⊗ ε(ρj ), where A(j ) identifies the j th subspace. The
output of each subspace ε(ρj ) can now be extracted using a
single-scan experiment and the coefficients λjk = Tr[ε(ρj )ρ†

k]
can be calculated.

III. EXPERIMENTS

We used iodotrifluoroethylene dissolved in acetone-D6 as
a three-qubit system. The molecular structure and labeling
scheme are shown in Fig. 3(a). All the experiments described
below are carried out on a Bruker 500-MHz NMR spectrometer
at an ambient temperature of 300 K using high-resolution
NMR techniques. The NMR Hamiltonian in this case can be
expressed as

H = −π

3∑
i=1

νiσ
i
z + π

3,3∑
i=1,j>i

Jijσ
i
zσ

j
z /2, (7)

where σ i
z and σ

j
z are Pauli z operators of the ith and j th

qubits [29]. The chemical shifts νi , coupling constants Jij , and
relaxation parameters T1 and T ∗

2 are shown in Fig. 3(b). All
the pulses are realized using gradient ascent pulse engineering
technique [30] and have average fidelities above 0.99 over 20%
inhomogeneous rf fields.

We utilize spins F1, F2, and F3, respectively, and the
system qubit S, AAPT ancilla A, and AAQST ancilla B.
The NMR pulse sequence for SSPT experiments is shown in
Fig. 3(c). It begins with preparing the B qubit in the maximally
mixed state by bringing its magnetization into the transverse
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Qubit (Hz) T1 (s) T2*(s)

1 -17323 6.2 0.6

2 0 7.5 0.8

3 11833 6.9 0.8
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/4y

1/4J 1/4J

/4x

/3x x x
F2

F1

G2 G3PFG

F3

F2

F1
G1PFG

H

H

(c)

P
P
S

/2x /2y

1 2

AAQST

FIG. 3. (Color online) (a) Molecular structure of iodotrifluo-
roethylene, (b) table of Hamiltonian and relaxation parameters, and
(c) NMR pulse sequence to demonstrate SSPT. The pulse sequence
for preparing the |00〉 pseudopure state is shown in the inset of (c).

052301-3



ABHISHEK SHUKLA AND T. S. MAHESH PHYSICAL REVIEW A 90, 052301 (2014)

direction using a Hadamard gate and subsequently dephasing
it using a pulsed field gradient (PFG). The remaining qubits are
initialized into a pseudopure |00〉 state by applying the standard
pulse sequence shown in the inset of Fig. 3(c) [31]. The Bell
state |φAS〉 prepared using a Hadamard-CNOT combination has
a fidelity of over 0.99. After preparing this state, we apply
the process ε to the system qubit. The final AAQST consists
of (π/2)x and (π/2)y pulses on all the qubits separated by
delays τ1 = 6.7783 ms and τ2 = 8.0182 ms [26]. A single-scan
measurement of all the qubits now leads to a complex signal
of 12 transitions, from which all the 15 real unknowns of the
two-qubit density matrix ρAS = ∑

j A(j ) ⊗ ε(ρj ) of F1 and F2

can be estimated [26] (see Fig. 1). In our choice of the fixed
set of operators and basis elements

ρAS =

⎡
⎢⎣

λ11 λ12 λ21 λ22

λ13 λ14 λ23 λ24

λ31 λ32 λ41 λ42

λ33 λ34 λ43 λ44

⎤
⎥⎦ . (8)

The χ matrix characterizing the complete process can now be
obtained by solving Eq. (6).

A. Single-scan process tomography of quantum gates

We now describe experimental characterization of several
single-qubit unitary processes. The quantum gates to be
characterized are introduced as process ε on the F1 qubit
in Fig. 3(c). The experimental χ matrices for NOP (identity
process), NOT-X (e−iπX/2), NOT-Y (e−iπY/2), the Hadamard
gate, phase π (eiπZ/2), and phase π/4 (eiπZ/8) are shown
in Fig. 4. Starting from thermal equilibrium, each SSPT
experiment characterizing an entire one-qubit process takes
less than 4 s. A measure of overlap of the experimental process
χexpt with the theoretically expected process χtheor is given by
the gate fidelity [18]

F (χexpt,χtheor) = |Tr[χexptχ
†
theor]|√

Tr[χ †
exptχexpt]Tr[χ †

theorχtheor]
. (9)
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FIG. 4. (Color online) Bar plots showing experimental χ matri-
ces for various quantum processes obtained using SSPT. In each case,
the left and right bar plots correspond to the real and imaginary parts,
respectively, and the fidelities are indicated in parentheses.
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FIG. 5. (Color online) Simulated fidelity of various processes as
a function of noise η.

The gate fidelities for all six processes are indicated in Fig. 4.
Except in the cases of the Hadamard gate and phase π/4,
the gate fidelities are about 0.99. The lower fidelities in the
Hadamard gate (0.95) and phase π/4 (0.97) are mainly due to
imperfections in the rf pulses implementing these processes.

In order to study the robustness of SSPT procedure we
first considered an ideal process, simulated the corresponding
spectral intensities, and reconstructed the final density matrix
ρAS . Using Eq. (8) we obtained λjk values and calculated
the matrix χ0 simulating the noise-free SSPT procedure. We
then introduced noise by adding random numbers in the range
[−η,η] to the spectral intensities and used the resulting data
for calculating χη. The variations of average gate fidelities
F (χ0,χη) for various processes versus noise amplitude η are
shown in Fig. 5. Interestingly, the noise has similar effects on
fidelities of all the simulated processes. We also observe that
fidelities remained above 0.9 for η < 0.1, indicating that SSPT
is fairly robust against the noise in this range.

B. Single-scan process tomography of twirling process

Twirling is essentially a nonunitary process usually realized
by an ensemble average of a set of unitary operations. It was
introduced by Bennett et al. [32] for extracting singlet states
from a mixture of Bell states. Twirling has been studied in
detail [33–37] and various modified twirling protocols have
also been suggested [38,39].

In NMR, twirling can be achieved with the help of a PFG,
which produces a continuous space-dependent spin rotation
such that the ensemble average effectively emulates a nonuni-
tary process [40]. A ẑ PFG produces a z-dependent unitary
Uφ(z) = exp(−i

φ

2

∑n
j=1 σjz), where j is the summation index

over all the qubits. Assuming a linear gradient introducing
a maximum phase ±
 on either end of a sample of length
z0, we have φ(z) = 2
(z/z0). When the ẑ PFG acts on
an initial n-qubit density matrix ρin = ∑

lm ρlm|l〉〈m|, the
resultant output density matrix is

ρout = 1

2


∫ 


−


dφ UφρinU
†
φ =

∑
lm

ρlm|l〉〈m|sinc(qlm
).

(10)

Here sinc(x) = sin x
x

and qlm = 1
2

∑
j [(−1)mj − (−1)nj ] is the

quantum number of the element |l1l2 · · · ln〉〈m1m2 · · · mn|,
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i.e., the difference in the spin-quantum numbers of the
corresponding basis states. While the diagonal elements |l〉〈l|
and other zero-quantum elements are unaffected by twirling,
the off-diagonal elements with qlm 
= 0 undergo decaying
oscillations with increasing 
 values.

Single-scan process tomography of twirling process is
carried out using the procedure described in Fig. 3(c) after
introducing δ-PFG-δ in place of the process ε, where δ

is a short delay for switching the gradient. Applying PFG
selectively on the system qubit is not simple and is also
unnecessary. Since the F3 qubit (AAQST ancilla) is already in
a maximally mixed state, twirling has no effect on it. For the
Bell state |φAS〉, applying a strong twirling on either or both
spins (F1,F2) has the same effect, i.e., a strong measurement
reducing the joint state to a maximally mixed state. However,
since |φAS〉 corresponds to a two-quantum coherence (i.e.,
q00,11 = 2), its dephasing is double that of a single-quantum
coherence. Assuming the initial state ρin = |φAS〉〈φAS | and
using expressions (1) and (10), we find that the nonzero
elements of λ are

λ11 = λ44 = 1, λ22 = λ33 = sinc(2
). (11)

Solving expression (6), we obtain a real χ matrix with only
nonzero elements

χEE = 1 + sinc(2
)

2
, χZZ = 1 − sinc(2
)

2
. (12)

In our experiments, the duration of the PFG and δ are
set to 300 and 52.05 μs, respectively, such that the chemical
shift evolutions and J evolutions are negligible. The strength
of twirling is slowly varied by increasing the PFG strength
from 0 to 2.4 G/cm in steps of 0.05 G/cm. The results of the
experiments are shown in Fig. 6. The closed squares (circles)
in Fig. 6(a) correspond to experimentally obtained values for
|χEE| (|χZZ|). Small imaginary parts observed in experimental
χ matrices are due to minor experimental imperfections. The
smooth lines indicate the corresponding theoretical values
obtained from Eqs. (12). The crosses indicate the gate fidelities
F (χexpt,χtheor) calculated using Eq. (9). The bar plots show
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FIG. 6. (Color online) (a) Experimental values of |χEE| (|χZZ|)
shown by closed squares (closed circles). The solid lines illustrate
theoretical values of χEE and χZZ. The crosses indicate the gate
fidelities F (χexpt,χtheor). The bar plots correspond to experimental |χ |
matrices at (b) 
 = 0, (c) 
 = 0.64π , (d) 
 = π , and (e) 
 = 3.43π .

experimental |χ | matrices for 
 = 0 [Fig. 6(b)], 
 = 0.64π

[Fig. 6(c)], 
 = π [Fig. 6(d)], and 
 = 3.43π [Fig. 6(e)] and
χEE and χZZ values in Fig. 6(a) corresponding to these 
 values
are circled out.

At zero twirling, the process is essentially a NOP process as
is clear from the bar plot in Fig. 6(b), wherein |χEE| ≈ 1 and
|χZZ| ≈ 0. When 
 = kπ/2 with an integer k, the ensemble
initially prepared in state |ψAS〉 undergoes an overall phase
distribution over [−kπ,kπ ] and at this stage χEE = χZZ =
0.5 [see, e.g., Fig. 6(d)]. A further increase in 
 leads to
oscillations of χEE and χZZ about 0.5 and for large 
 values
both of these elements damp towards 0.5 and all other elements
vanish [see, e.g., Fig. 6(e)]. The errors in experimental χEE

and χZZ values were less than 8%. The good agreement of the
experimental values with theory indicates the overall success
of the SSPT procedure. The average of the gate fidelities was
over 0.96. Small deviations of the experimental values from
theory are due to nonlinearities in the PFG profile as well as
imperfections in rf pulses implementing the SSPT procedure.

IV. CONCLUSION

Information processing requires two important physical
resources, namely, the size of the register (space) and the
number of operations (time). Often there exists an equivalence
between these two resources that allows trading one resource
with another. Likewise, in the present work we showed that, if
some extra qubits are available, it is possible to carry out
quantum process tomography of the system qubits with a
single-scan ensemble measurement. We have illustrated this
method on a single system qubit and two ancillary qubits
using NMR quantum computing methods. In particular, we
extracted the χ matrices characterizing certain quantum gates
and obtained their gate fidelities with the help of a single
ensemble measurement of a three-qubit system in each case.
We studied the robustness of the SSPT procedure using
numerical simulations. We also characterized the twirling
operation, which is essentially a nonunitary process.

The ensemble nature of NMR systems allows us to
determine all the single-quantum observables in a single-scan
experiment. However, a larger ancilla may be required if mea-
surement of only a commuting set of observables is allowed in
a single experiment, as in the case of single-apparatus QST [23]
or if the system-ancilla interactions are constrained, as in
the pairwise interaction case [27]. Nevertheless, the overall
procedure of SSPT can be generalized to apply in other fields
such as optical qubits, trapped ions, or superconducting qubits.

A potential application of single-scan process tomography
could be in the high throughput characterization of dynamic
processes. The standard methods require repeated applications
of the same process either to collect independent outputs from
all the basis states or to allow quantum state tomography.
However, the present method requires only one application of
the process for the entire characterization.
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