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We present a quantum master equation describing a Bose-Einstein condensate with particle loss on one
lattice site and particle gain on the other lattice site whose mean-field limit is a non-Hermitian PT -symmetric
Gross-Pitaevskii equation. It is shown that the characteristic properties of PT -symmetric systems, such as the
existence of stationary states and the phase shift of pulses between two lattice sites, are also found in the
many-particle system. Visualizing the dynamics on a Bloch sphere allows us to compare the complete dynamics
of the master equation with that of the Gross-Pitaevskii equation. We find that even for a relatively small number
of particles the dynamics are in excellent agreement and the master equation with balanced gain and loss is
indeed an appropriate many-particle description of a PT -symmetric Bose-Einstein condensate.
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I. INTRODUCTION

Since the seminal paper by Bender and Boettcher [1] much
progress has been achieved formulating a consistent quantum
theory in which the requirement of Hermiticity is replaced
by the weaker requirement of PT symmetry [2,3] or pseudo-
Hermiticity [4–6]. In addition complex PT -symmetric poten-
tials are used for an effective description of quantum systems in
contact with an environment. Positive imaginary parts describe
a source for the probability amplitude; negative imaginary
contributions lead to a sink. InPT -symmetric systems features
can be observed that are not present in a purely Hermitian
quantum system. They exhibit true stationary states in spite
of an in- and outflux of the probability amplitude [7–19], the
occurrence of exceptional points at which two or more eigen-
states coalesce [7,15–19], complicated stability properties of
the stationary states, and a very rich dynamics [19].

The first experimental realization of a PT -symmetric sys-
tem succeeded in optical waveguides [7–10], and theoretical
proposals for various further systems exist [11–14]. Although
the concept of PT symmetry originates from quantum theory
no genuine PT -symmetric quantum system has been realized
so far. This is, however, of great importance since the optical
systems can only in special cases correctly model effects of
the Schrödinger equation. An experimental realization in a
genuine quantum system would provide a solid basis for the
theoretically investigated physical effects.

A PT -symmetric quantum system which is potentially
experimentally accessible is a Bose-Einstein condensate in a
double-well potential, in which particles are removed from one
well and injected into the other. In both the idealized version
of a double-δ potential [15] and in a spatially extended double
well [16] it was shown that the system supports stationary
solutions which are stable with respect to small perturbations.

These investigations were done in the mean-field limit
described by the Gross-Pitaevskii equation, which is known
to be accurate in the limit of temperatures well below the
critical temperature. The gain and loss is modeled via an
imaginary potential which is interpreted as a coherent in- and
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outcoupling whose strength is proportional to the number of
particles in the condensate. The physical reasoning behind this
proportionality is the Bose stimulation of the incoupling; i.e.,
the transition rate is enhanced by a factor of (N + 1) if there are
already N particles in the final state [20,21]. Proposals for the
experimental realization of such a complex PT -symmetric
potential by embedding the system into a larger Hermitian
transport structure [14] or via a coupling approach [22] were,
again, formulated in the mean-field limit. In that limit all
correlations are neglected, and, in addition, the condensate is
described as a pure state although for PT -symmetric systems
we are especially interested in the coupling to the environment.

However, the only physical process describing a gain or
loss for the wave function of a Bose-Einstein condensate on
the microscopic scale can be an addition or removal of single
particles. Thus, there should exist a microscopic description.
It is the purpose of this article to demonstrate that this
microscopic description can be achieved. Thus, it is possible
to show that indeed in- and outcoupling processes for single
atoms exist, which are capable of explaining the origin of the
complex PT -symmetric potentials in the mean-field limit.

On a microscopic level PT -symmetric Bose-Einstein
condensates have been previously investigated with a non-
Hermitian Bose-Hubbard dimer [17,18]. There, gain and loss
were introduced as complex on-site energy contributions.
However, the mean-field limit of such a system does not lead to
the known Gross-Pitaevskii equation with complex potentials,
but instead an adapted equation in which the nonlinear
term is divided by the norm squared of the wave function.
While this equation has the same normalized eigenstates
as the Gross-Pitaevskii equation, the dynamical behavior,
including the stability properties of the eigenstates, clearly
differs [16,19].

A different approach to open quantum systems is master
equations in Lindblad form [23], which are well established
to describe phase noise, feeding, and depleting of a Bose-
Einstein condensate [24,25]. Recently it has been shown that
the mean-field limit of a master equation, where the coherent
dynamics is described by a Bose-Hubbard Hamiltonian and
single-particle losses are introduced by a Liouvillian, leads
to the Gross-Pitaevskii equation with an imaginary potential
whose strength is given by the rate of the Liouvillian [26,27].
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In this paper we present a master equation describing a
Bose-Einstein condensate on two lattice sites as an open
quantum system. Gain on one lattice site and loss on the other
lattice site are introduced by two Liouvillians. The strengths
of particle gain and loss are balanced such that it resembles
the behavior of a discrete PT -symmetric Gross-Pitaevskii
equation. We show that the dynamical behavior of this master
equation with balanced gain and loss is in excellent agreement
with the mean-field limit described by the PT -symmetric
Gross-Pitaevskii equation. The characteristic properties of
PT -symmetric systems such as the existence of stationary
states and the phase shift of the oscillations between the
two wells are also found in the many-particle description.
Visualizing the dynamics on a Bloch sphere allows us to
compare the complete dynamics of the master equation with
that of the PT -symmetric Gross-Pitaevskii equation.

The remainder of this paper is ordered as follows. In Sec. II
the master equation is introduced and a relation for the loss
and gain rate is derived such that it can support PT -symmetric
stationary solutions. As shown in Sec. III the mean-field
limit of the master equation leads to the PT -symmetric
Gross-Pitaevskii equation. The dynamical behavior of the
many-particle system is discussed in Sec. IV and compared
to the mean-field limit. Conclusions are drawn in Sec. V.

II. MASTER EQUATION WITH BALANCED
GAIN AND LOSS

Ultracold atoms in an open double-well potential can
be described by a quantum master equation in Lindblad
form [24,25]. The system considered has two discrete lattice
sites with loss at site 1 and gain at site 2 described by two
Liouvillians.

The coherent dynamics is given by the Bose-Hubbard
Hamiltonian [28,29] which describes bosonic atoms in the
lowest-energy Bloch band of an optical lattice,

H = − (a†
1a2 + a

†
2a1) + U

2
(a†

1a
†
1a1a1 + a

†
2a

†
2a2a2), (1)

with the bosonic creation and annihilation operators a
†
j and

aj acting on lattice site j . The first term describes a hopping
of atoms between the two lattice sites and the second term an
on-site interaction. The strength of the on-site interaction is
defined by the parameter U . For comparison with the mean-
field limit we introduce the macroscopic interaction strength

g = (N0 − 1)U, (2)

with the initial number of particles in the system N0.
Since the system is coupled to an environment the dynamics

is governed by a quantum master equation in Lindblad form

ρ̇ = −i[H,ρ] + Llossρ + Lgainρ, (3)

with particle loss at lattice site 1

Llossρ = − 1
2γloss(a

†
1a1ρ + ρa

†
1a1 − 2a1ρa

†
1) (4)

and particle gain at lattice site 2

Lgainρ = − 1
2γgain(a2a

†
2ρ + ρa2a

†
2 − 2a

†
2ρa2). (5)

Localized particle loss may be induced by a focused electron
beam [30,31], whereas particle gain may be realized by feeding
from a second condensate [32] using a Raman superradiance-
like pumping process [33–35].

It is not clear how the ratio γgain/γloss has to be chosen
such that balanced gain and loss is achieved. We will see that
the obvious choice γgain = γloss is only correct in the limit
N0 → ∞ and a different ratio should be chosen for a finite
number of particles.

This can be understood by calculating the expectation value
of the particle number 〈N (t)〉 for a system consisting of only
one lattice site with either particle gain or particle loss with
an initial number of particles N ′

0. For this simple model we
obtain analytical expressions for 〈N (t)〉 using the ansatz ρ =∑

αj |j 〉〈j |, where |j 〉 are the particle number states and the
coefficients αj are real numbers.

In the case of particle loss the expectation value of the
particle number is given by 〈Nloss(t)〉 = N ′

0 exp(−γlosst). Note
that this exponential decay with loss rate γloss is exactly
the same behavior as one would obtain by introducing an
imaginary potential Vloss = −iγloss into the Gross-Pitaevskii
equation.

In the second case of particle gain the expectation value
reads 〈Ngain(t)〉 = N ′

0[(1 + 1/N ′
0) exp(γgaint) − 1/N ′

0]. For a
large number of particles N ′

0 � 1 this leads to an exponential
gain with rate γgain, which again is exactly the same as one
would obtain by an imaginary potential Vgain = iγgain in the
Gross-Pitaevskii equation.

Since we want to describe the situation of balanced
gain and loss the master equation should support stationary
PT -symmetric solutions. A PT -symmetric state has equal
probability of presence at the two lattice sites. Therefore we
demand that if half of the particles are at the gain lattice site
and half of the particles are at the loss lattice site then, at least
for short times, the gain and loss should cancel out each other.
Expanding the terms 〈Nloss(t)〉 and 〈Ngain(t)〉 up to the first
order in t , introducing the total particle number at both lattice
sites N0 = 2N ′

0 and demanding 〈Nloss(t)〉 + 〈Ngain(t)〉 = N0

leads to the following condition for the gain and loss ratio:

γgain

γloss
= N0

N0 + 2
. (6)

This shows that γgain has to be chosen slightly smaller than
γloss. Only in the limit N0 → ∞ the two rates have to be
chosen equal. In the following discussion gain and loss is
characterized by one parameter γ = γloss and γgain is chosen
such that Eq. (6) is fulfilled.

III. MEAN-FIELD LIMIT

To calculate the mean-field limit of Eq. (3) we follow
the procedure described in [27]. There, the mean-field limit
is derived for a similar system with loss but without gain.
The starting point is the single-particle density matrix σjk =
〈a†

j ak〉. The time derivative of σjk is given by the master
equation (3),

i
d

dt
σjk = tr(ia†

j akρ̇)

= − (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)
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+ U (σkkσjk − σjjσjk + �jkkk − �jjkk)

− i
γloss,j + γloss,k

2
σjk

+ i
γgain,j + γgain,k

2
(σjk + δjk), (7)

with the covariances

�jklm = 〈a†
j aka

†
l am〉 − 〈a†

j ak〉〈a†
l am〉 (8)

and the Kronecker delta δjk . The covariances are neglected in
the mean-field limit N0 → ∞ [27]. The difference between the
terms describing gain and loss is the sign and the additional
Kronecker delta. Due to the additional Kronecker delta the
differential equation is inhomogeneous which has the effect
that there is an influx of particles from the environment even
in the case N0 = 0. In the mean-field limit the Kronecker delta
is small compared to σjk and can be neglected.

In our specific system we have only loss at lattice site 1
and gain at site 2; i.e., γloss,j = γlossδ1j and γgain,j = γgainδ2j .
Due to Eq. (6) for N0 → ∞ the two rates are equal, γgain =
γloss = γ . In a last step the single particle density matrix is
replaced by complex amplitudes [27], σjk = N0c

∗
j ck . With

these considerations Eq. (7) yields the discrete non-Hermitian
Gross-Pitaevskii equation

i
d

dt
c1 = −c2 + g|c1|2c1 − i

γ

2
c1, (9a)

i
d

dt
c2 = −c1 + g|c2|2c2 + i

γ

2
c2 (9b)

with the macroscopic interaction strength g defined in Eq. (2).
This shows that the gain and loss processes introduced

by the Liouvillians (4) and (5) are in the mean-field limit
described by imaginary potentials with negative and positive
sign, respectively. The Eqs. (9) are evidently PT symmetric
since the gain and loss contributions have equal strength.
This system can be considered as a simple model for the
more realistic extended double-well potential with gain and
loss [16,19,36]. In fact the eigenvalue spectrum of the discrete
two-mode system and the extended double-well system are in
excellent agreement [16].

To discuss the eigenvalue spectrum the time depen-
dence is separated cj (t) = cj exp(−iμt) leading to the time-
independent Gross-Pitaevskii equation. The chemical potential
μ can be obtained using an analytic extension [37],

μ =
⎧⎨
⎩

g

2 ±
√

1 − (
γ

2

)2
, |γ | � 2, PT symmetric,

g ± iγ
√

1
4 − 1

g2+γ 2 , |γ | �
√

4 − g2, PT broken.

The eigenvalue spectrum is shown in Fig. 1. Up to the
critical value γ = 2 two PT -symmetric solutions with real
eigenvalues exist. In the following we will refer to these
states as the ground and the excited state of the system. In
the linear case g = 0 the PT -broken solutions emerge from
the exceptional point at which the PT -symmetric solutions
vanish. For g > 0 the PT -broken solutions emerge from the
excited state and exist at smaller values of γ . If the nonlinearity
parameter is strong enough, g � 2, the PT -broken solutions
exist even at γ = 0. The occurrence of symmetry-breaking
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FIG. 1. (Color online) Real and imaginary parts of the eigenvalue
spectrum of the PT -symmetric discrete Gross-Pitaevskii equa-
tion (9). For |γ | � 2 two PT -symmetric solutions with real eigen-
values exist. Two PT -broken solutions with complex eigenvalues
emerge at |γ | = √

4 − g2.

states in the real potential (γ = 0) is known as macroscopic
quantum self-trapping [38].

IV. DYNAMICAL BEHAVIOR

If we want to compare the results of the PT -symmetric
Gross-Pitaevskii equation and the master equation with bal-
anced gain and loss we have to transform a mean-field state
into a many-particle state. An arbitrary mean-field state of
the two-mode system is defined by two complex numbers
ψ = (c1, c2)T . In the mean-field approximation it is assumed
that every particle is in the same single-particle state. Thus
the corresponding many-particle state is |ψ〉 = ∏N0

j=1 |ψ〉(j )

with the single-particle state of the j th particle |ψ〉(j ) =
c1|1〉(j ) + c2|2〉(j ), where |1〉 and |2〉 are the states describing
one particle at site 1 or 2, respectively. Expressing |ψ〉 in the
basis of Fock states with total particle number N0 leads to the
result

|ψ〉 =
N0∑

m=0

√(
N0

m

)
c
N0−m
1 cm

2 |N0 − m,m〉, (10)

where |n1,n2〉 is a Fock state with ni particles at site i. Using
Eq. (10) we can now start to compare results of the PT -
symmetric Gross-Pitaevskii equation and the master equation.
The numerical results of the master equation are obtained
using the quantum jump method [39,40] where we average
over quantum trajectories till the results converge.

As a first step we check whether one of the most
fundamental properties of PT -symmetric systems, the fact
that it supports stationary solutions, is also present in the
master equation with balanced gain and loss. Therefore we
use the stationary ground state and excited state of the PT -
symmetric discrete Gross-Pitaevskii equation (9), transform
the mean-field state into a many-particle state using Eq. (10),
and calculate the time evolution of this state with the master
equation (3). The result is shown in Fig. 2 for both the
stationary ground state and the excited state. This shows that
the stationary solutions of thePT -symmetric Gross-Pitaevskii
equation can be transferred to the master equation with
balanced gain and loss, and again behave stationary in the
sense that the expectation values of the particle number at both
lattice sites are constant. Thus this fundamental property of
PT -symmetric systems is also present in the master equation.
Note that these are no steady states which satisfy ρ̇ = 0.
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FIG. 2. (Color online) The stationary solutions of the Gross-
Pitaevskii equation (9) are transformed to many-particle states and
the time evolution is calculated using the master equation (3) for
(a) the ground state and (b) the excited state. The expectation value
of the particle number divided by the total initial particle number at
the loss site 〈n1〉 and at the gain site 〈n2〉 stay constant. The parameters
g = 0.5, γ = 0.5, and N0 = 200 were used and it was averaged over
2000 trajectories.

As a next step we want to investigate not only stationary
solutions but oscillations between the two lattice sites. Figure 3
shows the time evolution of the expectation value of the particle
number at the gain site, the loss site, and the total particle
number for different values of the gain-loss parameter γ . The
initial wave functions are superpositions

|ψ〉 = cos θ |ψg〉 + sin θ |ψe〉 (11)

of the stationary ground state |ψg〉 and excited state |ψe〉 which
fulfill exact PT symmetry, PT |ψg/e〉 = |ψg/e〉.

For γ = 0 the dynamics is coherent and thus the total num-
ber of particles in the system stays constant. The oscillations
at the two lattice sites have a phase difference of π ; thus the
maxima and minima coincide. If gain and loss are introduced
into the system the dynamics is no longer coherent and as a
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FIG. 3. (Color online) The expectation value of the particle num-
ber at the loss site 〈n1〉, the gain site 〈n2〉, and at both sites divided
by the initial number of particles in the system N0 = 100 is shown
for (a) γ = 0, (b) γ = 0.5, (c) γ = 1, and (d) γ = 1.5. The initial
wave functions are superpositions of the stationary states (11) with
θ = 0.2. The strength of the on-site interaction is g = 0.5 and it was
averaged over 500 trajectories. The oscillations at the two lattice sites
become more and more in phase as γ is increased. The calculations
using the master equation (solid lines) are in excellent agreement with
the results of the PT -symmetric Gross-Pitaevskii equation (dashed
lines). The dashed lines are exactly on top of the solid lines in (a) and
(b). Small deviations can only be seen in (c) and (d) for large times.
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FIG. 4. (Color online) The expectation value of the particle num-
ber for two different initial wave functions. The initial wave functions
are superpositions of the stationary states (11) with (a) θ = 1.4 and
(b) θ = 0.2. The parameters g = 1, γ = 1, N0 = 100 are used and the
expectation values were averaged over 500 trajectories. Depending
on the initial superposition the number of particles (a) diverges or (b)
oscillates. Again the results of the master equation (solid lines) and the
Gross-Pitaevskii equation (dashed lines) are in excellent agreement.
In (b) the dashed lines are not even visible since they lie exactly on
top of the solid lines.

result the total number of particles oscillates. The oscillation
of the total number of particles becomes stronger for greater
values of γ . The reason for this behavior is that the oscillations
at the lattice sites become more and more in phase as γ

increases and the exceptional point at γ = 2 is approached
(see Fig. 1). This behavior is characteristic of PT -symmetric
systems and has already been discussed for Bose-Einstein
condensates in a spatially extended potential [15,36], and was
experimentally confirmed in optical systems [7,8].

Since the system considered is nonlinear it is possible
that for the same system parameters one superposition of the
ground state and the excited states shows stable oscillations
while another superposition diverges. Such an explosion of the
condensate’s number of particles has been discussed in [36,41]
for an extended potential and a double-δ potential, respectively.
The same behavior is also found using the master equation with
balanced gain and loss as shown in Fig. 4.

Both Figs. 3 and 4 show the mean-field dynamics of the
Gross-Pitaevskii equation in comparison to the many-particle
dynamics of the master equation. The dynamics are in excellent
agreement and only for strong values of the gain-loss parameter
γ or long times deviations are observable.

The previous calculations showed that fundamental prop-
erties of PT -symmetric systems are also found in the many-
particle system described by the master equation with balanced
gain and loss. However, the time evolution was only discussed
for a few wave packets as initial wave functions. To gain a
complete picture of the dynamical behavior the visualization
on a Bloch sphere has already proved to be useful for
PT -symmetric systems [17,19]. To map the dynamics onto
the Bloch sphere we define the many-particle operator

�α =
N∑

j=1

σα,j , α = x,y,z, (12)

with the Pauli matrices σα,j acting on the j th particle. The
Bloch vector b is defined by the expectation value of this
operator, bα = 〈�α〉, and is plotted using the coordinate system

052120-4



QUANTUM MASTER EQUATION WITH BALANCED GAIN . . . PHYSICAL REVIEW A 90, 052120 (2014)

x

y

z

FIG. 5. (Color online) The coordinate system used for the Bloch
vector bα = 〈�α〉, α = x,y,z. The north pole corresponds to the
stationary excited state |ψe〉 of the system in the mean-field limit and
the south pole is the state orthogonal to |ψe〉 in the two-dimensional
space spanned by |ψe〉 and the stationary ground state. In the
Hermitian case the south pole represents exactly the ground state.
All initial states reside on the great circle in the xz plane.

shown in Fig. 5. In second quantization Eq. (12) reads

�α =
2∑

i,j=1

〈i|σα|j 〉a†
i aj , α = x,y,z, (13)

where |i〉 ∈ {|1〉,|2〉} are, as before, the one-particle states
describing a particle at lattice site 1 or 2, respectively.

The Pauli matrices are defined in the basis of the Bloch
sphere {|e1〉,|e2〉}

σx = |e1〉〈e2| + |e2〉〈e1|, (14a)

σy = −i|e1〉〈e2| + i|e2〉〈e1|, (14b)

σz = |e1〉〈e1| − |e2〉〈e2|. (14c)

The first basis vector of the Bloch sphere points to the
north pole and is chosen to be the stationary excited state of
the system,

|e1〉 = |ψe〉 = c1|1〉 + c2|2〉. (15)

The second basis vector pointing to the south pole of the Bloch
sphere is orthogonal to the first basis vector

|e2〉 = i(−c∗
2|1〉 + c∗

1|2〉), (16)

and the phase is chosen such that it is exactly PT symmetric.
Note that only in the Hermitian case |e2〉 is equal to the
stationary ground state.

Using the Eqs. (14)–(16) allows us to calculate the
coefficients of the operator in Eq. (13),

σx =
(−2 Im(c1c2) −i

[
c2

1 + (c∗
2)2

]
i
[
(c∗

1)2 + c2
2

]
2 Im(c1c2)

)
, (17a)

σy =
(

2 Re(c1c2) −c2
1 + (c∗

2)2

−(c∗
1)2 + c2

2 −2 Re(c1c2)

)
, (17b)

σz =
(|c1|2 − |c2|2 2c1c

∗
2

2c∗
1c2 |c2|2 − |c1|2

)
. (17c)

Since the system is coupled to an environment initial pure
states become statistical mixtures. For pure states the norm
of the Bloch vector is equal to the number of particles in the
system. The norm of the Bloch vector of statistical mixtures,
however, is smaller than the number of particles in the system
and, as a result, such states reside in the interior of the Bloch
sphere. Since the number of particles is not constant both
effects, the in/outflux of particles and the decoherence, lead
to a change in the norm of the Bloch vector. To separate
these effects the Bloch vector is always normalized to the
expectation value of the particle number. This allows us
to directly compare the many-particle dynamics with that
of the mean-field description given by the PT -symmetric
Gross-Pitaevskii equation which only can cover pure states.

The dynamics on the Bloch sphere is shown in Fig. 6. The
calculations using the master equation with balanced gain and
loss (upper panels) are compared with the dynamics of the
PT -symmetric Gross-Pitaevskii equation (lower panels). All
initial states are normalized pure states and are chosen such
that they start on a great circle of the Bloch sphere through the
north pole, the south pole, and the ground state of the system
(see Fig. 5). These initial states are PT symmetric since all
states in the xz plane fulfill this symmetry [19].

Figure 6(a) shows the dynamics for γ = 0.1. There are two
elliptic fixed points, the excited state on the north pole and the
ground state which is almost at the south pole. Only for γ = 0
the ground state resides on the south pole because in this case
the two stationary states are orthogonal. Due to the coupl-
ing to the environment the particle number is not conserved
and thus the trajectories do not run on the surface of the Bloch
sphere. The sum of the trajectories defines two distinct closed
surfaces, one inside the Bloch sphere (thick blue lines) and
one outside (red lines), thus describing oscillations to fewer or
more particles than the original number, respectively. These
closed surfaces cannot be penetrated by other trajectories.

Increasing the gain-loss parameter to γ = 0.7 leads to the
dynamics shown in Fig. 6(b). As γ is increased the ground
state wanders towards the north pole on the front side of a great
circle through the two poles. Due to the stronger coupling to the
environment more particles are exchanged and the trajectories
depart further off the Bloch sphere. Again we recognize the
two distinct closed surfaces inside and outside of the sphere.

The Bloch sphere for γ = 1.3 in Fig. 6(c) shows an
additional type of trajectories (green lines). The trajectories
outside the sphere no longer define a closed surface. Some
of the trajectories are still periodic (red lines) while other
trajectories diverge to higher radii (green lines). The diverging
trajectories are guided by the PT -broken eigenstates of the
system as discussed in [19].

The lower three panels of Fig. 6 show the dynamics
described by the PT -symmetric Gross-Pitaevskii equation
for comparison. For γ = 0.1 and γ = 0.7 the mean-field
dynamics and the many-particle dynamics are in excellent
agreement. For γ = 1.3 the agreement is again very good;
solely the trajectories at large radii are cut off in the many-
particle calculations. The reason for this behavior is that the
maximum number of particles in the system is limited by the
choice of the Fock basis.

The comparison shows that although a relatively small
particle number of 50–100 was used for the many-particle
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(a) (b) (c)

(d) (e) (f)

FIG. 6. (Color online) Dynamics on a Bloch sphere described by the master equation with balanced gain and loss (upper panels) and the
PT -symmetric Gross-Pitaevskii equation (lower panels), respectively. In all graphs the coordinate system introduced in Fig. 5 was used and all
spheres are aligned appropriately. The gain-loss parameter is γ = 0.1 in the left panels, γ = 0.7 in the middle panels, and γ = 1.3 in the right
panels. The parameters g = 0.5, N0 = 50 [(a), (b)], N0 = 100 (c) were used and it was averaged over 500 trajectories. The elliptic fixed point
on the north pole is the excited state of the system. The ground state of the system is the second fixed point which for γ = 0 resides on the
south pole and wanders towards the north pole as γ increases. The many-particle calculations and the mean-field calculations are in excellent
agreement.

calculations an excellent agreement with the PT -symmetric
Gross-Pitaevskii equation is found.

V. CONCLUSION

We have investigated an open quantum system described
by a master equation (3) in Lindblad form whose mean-
field limit is a PT -symmetric Gross-Pitaevskii equation (9).
The numerical treatment has shown that the characteris-
tic properties known from nonlinear PT -symmetric sys-
tems are also found in the many-particle dynamics de-
scribed by the master equation with balanced gain and
loss.

In particular we showed that the stationary solutions of the
PT -symmetric Gross-Pitaevskii equation behave also station-
ary in the many-particle description using the master equation

with balanced gain and loss. The master equation supports
characteristic dynamical properties of PT -symmetric systems
such as the in-phase pulsing between the lattice sites if the gain
and loss is increased. The comparison using the Bloch sphere
formalism goes one step further since it characterizes the whole
dynamics of the system including the stability properties. Since
the Bloch sphere behavior showed an excellent agreement
we can conclude that the master equation with balanced gain
and loss is indeed the adequate many-particle description of
a PT -symmetric Bose-Einstein condensate. This supports the
usual interpretation that the imaginary potentials introduced
for the Gross-Pitaevskii equation model an in- or outflux of
atoms coherently coupled to the condensate.

These results are a step towards a microscopic understand-
ing of PT -symmetric quantum systems and open the way to
investigate many-particle effects such as correlations which
are not accessible in the mean-field description.
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[10] B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys.
10, 394 (2014).

052120-6

http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1088/0034-4885/70/6/R03
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1489072
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927
http://dx.doi.org/10.1038/nphys2927


QUANTUM MASTER EQUATION WITH BALANCED GAIN . . . PHYSICAL REVIEW A 90, 052120 (2014)

[11] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106,
093902 (2011).

[12] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos,
Phys. Rev. A 84, 040101 (2011).

[13] S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu,
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