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Frequency scaling law for nonlinear Compton and Thomson scattering:
Relevance of spin and polarization effects
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The distributions of Compton and Thomson radiation for a shaped laser pulse colliding with a free electron are
calculated in the framework of quantum and classical electrodynamics, respectively. We introduce a scaling law
for the Compton and the Thomson frequency distributions which universally applies to long and short incident
pulses. Thus, we extend the validity of frequency scaling postulated in previous studies comparing nonlinear
Compton and Thomson processes. The scaling law introduced in this paper relates the Compton no-spin flipping
process to the Thomson process over nearly the entire spectrum of emitted radiation, including its high-energy
portion. By applying the frequency scaling, we identify that both spin and polarization effects are responsible for
differences between classical and quantum results. The same frequency scaling applies to angular distributions
and to temporal power distributions of emitted radiation, which we illustrate numerically.
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I. INTRODUCTION

When an electron is scattered against a laser beam, an
electromagnetic radiation is emitted; the process is known
as Compton scattering (for the most recent reviews, see,
Refs. [1–4]). The complete theoretical description of this
process is given in the framework of quantum electrodynamics
(QED) by employing the Furry interaction picture [5] and by
using the Volkov solutions [6] in the initial and final electron
states (alternatively, if the process occurs in an underdense
plasma, one can use the solutions derived in [7–10]). In the
low-energy limit, only classical aspects seem to play a role;
the classical counterpart of the Compton scattering is known
as Thomson scattering (see also Refs. [11,12]). In this case,
the emitted radiation spectrum is obtained from the classical
Newton-Lorentz equations, after substituting the resulting
electron trajectory in the Liénard-Wiechert potentials [13,14].
Both theoretical approaches shall be used in this paper
assuming that the incident laser beam can be modeled as a
plane-wave-fronted pulse [15].

The early works on nonlinear Compton [16–18] and
Thomson [19–22] scattering were based on a monochromatic
plane-wave approximation. A broad overview of the literature
can be found in Refs. [1–4,11,12]. In the context of this
paper, one should mention the paper by Heinzl et al. [23]
who derived the scaling law relating the radiation spectra
emitted in Compton and Thomson processes for the conditions
relevant to a definite number of photons, therefore describing a
monochromatic incident field. While in Ref. [23] the frequency
transformation concerned only backscattering in head-on
geometry, in the following work [24] it was generalized for
an arbitrary geometry allowing to account, for instance, for
finite-size effects of detectors on the properties of emitted
radiation. Further comparison of Compton and Thomson
spectra was performed in Refs. [25–28] treating the case of
a plane-wave-fronted pulse. The main features concerned the
dependence of angular distributions of the emitted radiation on
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the carrier envelope phase of a driving pulse [25], the blue-shift
of the classical energy spectrum, and the modification of the
classical and quantum amplitudes [26–28]. Specifically, in
Ref. [26] the scaling frequency law was introduced, for the
conditions, however, that the notion of a number of absorbed
laser photons was still meaningful, therefore, describing a
finite but sufficiently long driving pulse. In this paper, we shall
further analyze the differences between classical and quantum
results, with an emphasis on spin and polarization effects.
By introducing a frequency transformation, we identify the
aforementioned effects to cause differences between quantum
and classical results. We show that, once these effects are
accounted for, the scaling transformation introduced in this
paper can be successfully applied to arbitrary laser pulses
(including short laser pulses, which is in contrast to the
previous works). As we also demonstrate, our scaling law
is applicable not only to frequency and angular distributions,
but also to temporal power distributions of emitted radiation.
To our knowledge, the scaling of the latter has never been
demonstrated before.

As we already mentioned, many of the existing calculations
on nonlinear Compton and Thomson scattering treated the
driving laser beam as a monochromatic plane wave (see,
for instance, Refs. [16,19,29–40]). Few works on Compton
scattering beyond this approximation can be found in liter-
ature [25–28,41–45]. All of them concern a single-electron
response to the plane-wave-fronted pulse. Since a more
accurate description of the scattering process is accessible
in the classical limit (see, for instance, Refs. [23,46–49]),
it is important to determine the relation between quantum
and classical calculations. This is particularly important in
light of various applications of the Compton and Thomson
processes, including the production of ultrashort laser pulses in
the x-ray domain [29], determining the carrier envelope phase
of intense ultrashort pulses [25], measuring the electron beam
parameters [50], and generating coherent comb structures in
strong-field QED for radiation and matter waves [51].

This paper is organized as follows. In Sec. II, we introduce
the theory of Compton scattering arising from quantum
electrodynamics, whereas in Sec. III the same is done for
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Thomson scattering based on classical electrodynamics. In
Sec. IV, the frequency scaling law for emitted classical and
quantum radiation is introduced. Section V contains numerical
illustrations comparing classical and quantum energy spectra,
and discussing the validity of the introduced scaling law. This
is done for long (Sec. V A) and short (Sec. V B) driving laser
pulses, and an emphasis is put on spin and polarization effects.
In Sec. VI, we compare our results with the results of Ref. [26],
postulating the frequency transformation between Compton
and Thomson energy spectra induced by finite laser pulses. The
analysis of the frequency scaling law is extended in Sec. VII
to the angular distributions of generated radiation where we
show how polarization vectors should be defined in order to
achieve the agreement between the Compton and Thomson
scattering. These investigations are supplemented in Sec. VIII
by the discussion of the total energy of emitted radiation in the
quantum and classical theories. In Sec. IX, we illustrate that
the same frequency scaling is applicable for the time analysis
of emitted radiation by these two processes. Our results are
summarized in Sec. X.

II. COMPTON SCATTERING

As in our previous investigations [43,45,52–54], the laser
pulse is assumed to be described by the vector potential

A(φ) = A0B[ε1f1(φ) + ε2f2(φ)], (1)

where the shape functions fj (φ) vanish for φ < 0 and φ > 2π .
The duration of the laser pulse Tp introduces the fundamental
frequency ω = 2π/Tp such that

φ = k · x = ω
(
t − n · r

c

)
, (2)

in which the unit vector n points in the direction of propagation
of the laser pulse. We settle the real and orthogonal polarization
vectors εj , j = 1,2, such that n = ε1 × ε2. The constant B > 0
is to be defined later. We also introduce the relativistically
invariant parameter

μ = |eA0|
mec

, (3)

where e = −|e| and me are the electron charge and mass. With
these notations, the electric and magnetic components of the
laser pulse are equal to

E(φ) = ωmecμ

e
B[ε1f

′
1(φ) + ε2f

′
2(φ)] (4)

and

B(φ) = ωmecμ

ec
B[ε2f

′
1(φ) − ε1f

′
2(φ)], (5)

where “prime” means the derivative with respect to φ.
The shape functions are always normalized such that〈

f ′2
1

〉 + 〈
f ′2

2

〉 = 1
2 , (6)

where

〈F 〉 = 1

2π

∫ 2π

0
F (φ)dφ. (7)

In our numerical illustrations, we shall choose the shape
functions of the form

f (φ) ∝ sin2
(φ

2

)
sin(Noscφ). (8)

Here, Nosc is the number of field oscillations within the pulse,
therefore allowing one to define the central laser frequency
ωL = Noscω. In addition, we put the yet undetermined constant
B = Nosc, as we did in Ref. [54].

When scattering a laser pulse off a free electron, a nonlaser
photon is detected. It is described by the wave four-vector
K and, in the most general case, by the elliptically polarized
four-vectors εKσ (σ = 1,2) such that

K · εKσ = 0, εKσ · ε∗
Kσ ′ = −δσσ ′ . (9)

The wave four-vector K satisfies the on-shell mass relation
K · K = 0 as well as it defines the photon frequency ωK =
cK0 = c|K |. As shown in Ref. [53], εKσ can be chosen as
the spacelike vector, i.e., εKσ = (0,εKσ ). The scattering is
accompanied by the electron transition from the initial (i) to
the final (f) state, each characterized by the four-momentum
and the spin projection: (pi,λi) and (pf,λf). While moving in
a laser pulse, the electron acquires an additional momentum
shift [43] (see also Ref. [53]) which leads to a notion of the
laser-dressed momentum:

p̄ = p − μmec

(
p · ε1

p · k
〈f1〉 + p · ε2

p · k
〈f2〉

)
k

+ 1

2
(μmec)2

〈
f 2

1

〉 + 〈
f 2

2

〉
p · k

k. (10)

It was discussed in Ref. [53] that the dressed momenta defined
according to Eq. (10) are gauge dependent, therefore they do
not have clear physical meaning. Nevertheless, all formulas
derived in [43] depend on the quantity

PN = p̄i − p̄f + Nk − K, (11)

where the difference p̄i − p̄f enters. This difference is already
gauge invariant and, as a consequence, all quantities defined
in [43] are as well. This concerns

Neff = K0 + p̄0
f − p̄0

i

k0
= cTp

K0 + p̄0
f − p̄0

i

2π
, (12)

which was proven to be also relativistically invariant [53].
We take the derivation of the Compton photon spectra

from our previous paper [43]. As was presented there, the
frequency-angular distribution of energy of scattered photons
for an unpolarized electron is given by the formula

d3EC

dωK d2	K
= 1

2

∑
σ=1,2

∑
λi=±

∑
λf=±

d3EC,σ (λi,λf)

dωK d2	K
, (13)

where

d3EC,σ (λi,λf)

dωK d2	K
= e2

4πε0c
|AC,σ (λi,λf)|2 (14)

and the scattering amplitude equals

AC,σ (λi,λf)= mecK
0

2π
√

p0
i k

0(k · pf)

∑
N

DN

1−e−2πi(N−Neff )

i(N − Neff)
.

(15)
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The scattering amplitude has been expressed as a Fourier
series; for the coefficients DN , the reader is referred to
Eqs. (23) and (44) in Ref. [43]. Note that, in contrast to a
typical interpretation, integer indices N in Eq. (15) are not
related to the number of emitted or absorbed laser photons or,
in other words, to the period of a single field oscillation. They
are related to the pulse duration Tp or to the fundamental laser
frequency ω = 2π/Tp. For this reason, the respective Fourier
expansion is meaningful for arbitrary pulse durations. This
is in contrast to Ref. [26] where the expansion in terms of
a number of photons, thus characterized by the central laser
frequency ωL = Noscω was performed. The latter approach
has clear physical interpretation for relatively long driving
pulses. At this point, we also recall that Eqs. (13), (14),
and (15) were derived using the conservation conditions
P −

N = 0 and P⊥
N = 0 (for more details, see Ref. [43]). As we

will explain in Sec. IV, these conditions are vital for deriving
the Compton-Thomson frequency transformation.

III. THOMSON SCATTERING

In classical physics, a point particle does not have a spin
degree of freedom. Therefore, the description of nonlinear
Thomson process introduced below applies to both bosons and
fermions. At the moment, we assume that a particle possesses
an arbitrary charge and mass, although at the end we shall
apply this theory to electrons which have the smallest mass
among charged particles.

Let a particle of charge q and mass m be accelerated from
the initial time ti to the final one tf . During this time interval
it radiates, with the frequency-angular distribution of emitted
energy given by the Thomson formula [13] (we use the same
notation for the radiation emitted during this process as for the
Compton scattering)

d3ETh

dωK d2	K
= q2

4πε0c
|ATh|2, (16)

where the vector amplitude is

ATh = 1

2π

∫ tf

ti

ϒ(t) exp

[
iωK

(
t − nK · r(t)

c

)]
dt (17)

and

ϒ(t) = nK × {[nK − β(t)] × β̇(t)}
[1 − nK · β(t)]2

. (18)

Here, the overdot means the time derivative, β(t) = ṙ(t)/c
is the reduced velocity, and nK determines the direction of
radiated energy with the polar and azimuthal angles θK and
ϕK , respectively.

In order to define the polarization properties of the Thomson
radiation, let us remark that for two polarization vectors εK ,σ

(σ = 1,2) such that εK ,σ⊥nK , one can write

ϒ(t) = εK ,1[ε∗
K ,1 · ϒ(t)] + εK ,2[ε∗

K ,2 · ϒ(t)]. (19)

Therefore,

d3ETh

dωK d2	K
=

∑
σ=1,2

d3ETh,σ

dωK d2	K
, (20)

where

d3ETh,σ

dωK d2	K
= q2

4πε0c
|ATh,σ |2 (21)

and

ATh,σ = ε∗
Kσ · ATh. (22)

Equation (21) determines the frequency-angular energy dis-
tribution of emitted radiation with polarization εKσ , which
should be compared with the corresponding distribution (14)
for the Compton scattering.

The acceleration a of a particle having charge q and mass
m in arbitrary electric and magnetic fields E and B is given by
the formula [14]

a = q

m

√
1 − β2[E − β(β · E) + cβ × B]. (23)

Therefore, the relativistic Newton-Lorentz equations, which
determine the classical trajectory r(t) and the reduced velocity
and acceleration β(t) and β̇(t), take the form

ṙ(t) = cβ(t),

β̇(t) = qmeωμ

em

√
1 − β2(t)

× ({ε1 − β(t)[β(t) · ε1] + β(t) × ε2}f ′
1(φ)

+{ε2 − β(t)[β(t) · ε2] − β(t) × ε1}f ′
2(φ)). (24)

This is the system of ordinary differential equations that
one has to solve with some initial conditions in order to
calculate the Thomson distributions (16) or (21). Without
losing generality, we assume from now on that initially
(at ti = 0) the particle is at the origin of the coordinate
system r(0) = 0, with an arbitrary reduced velocity such
that |β(0)| < 1. Note that during the evolution, we have to
determine not only the functions r(t), β(t), and β̇(t), but also
the finite time tf after which the particle does not interact with
the laser pulse, which means that the reduced acceleration
vanishes. For presently available laser field intensities, this
time can exceed the duration of the laser pulse Tp by a few
orders of magnitude which is due to the significant drift
velocity in the pulse. Therefore, we have found it is more
convenient to consider the phase φ, instead of time t , as
the independent variable of the Newton-Lorentz equations.
In what follows, we solve the expanded system of equations

dt(φ)

dφ
= 1

ω[1 − n · β(φ)]
,

d r(φ)

dφ
= c

ω

β(φ)

1 − n · β(φ)
,

dβ(φ)

dφ
= qmeμ

em

√
1 − β2(φ)

1 − n · β(φ)

× ({ε1 − β(φ)[β(φ) · ε1] + β(φ) × ε2}f ′
1(φ)

+{ε2 − β(φ)[β(φ) · ε2] − β(φ) × ε1}f ′
2(φ)),

(25)
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which also determines the dependence of time t on the phase
φ. In this case,

ATh = 1

2π

∫ 2π

0
ϒ(φ) exp

[
i
ωK

ω
φ

+ iωK
(n − nK ) · r(φ)

c

]
dφ (26)

and

ϒ(φ) = nK × {[nK − β(φ)] × β ′(φ)}
[1 − nK · β(φ)]2

, (27)

where “prime” means again the derivative with respect to the
phase φ. Similar modifications apply also to other formulas in
this section.

In closing this section, let us note that in order to calculate
the Thomson amplitude [Eq. (26)], the first equation of the
system (25) is not necessary. It is included, however, to
describe the classical trajectory and the reduced velocity and
acceleration not only as functions of the phase φ, but also as
functions of the real time t . It appears that from the practical
point of view, such an expansion of the system of ordinary
differential equations marginally increases the computational
time. Moreover, it is well known that the Newton-Lorentz
equations with the electric and magnetic fields of the forms (4)
and (5) can be solved in quadratures. However, this does not
lead to significant simplifications as the numerical evaluation
of integrals is equally time consuming as the numerical
solution of ordinary differential equations. Having this in mind,
we choose to use the current method.

IV. FREQUENCY TRANSFORMATION

Because in this section we discuss the quantum corrections
to the frequency of emitted photons for the Compton process,
exceptionally we restore here the Planck constant �.

By inspecting Eq. (15), we find that the dominant contribu-
tions to the Compton amplitude come from such integer N ’s
that are very close to the real value Neff . This, along with the
conservation conditions discussed following Eq. (15), allow us
to write an approximate four-momenta conservation condition

p̄f = p̄i + Neff�k − �K. (28)

Note that for very long laser pulses, this equation is nearly
exact for an integer Neff . However, for very short pulses it is
fulfilled only approximately, which reflects the time-energy
uncertainty relation. As for the Fermi’s golden rule [56], the
above equation determines the most probable electron final
momenta; only those momenta significantly contribute to the
energy spectrum for which Neff is as close as possible to an
integer value.

The above equation determines the frequency of emitted
Compton photon. Indeed, by squaring both sides of Eq. (28)
and after some algebra, we arrive at

ωK = Neffck · pi

qi · nK + Neff�k · nK
, (29)

where the four-vector qi equals

qi = p̄i + μmec(〈f1〉ε1 + 〈f2〉ε2), (30)

and represents the gauge-invariant dressing of the initial
momentum pi (see Ref. [53]).

In the classical limit (� → 0), we obtain from Eq. (29)
the frequency, which we denote by ωTh

K and attribute to the
classical Thomson frequency

ωTh
K = Neffck · pi

qi · nK
. (31)

In both formulas (29) and (31), there is still an unknown real
number Neff , which can be eliminated by expressing ωK by
ωTh

K . In doing so, we define the cutoff frequency

ωcut = c

�

n · pi

n · nK
. (32)

This quantity has a purely kinematic character. Namely, it
depends only on the geometry of the process and, except for
the direction of propagation of the pulse, it is independent of
the laser field parameters responsible for the dynamical aspects
of the process. With this definition we find that

ωK = ωTh
K

1 + ωTh
K /ωcut

(33)

or

ωTh
K = ωK

1 − ωK /ωcut
. (34)

As it follows from the Thomson theory, the frequency of the
generated radiation can be arbitrarily large. On the other hand,
for the quantum Compton process the frequency must fulfill
the boundaries [43]

0 < ωK < ωcut, (35)

at least for an arbitrary laser pulse for which the plane-wave-
fronted approximation applies. Equations (33) and (34) exactly
reflect these properties of classical and quantum radiation
which, together with the numerical analysis presented below,
justify the interpretation of ωTh

K as the frequency generated
by the classical process. These relations can be put in the
relativistically covariant form for the wave four-vectors

KTh = νK,
1

ν
= 1 − �

k · K

k · pi
. (36)

The discussion presented above leads to the common
interpretation of the validity of the Thomson theory. It states
that the results coincide with the ones derived from the
Compton theory provided that

ωK 	 ωcut. (37)

For instance, in the reference frame of the initial electrons it
adopts the form

ωK 	 mec
2

�

1

1 − cos θK
, (38)

where θK is the angle between the direction of the laser field
propagation and the direction of emission of Compton photons.
This shows that the Thomson theory could be valid even for
Compton photons of energy comparable to or larger than mec

2,
provided that the emission angle θK is sufficiently small. Note
that the above validity condition is independent of the intensity
of the laser field. Does it mean that we could apply the classical
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theory to arbitrarily intense laser pulses? The answer to this
question is, in our opinion, unknown since both classical and
quantum theories have been derived from the lowest order of
perturbation theory. For the Thomson theory we have neglected
the radiation reaction effects, whereas for the Compton theory
we have disregarded the radiative corrections to the leading
Feynman diagram.

V. NUMERICAL ANALYSIS

In the following, the laser field propagation is chosen in the z

direction, and the electron spin degrees of freedom are defined
with respect to this axis. We introduce a notion of the scattering
plane which is determined by the propagation direction of the
incident pulse and the emitted radiation, thus defining the (xz)
plane. For an incident laser field, we choose the shape function
f1(φ) as a sine-squared function (8), whereas f2(φ) = 0 [see
Eq. (1)]. Also, it is assumed that ε1 = ex and ε2 = ey in Eq. (1).

We start our numerical analysis for the parameters, pre-
sented in the caption to Fig. 1, for which one can expect the
agreement between both theories. The presented frequency
range of emitted radiation is much smaller than the cutoff
frequency ωcut. The quantum Compton distribution [Eq. (13)]
is calculated as a function of frequency ωK , whereas the
classical Thomson distribution [Eq. (20)] as a function of ωTh

K .
The comparison of the two is shown in the upper panel. We
see that the spectra are very similar except that the classical
one is blue-shifted with respect to its quantum equivalent,
and that both differ in amplitude. This was realized in the
previous papers [26–28]. However, if we present the classical
distribution such that its frequency ωTh

K is scaled to ωK ,
according to Eq. (33), we get the agreement between these
two distributions. The agreement is up to a multiplicative factor
which, for the whole range of the considered frequencies, is
roughly equal to 2. This result suggests the following scaling
law:

d3EC,σ

dωK d2	K
= γ (ωK ,	K )

d3ETh,σ

dωTh
K d2	K

∣∣∣∣
ωTh

K = ωK
1−ωK /ωcut

. (39)

As we mentioned, the frequency transformation (33) has
a purely kinematic origin. On the other hand, the differ-
ences between the quantum and classical dynamics for these
processes are hidden in the prefactor γ (ωK ,	K ), which is
unknown; it appears, however, from our numerical analysis
that it is a smooth function of its arguments, as compared to
the Compton and Thomson distributions that are, in general,
rapidly changing functions. For this reason, in a frequency
interval containing a few oscillations of these distributions,
one can write that

d3EC,σ

dωK d2	K
∼ d3ETh,σ

dωTh
K d2	K

∣∣∣∣
ωTh

K = ωK
1−ωK /ωcut

. (40)

This means that the Compton and Thomson theories give
similar results in the sense that after rescaling the Thomson
frequency and multiplying the Thomson distribution by a
constant factor, both distributions become almost identical.
This is illustrated in the lower panel of Fig. 1.

As mentioned above, the exact form of the factor γ (ωK ,	K )
in Eq. (39) is not known. Our numerical analysis shows,
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FIG. 1. (Color online) Energy spectra for the Compton scattering
(solid blue line) [Eq. (13)] and for the Thomson scattering (dashed
red line) [Eq. (20)] for the linearly polarized laser field propagating in
the z direction with the polarization vector along the x axis. The laser
pulse parameters are μ = 1, Nosc = 32, and ωL = 3 × 10−6mec

2. The
scattered radiation is linearly polarized in the scattering plane, and it
is characterized by the polar and azimuthal angles θK = 0.98π and
ϕK = 0, respectively. The initial electron propagates in the opposite
direction with respect to the z axis, with momentum | pi| = 50mec. In
the upper panel, the Thomson spectrum is calculated for the frequency
ωTh

K . In the lower panel, this frequency is transformed to the Compton
frequency ωK by applying the scaling law (33) and, in addition, the
Thomson energy spectrum is multiplied by 2. For these particular
parameters, ωcut ≈ 50mec

2.

however, that for ωK 	 ωcut it is nearly equal to 1, whereas
for other values of ωK (even those close to ωcut, where
the applicability of the classical approach is questionable)
γ (ωK ,	K ) is a slowly varying function of its arguments. These
properties enable for a fast theoretical analysis of spectral
and temporal characteristics of radiation generated during the
interaction of electrons with intense laser pulses. Namely, in
order to determine these properties, one has to apply a rather
complicated and numerically demanding formalism of the
strong-field QED. For sufficiently intense laser pulses, such an
analysis becomes extremely time consuming as distributions
of generated radiation are very rapidly oscillating functions.
This means that, in order to determine them properly, one has to
perform the calculation of quantum probability amplitudes for
densely distributed sample points. The scaling law allows us
to speed up this procedure significantly, with some limitations
concerning polarization properties of emitted radiation and
spin dynamics of electrons interacting with strong laser pulses,
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K. KRAJEWSKA AND J. Z. KAMIŃSKI PHYSICAL REVIEW A 90, 052117 (2014)

as it is going to be discussed in the following. Indeed, to de-
termine the slowly changing factor γ (ωK ,	K ), it is sufficient
to calculate quantum and classical amplitudes for sparsely
distributed sample points. Having determined γ (ωK ,	K ),
one can perform computationally much less time-consuming
(although not fully appropriate for very intense laser pulses, as
it will follow shortly from our analysis) classical investigations
of the process. These results multiplied by γ (ωK ,	K ) give
a good estimation of quantum distributions, that can be
compared afterward with experimental results. Let us also
remark that another possibility of determining approximately
γ (ωK ,	K ) (however, in our opinion less accurate) has been
suggested in Ref. [26]. It consists in relating this factor to the
ratio of the corresponding distributions for the monochromatic
plane wave [see Eq. (59) in Ref. [26]].

Note that the Compton scattering has a much richer
structure than its classical counterpart. First of all, it depends
on the electron spin degrees of freedom. Moreover, if the laser
pulse is linearly polarized in the scattering plane, the Thomson
theory predicts no radiation with polarization perpendicular to
this plane, which is in contrast to the Compton theory. (For
more works on polarization effects in Thomson scattering,
we refer the reader to Refs. [28,39,40,49]; the polarization
effects in Compton scattering were analyzed more closely in
Refs. [36,45,55].) The agreement between both theories occurs
when, for Compton scattering, the spin-flipping processes as
well as the emission of radiation polarized perpendicularly to
the scattering plane take place with small probabilities. For this
reason, the frequency scaling law has to be more specific. In the
following, we shall demonstrate that, as long as the classical
theory predicts the emission of radiation, its distribution is
similar to the quantum one for spin-conserved processes.

Since the Compton and Thomson theories are relativisti-
cally invariant, in the remaining part of this paper we restrict
our numerical analysis to the reference frame of the incident
electron.

A. Long laser pulses

For long laser pulses, the four-momentum conservation
condition (28) is well satisfied with significant probability
amplitudes only for an integer Neff . Therefore, let us consider
the long pulse with Nosc = 16. In Fig. 2, we present the respec-
tive Compton energy spectrum for 0.1 � ωK /ωcut � 0.11, and
the Thomson one for ωTh

K changing over a wider interval.
The Thomson distribution is represented by the dashed
magenta line, but part of it, which is similar to the Compton one
for the spin no-flipping channels, is covered by the continuous
red line. These two parts of the distributions are similar in
the sense that, by applying the scaling transformation (34)
and by multiplying the Thomson distribution by the factor
γ (ωK ,	K ) = 0.9, both solid lines (the red and the blue one)
coincide. Note that the similar parts of the quantum and
classical distributions are from the frequency domains which
are separated from each other. Following, we show that, even
though such a separation can be very large, both theories give
similar results.

To this end we compare in Fig. 3 these two distri-
butions in more detail. This is done for the same laser
pulse parameters but for three different frequency domains:
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Compton Thomson

FIG. 2. (Color online) Energy spectra for the Compton scattering
(solid blue line for the no-spin-flipping process λiλf = 1) [Eq. (14)]
and for the Thomson scattering (dashed magenta and solid red
lines) [Eq. (20)]. The driving pulse propagates in the z direction
and is linearly polarized along the x axis. The remaining laser field
parameters are such that μ = 10, Nosc = 16, and ωL = 0.3mec

2. The
direction of scattered radiation is given by the polar and azimuthal
angles θK = 0.99π and ϕK = 0, respectively. These parameters are
specified in the rest frame of incident electrons. The Thomson
spectrum, multiplied by the factor 0.9, is calculated for the frequency
ωTh

K . In this reference frame and for these parameters, ωcut ≈ mec
2/2.

0.1 � ωK /ωcut � 0.11 (top row), 0.4 � ωK /ωcut � 0.41
(middle row), and 0.7 � ωK /ωcut � 0.71 (bottom row). The
Thomson distributions are presented as the mirror-reflected
curves. They were obtained after applying the frequency scal-
ing (33) but without multiplying them by the factor γ (ωK ,	K ),
in order to show their absolute values. In the left column,
we show the Compton distributions for both no-spin-flipping
(solid blue) and spin-flipping (dashed magenta) processes,
and for the emitted radiation polarized in the scattering
plane. As one can see, the spin-flipping processes marginally
contribute to the total emitted energy. It is interesting to
note that for all these intervals, the Thomson and the no-
spin-flipping Compton distributions are similar in the sense
discussed above, although they are calculated for frequency
domains that are very much separated from each other. For
instance, in the bottom left panel, the Compton and Thom-
son processes are calculated for 0.35 � ωK /mec

2 � 0.355
and 1.17 � ωTh

K /mec
2 � 1.22, respectively. This proves the

validity of the classical theory (up to the frequency scaling)
for frequencies ωK not significantly smaller than ωcut.

In the right column of Fig. 3, we present the Compton distri-
bution for the emitted radiation of polarization perpendicular to
the scattering plane. While for small frequencies (top panel) the
no-spin-flipping process dominates, thus, with increasing the
frequency range of emitted radiation the spin-flipping process
starts to play a role. In fact, there are some frequency domains
for which the process that does not conserve the electron spin
occurs with by far more significant probability than a process
that does conserve the electron spin (see, also Ref. [45] and
the discussion in Sec. V B). This becomes even more clear for
frequencies closer to the threshold value ωcut.

When comparing the corresponding panels in different
columns of Fig. 3, one can conclude that the emission of
Compton photons polarized perpendicularly to the scattering
plane is suppressed as compared to the emission of photons
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FIG. 3. (Color online) Energy spectra for the Compton scattering
(solid blue line for the no-spin-flipping process λiλf = 1, dashed
magenta line for the spin-flipping process λiλf = −1) [Eq. (14)], and
for the Thomson scattering (solid red line, reflected with respect to
the horizontal black line) [Eq. (20)], and for the same parameters as in
Fig. 2. In the left column, the energy spectra are presented for emitted
radiation polarized linearly in the scattering plane for three chosen
frequency domains. The right column displays the energy spectra for
perpendicularly polarized emitted radiation, for which the Thomson
theory gives 0. The Thomson spectrum is calculated for the frequency
ωTh

K and then the frequency is transformed to the Compton frequency
ωK by applying the scaling law (33). For these particular parameters
and for the reference frame considered, ωcut ≈ mec

2/2.

polarized in that plane. However, we showed in Ref. [45] that
this is not always the case. This appears to be a purely quantum
effect, as classically there is no emission of perpendicularly
polarized radiation (see the right column of Fig. 3).

B. Short laser pulses

In this section, we consider very short laser pulses with
Nosc = 2. In this case, the four-momentum conservation
condition (28) is rather vaguely satisfied for an integer Neff ,
due to the time-energy uncertainty relation. In other words,
contrary to long pulses, the final electron momenta pf in
Eq. (28) for which Neff is not an integer significantly contribute
to the sum in Eq. (15). Nevertheless, we observe a very good
agreement between the quantum and classical theories. In
Fig. 4, we compare the Compton and Thomson distributions
for the same geometry and the same laser field parameters as
in Fig. 3, except that the number of field oscillations within
the pulse is small. In the upper panel, the polarization of
emitted radiation is in the scattering plane. For very short
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FIG. 4. (Color online) Energy spectra for the Compton scattering
(the solid blue line is for the no-spin-flipping process λiλf = 1, the
solid magenta (light gray) line is for the spin-flipping process λiλf =
−1) [Eq. (14)] and for the Thomson scattering (red line, reflected
with respect to the horizontal black line) [Eq. (20)]. The presented
results are for the laser pulse propagating in the z direction with a
linear polarization vector along the x axis. The remaining parameters
are μ = 10, Nosc = 2, and ωL = 0.3mec

2. The direction of scattered
radiation is given by the polar and azimuthal angles θK = 0.99π

and ϕK = 0. These parameters are in the reference frame of incident
electrons. In the upper panel, the energy spectra are presented for
radiation emitted with a linear polarization in the scattering plane. In
the lower panel, the energy spectra of Compton radiation polarized
perpendicularly to the scattering plane are displayed; note that in
this case the Thomson theory gives 0. The Thomson spectrum is
calculated for the frequency ωTh

K and then the frequency is transformed
to the Compton frequency ωK by applying the scaling law (33).
For these particular parameters and for the chosen reference frame,
ωcut ≈ mec

2/2.

laser pulses, the spin-flipping processes play a more significant
role. Moreover, up to a multiplicative factor we find very good
agreement between the no-spin-flipping Compton scattering
and the Thomson one for frequencies close to the cutoff value
ωcut. On the other hand, for the polarization perpendicular
to the scattering plane, the spin-flipping process dominates
for some frequency domains over the no-spin-flipping one
(the lower panel in Fig. 4). Note also that independent of
the polarization of emitted radiation, for frequencies close to
the cutoff frequency, both the spin-flipping and the no-spin-
flipping processes occur with comparable probabilities.

These general features are confirmed for scattering at a
smaller polar angle θK = 0.5π , which is equivalent to the
larger cutoff frequency (ωcut = mec

2), as presented in Fig. 5. In
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FIG. 5. (Color online) The left column represents the same as
in Fig. 4, but with θK = 0.5π , for which ωcut = mec

2. The right
column shows two enlarged parts of the upper-left frame, but only
for the no-spin-flipping processes. We observe very good agreement
between the Compton and Thomson results (up to the multiplicative
factor) even for ωK /ωcut close to 1.

this case, the spin-flipping and the no-spin-flipping processes
become almost equal for large frequencies (cf. the left column).
Moreover, similarities between the quantum and the classical
treatments survive even for frequencies from the domain
of 0.82 � ωK /mec

2 � 0.826 (the lower panel in the right
column), although we start to observe here a tiny blue-shift
of the classical distribution after applying the frequency
transformation (33).

VI. PRIOR ANALYSIS OF THE SCALING LAW FOR
FINITE INCIDENT LASER PULSES

The frequency scaling of emitted radiation for Compton
and Thomson processes induced by finite laser pulses was
introduced in Ref. [26]. This transformation was defined for
finite but sufficiently long laser pulses. Here, we relate our
results to the work of Seipt and Kämpfer [26].

Seipt and Kämpfer have started their discussion of the
frequency scaling law by introducing the dimensionless and
relativistically invariant parameter y� [Eq. (2) in Ref. [26]],
which in our notation equals

y� = 2�ωL
n · pi

m2
ec

3
. (41)

For a monochromatic plane-wave field, � is interpreted as
the number of laser photons absorbed during the Compton
scattering (at least for not too intense laser fields). As it has
been remarked by the authors [see comment after Eq. (50) of
Ref. [26]], the parameter � is inappropriate for finite pulses
because the energy distribution of emitted photons becomes
a continuous function of the frequency ωK . Moreover, for
sufficiently intense laser pulses, measured by the parameter
a0 (which is related to our μ and, in fact, equals μ for a

monochromatic plane-wave field), some parts of the energy
distribution are not conclusively labeled by � (see, e.g., Fig. 8
in [26]). This is the reason why the parameter � for finite and
short laser pulses does not have physical meaning and should
be entirely eliminated from the formulation and discussion of
the scaling law, as it has been done in our analysis. It is still
easy to establish the connection of the parameter � with our
Neff , namely,

� = Neff/Nosc. (42)

The point is that Neffω = �ωL corresponds to the most
probable energy absorbed from the laser pulse in order to
generate the Compton photon of four-momentum K . Let
us stress, however, that this relation has the probabilistic
interpretation and it does not mean that for a finite laser pulse
the four-momentum conservation equation (28) is fulfilled;
it only becomes more probable as the duration of the pulse
increases.

By analyzing the integrated distributions for both processes,
when driven by not very intense laser pulses, it has been
found in [26] that both classical and quantum approaches
give the same values for y1 � 10−2 (cf. Fig. 3 in [26]). For
larger values of y1, the Thomson scattering signal becomes
much larger than the signal of Compton scattering. Since
small values of y1 correspond to low frequencies, ωK 	 ωcut,
therefore, our results for differential distributions are in full
agreement with this statement. Note that the angle-integrated
cross sections have been calculated in [26] for a small intensity
of the laser pulse (i.e., a0 	 1), whereas for higher intensities
(with a0 � 2) only results for the fully differential distributions
have been presented. In our studies so far, we have also
presented only differential distributions, except that we have
considered more intense laser pulses. The point is that subtle
peak structures observed in the fully differential distributions
are washed out in the angle-integrated distributions; hence,
a detailed theoretical comparison of quantum and classical
approaches is not possible.

Consider the case of a long laser pulse with Nosc = 16,
for which the differential distributions are shown in Fig. 3.
For these laser field parameters, y1 = 2ωL/mec

2 = 0.6. In the
top row of Fig. 3, Neff changes from 58.7 to 65.3, which
means that � ≈ 4. Although y� is comparable to 1, we observe
perfect agreement between the spin-conserved Compton and
the frequency-scaled Thomson distributions, which also hold
for their absolute values. With increasing �, the absolute
values of the frequency-scaled Thomson distribution start to
dominate over the Compton distribution. Still, the positions
of extrema and the structure of these distributions stay the
same (for the middle row in Fig. 3 we have � ≈ 22, and
for the bottom row � ≈ 80). Let us further investigate a
more extreme case presented in the upper panel of Fig. 6
for frequencies of generated Compton photons very close
to the cutoff value ωcut. In this frequency domain, � ≈ 300.
This is the case of the “overlapping” harmonics [specified by
the condition (50) in [26]] or the “erratic” (irregular) part of
the Compton distribution (as discussed in Sec. IV D in [26]).
Again, we observe perfect agreement (up to a normalization)
between the frequency-scaled Thomson and no-spin-flipping
Compton distributions. We conclude that once the spin and
polarizations effects are accounted for, the scaling law is
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FIG. 6. (Color online) The same as in Figs. 2 and 3, but for ωK

very close to the cutoff value ωcut. In the upper panel, the Compton
(for the spin-conserved process and with the Compton photon linearly
polarized in the scattering plane) and Thomson (mirror-reflected)
energy spectra are compared such that the Thomson distribution is
normalized to the maximum value of the Compton one. Although
in this frequency domain both distributions exhibit rather irregular
behavior, after frequency transformation and normalization there is
the perfect agreement between quantum spin-conserved and classical
theories. In the lower panel, the Compton distribution from the upper
frame (dashed line) is compared to the total-energy distribution for
the Compton process (solid line), when summed over all final spin
and polarization degrees of freedom, and averaged over the initial
spins. In this frequency domain, all spin and polarization degrees of
freedom contribute significantly to the total distribution.

applicable in the region where the spectral densities show the
erratic behavior. To confirm this statement, in the lower panel
of Fig. 6, the spin-conserved Compton distribution (dashed
line) is compared to the total Compton distribution (solid
line), the latter being summed over the final electron spin and
photon polarization degrees of freedom and averaged over the
initial electron spins. Here, contrary to the low-frequency case
where the spin-conserved process dominates, the polarization
and spin effects for the high-frequency part of the Compton
distribution cannot be considered as trivial. Let us also remark
that in Ref. [26] it has been suggested that for the erratic
part of the spectrum, where the individual harmonics overlap,
the classical radiation reaction force presumably should be
accounted for in calculations as it introduces an extra electron
recoil in Thomson scattering. Such a statement could be valid,
but our analysis also shows that the erratic behavior in the
emitted spectrum appears when the spin-flipping process starts
to be important. One can anticipate that interferences between

probability amplitudes with different electron spins can result
in the erratic behavior, observed in Ref. [26].

It is commonly accepted that strong-field QED is the proper
theoretical scheme for the analysis of high-energy photons
generated by the interaction of electrons with strong laser
pulses. It is also understood that the classical theory can be only
considered as its approximation. Our investigations show that
for some parts of the spectrum, the spin-flipping process occurs
with a significant probability distribution. Therefore, one can
assume that for spin-polarized electrons it is experimentally
feasible to detect the spin-flipping Compton process. Our
analysis can suggest the most suitable parameters for such
a detection.

For shorter laser pulses (with smaller Nosc), the spin
and polarization effects become even more important. This
is observed in Figs. 4 and 5 for Nosc = 2. Nevertheless,
for spin-conserved Compton and frequency-scaled Thomson
processes, we still observe structural similarity (i.e., the
coincidence in the positions and relative values of peaks).
This supports the postulate formulated in Ref. [26] that the
scaling law may be applied for arbitrary laser beams, including
short laser beams. While this is proven in our paper, let us
mention an important aspect of our formulation. As we have
emphasized in our previous publications [43,53], for finite
laser pulses, the laser-field dressing of the initial and final
electron momenta differs from the dressing induced by a
monochromatic plane wave. Namely, apart from the terms
proportional to the time-averaged shape functions squared
〈f 2

i 〉 (which lead to the effective electron mass in the field),
there are also terms proportional to 〈fi〉 and to the polarization
vectors of the pulse [Eqs. (10) and (30)]. These terms are
responsible for angular asymmetries in various strong-field
QED processes (see, e.g., Refs. [43,53]). In addition, these
terms lead to a redefinition of the Thomson (classical)
frequency for short laser pulses [Eq. (31)], which now becomes
laser-field-polarization dependent. Such a correction of the
classical frequency, which is vital for short driving pulses,
is not accounted for in the Seipt-Kämpfer definition of the
classical frequency [Eq. (55) in [26] with the definition of the
four-momentum q in the text], used further in their formulation
of the scaling law [Eqs. (56) and (57) in [26]].

VII. ANGULAR DISTRIBUTIONS

In the prior analysis of the scaling law [23,24,26], only
the frequency distribution for the Compton and Thomson
processes has been studied. The aim of the remaining part of
this paper is to extend the validity of the frequency scaling law
discussed above and to investigate the angular distributions as
well as the temporal power distribution of emitted radiation.

A. Polar-angle distribution

In polar-angle distributions plotted in this section, we fix
the frequency ωK and the azimuthal angle of emitted radiation
ϕK , whereas we change its polar angle θK . When comparing
the Compton and the frequency-scaled Thomson spectra we
have to remember that the cutoff frequency ωcut depends
on the direction of emitted radiation, which introduces an
extra angular dependence into the scaled Thomson amplitude.
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FIG. 7. (Color online) The same as in Fig. 3, but only for the
no-spin-flipping process (λiλf = 1), fixed frequency of generated
radiation, ωK = 0.2024mec

2, �K = 0, and for two domains of the
emission angle �K . In both cases, the polar-angle distributions for
the Compton (blue line) and Thomson (mirrored red line) scattering
show the structural similarity as for the frequency distributions.

In addition, we have found it more convenient to plot the
spectra as the function of angles (�K ,�K ), 0 � �K < 2π , and
0 � �K < π , such that

(θK ,ϕK ) =
{

(�K ,�K ) for 0 � �K � π,

(2π − �K ,�K + π ) for π < �K < 2π,

(43)

which accounts for the continuity of the distributions at the
south pole.

In Fig. 7, we compare the spin-conserved Compton polar-
angle distribution with the respective frequency-scaled Thom-
son distribution for the given frequency ωK = 0.2024mec

2,
�K = 0, and for a long driving pulse with Nosc = 16. We
observe, similarly to the frequency distributions presented in
Fig. 3, the perfect structural agreement (i.e., maxima and
zeros of both distributions appear for the same polar angle
�K ) between the quantum and frequency-scaled classical
theories. Exactly the same agreement is observed for very short
pulses, with Nosc = 2. Such an agreement is not achievable
if the frequency scaling law proposed in Refs. [23,24,26] is
applied, as these works are missing the term with 〈f1〉 in
the momentum dressing [Eq. (10)]. Inspection of Fig. 7 also
shows that the structural similarity between the quantum and
frequency-scaled classical theories appears for the so-called
regular part of the distributions (i.e., for emission angles close
to the south pole θK ≈ π ) as well as for the irregular part
(i.e., for emission angles close to the equatorial θK ≈ π/2),

even though we observe there rapid changes of the intensity of
generated radiation with densely distributed maxima.

A similar agreement between the Compton and the
frequency-scaled Thomson distributions exists also for
nonzero �K , provided that polarization vectors of emitted
radiation are suitably chosen. Since the same concerns
azimuthal-angle distributions, this problem will be discussed
in the following section.

B. Azimuthal-angle distribution

As we have already stressed, polarization properties of
the emitted radiation play the crucial role in the analysis
of the frequency scaling. Therefore, let us first define the
convention of how the polarization vectors are introduced in
our numerical analysis. The two linear polarizations εK ,1 and
εK ,2 are fixed such that for radiation generated in the direction
nK (determined by the polar and azimuthal angles θK and ϕK ),
the three vectors (see Appendix A in [57])

εK ,1 =
⎛
⎝cos θK cos ϕK

cos θK sin ϕK

− sin θK

⎞
⎠, εK ,2 =

⎛
⎝− sin ϕK

cos ϕK

0

⎞
⎠,

nK =
⎛
⎝sin θK cos ϕK

sin θK sin ϕK

cos θK

⎞
⎠ (44)

create the right-hand-side system of orthogonal unit vectors

εK ,1 × εK ,2 = nK . (45)

Since the Thomson and Compton processes are relativistically
invariant, we can choose the Lorentz reference frame such that
the laser beam and the electron counterpropagate. Next, we
can orient the coordinate system such that

ε1 = ex, ε2 = ey, n = ez. (46)

In this paper, we consider a linearly polarized laser pulse for
which the second shape function vanishes, f2(k · x) = 0. This
allows us to define the laser pulse plane, spanned by vectors
ε1 and n, in which the classical motion of electrons takes
place. This means that the vector ϒ(φ) [Eq. (27)] is coplanar
with this plane. Hence, these parts of the polarization vectors
of emitted radiation that are perpendicular to the laser pulse
plane do not contribute to the Thomson amplitude, which is
not the case for the Compton amplitude. In order to compare
reasonably predictions of the classical and quantum theories
for an arbitrary direction of emission, we have to choose a
different convention for the polarization vectors of emitted
radiation. This can be done along the line suggested in Ref. [57]
(see Appendix A). Namely, instead of εK ,1 and εK ,2, we choose
the following unit vectors:

εK ,‖ = (εK ,2 · ε2)εK ,1 − (εK ,1 · ε2)εK ,2√
(εK ,2 · ε2)2 + (εK ,1 · ε2)2

, (47)

εK ,⊥ = (εK ,1 · ε2)εK ,1 + (εK ,2 · ε2)εK ,2√
(εK ,2 · ε2)2 + (εK ,1 · ε2)2

, (48)

which also form the right-hand-side system of orthogonal unit
vectors

εK ,‖ × εK ,⊥ = nK . (49)
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FIG. 8. (Color online) Azimuthal-angle distribution of radiation
energy generated by the no-spin-flipping Compton process (blue line)
and by the frequency-scaled Thomson scattering (mirrored red line)
for the same laser pulse parameters as in Figs. 4 and 5. The upper
row presents distributions of radiation linearly polarized in the laser
pulse plane [cf. Eq. (47)], and the lower row for polarization (48). In
the left column, we show the results for ωK = 0.2024mec

2, and in the
right one for ωK = 0.6mec

2. For all cases, the polar angle θK = 0.7π .
These distributions satisfy the symmetry ϕK → 2π − ϕK .

With these new polarization vectors we can define the
Thomson amplitudes

ATh,‖ = (εK ,2 · ε2)ATh,1 − (εK ,1 · ε2)ATh,2√
(εK ,2 · ε2)2 + (εK ,1 · ε2)2

, (50)

ATh,⊥ = (εK ,1 · ε2)ATh,1 + (εK ,2 · ε2)ATh,2√
(εK ,2 · ε2)2 + (εK ,1 · ε2)2

, (51)

and similarly the spin-dependent Compton amplitudes. In
analogy to Eqs. (14) and (21), we introduce the energy
distributions for the emitted radiation for these two particular
polarization vectors.

In Fig. 8, we compare the azimuthal-angle distributions for
the spin-conserved Compton and frequency-scaled Thomson
processes for the short laser pulse (Nosc = 2) and for two linear
polarizations of emitted radiation defined by the vectors (47)
and (48). As anticipated, we observe a very good agreement
between the results for polarization parallel to the laser pulse
plane, and a disagreement for the second polarization vector.
The point being that, in general, it has a nonvanishing compo-
nent perpendicular to the laser pulse plane, not accounted for
by the classical theory. Indeed, a closer look at the lower row
of this figure (for the polarization εK ,⊥) shows that, although
positions of maxima and zeros are nearly the same, the coarse-
grained quantum and classical distributions are different. This
is particularly well manifested for larger frequencies ωK . Let
us also note that, for frequencies of generated radiation that
are closer to the cutoff frequency for Compton scattering, we
start observing a tiny shift for the classical azimuthal-angle
distribution (cf. the upper right frame in Fig. 8). This is similar

to the small-frequency blue-shift detected for the frequency
distribution (cf. the lower right frame in Fig. 5). It remains an
open question as to whether such tiny discrepancies between
the quantum and frequency-scaled classical distributions can
be corrected by the classical radiation reaction [14,58–60],
which introduces the recoil of electrons during their interaction
with the laser pulse.

VIII. TOTAL ENERGY OF GENERATED RADIATION

In this section, we present the results for the total energy of
radiation generated from Compton and Thomson processes.
In the case of Compton scattering, we have to perform the
three-dimensional integral which we write as

EC =
∫ 2π

0
dϕK

∫ 1

−1
d cos θK

∫ ωcut

0
dωK FC(ωK ,θK ,ϕK ).

(52)

Note that, in general, the cutoff frequency depends on
angles ωcut = ωcut(θK ,ϕK ) [although, for the head-on collision
considered in this paper it is ϕK independent] and [cf. Eq. (13)]

FC(ωK ,θK ,ϕK ) = d3EC

dωK d2	K
. (53)

Changing the parameters (0 � ξi � 1, i = 1,2,3),

ϕK = 2πξ1, cos θK = 2ξ2 − 1, ωK = ωcutξ3, (54)

we arrive at the three-dimensional integral over the unit cube

EC =
∫ 1

0
dξ1dξ2dξ3 F̃C(ξ1,ξ2,ξ3), (55)

where

F̃C(ξ1,ξ2,ξ3) = 4πωcut(θK ,ϕK )FC(ωK ,θK ,ϕK ). (56)

For the Thomson scattering, the only difference is that the
integration over ωK in Eq. (52) extends to infinity. Applying
the frequency scaling [Eq. (34)], we obtain in a very similar
way the expression for the total energy of radiation generated
by the classical process

ETh =
∫ 1

0
dξ1dξ2dξ3 F̃Th(ξ1,ξ2,ξ3), (57)

where

F̃Th(ξ1,ξ2,ξ3) = 4πωcut(θK ,ϕK )(
1 − ωK

ωcut(θK ,ϕK )

)2 FTh(ωK ,θK ,ϕK ) (58)

and

FTh(ωK ,θK ,ϕK ) = d3ETh

dωTh
K d2	K

∣∣∣∣
ωTh

K = ωK
1− ωK

ωcut(θK ,ϕK )

. (59)

For large laser field intensities, the integrands in Eqs. (55)
and (57) are rapidly changing functions of their argu-
ments, which makes the standard multidimensional integra-
tion algorithms (usually based on the Gauss-type methods)
hardly applicable. However, similar to the Bethe-Heitler
process [54,61,62], we have found that the Monte Carlo
algorithm is sufficiently fast convergent, with the estimated
error not larger than a few percent for 106 sample points.
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FIG. 9. (Color online) Total energy (in relativistic units) in the
electron’s reference frame for linearly polarized laser pulse defined
by Eq. (8), ωL = 0.3mec

2 and Nosc = 16. In the log-log plot we
present the total energy calculated for the Compton process (dark red
circles) and for the Thomson process (light brown diamonds). The
continuous blue (dark) and green (light) lines are to guide the eye.
The thin black straight line represents the fitting curve defined by
Eq. (60).

In Figs. 9 and 10, we present in the log-log plots the esti-
mated values for the total energy of generated radiation in the
electron’s reference frame as functions of the relativistically
invariant parameter μ for the long and short laser pulses (i.e.,
for Nosc = 16 and 2, respectively). One can see that for the
intensity parameter μ not larger that 1, the markers lie on the
straight line. We have found that in this region the dependence
on μ of the total emitted energy for Compton and Thomson
scattering fits the curve

E(μ) = E0Noscμ
2, (60)

with E0 ≈ 0.94 × 10−3mec
2. This parameter is a universal

quantity in the sense that for the considered in this paper shape
of the laser pulse [Eq. (8)], it is independent of the number of
oscillations Nosc (we have checked this also for Nosc = 8). For
μ larger than 1, the total emitted energy starts increasing with
μ2 nonlinearly.

We learn from Figs. 9 and 10 that for laser field intensities
such that μ � 1 (for the Ti:sapphire laser μ = 1 corresponds
to the intensity of the order of 1018 W/cm2), the quantum
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FIG. 10. (Color online) The same as in Fig. 9 but for Nosc = 2.

and classical approaches give nearly the same results. This
can be expected as for such intensities only radiation of
frequencies ωK much smaller than the cutoff one is generated
with a significant probability. Hence, Compton and Thomson
(even without the frequency scaling) theories predict nearly
identical differential distributions. Discrepancies start to be
visible for larger intensities. Specifically, for μ ≈ 10 (i.e., for
intensities of the order of 1020 W/cm2 for the Ti:sapphire
laser) the classical predictions exceed the quantum ones even
by one order of magnitude. One can anticipate that for still
larger intensities (μ � 100, as expected for instance in the
ELI [63] or XCELS [64] projects), the differences between
results based on the classical and quantum approaches can
be even larger. For such intensities, the strong-field QED
analysis of fundamental processes is very much demanding, or
sometimes even impossible, to be carried out. For this reason,
the approach based on classical electrodynamics is mostly
applied (for relevant review articles, see, e.g., Refs. [65,66]).
For instance, the problem of generation of zeptosecond (or
even yoctosecond) pulses is currently vigorously studied (see,
e.g., [67–73] and references therein). We have shown, however,
that quantum effects prohibit in general the generation of such
extremely short pulses of radiation and, in some cases, lead
to contradictions with the classical expectations [74]. The
main reason for this is that the global phase of the quantum
amplitude AC,σ (ωK ) nonlinearly depends on the emitted
photon frequency ωK . This is in contrast to the classical
amplitude ATh,σ (ωTh

K ), the phase of which linearly depends
on ωTh

K . A nonlinear dependence of the quantum phase leads
to strong chirping of synthesized pulses of radiation. It appears,
however, that the frequency scaling considered in this paper,
which is the straightforward generalization of the scaling law
introduced originally in Refs. [23,24,26] for laser pulses with
slowly changing envelopes, correctly transforms the Thomson
global phase. Namely, after the transformation, it becomes the
nonlinear function of ωK , as it is the case for the Compton
global phase [57]. One can expect therefore that the frequency
scaling law, if applied to the classical analysis, can lead to
temporal power distributions of emitted radiation comparable
to those predicted by the quantum analysis. This is the topic
of our further discussion presented in the next section.

IX. TEMPORAL POWER DISTRIBUTION

The frequency distributions for Compton and Thomson
scattering discussed above are not the only ones that can be
studied in the context of the scaling law. Another aspect of such
investigations, in our opinion even more important in light of
possible applications, is the temporal dependence of power of
electromagnetic radiation generated during the interaction of
electrons with laser pulses. The aim of this section is to show
that the meaning of the scaling law can be extended to the time
analysis of generated high-frequency radiation by these two
processes.

Analysis of the Liénard-Wiechert potentials [13,14] shows
that the Thomson amplitude ATh,σ (ωK ) can be used for the
synthesis of the temporal power distribution of generated
radiation. Let us take only a part of the frequency spectrum
ωmin � ωK � ωmax by applying, for instance, a frequency
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filter, and define the function

Ã(+)
Th,σ (φr; ωmin,ωmax) =

∫ ωmax

ωmin

dωATh,σ (ω)e−iωφr/ωL , (61)

where the retarded phase φr in the far radiation zone is

φr = ωL

(
t − R

c

)
. (62)

Here, R is much larger than any displacement of electrons
during the interaction with a laser pulse. The temporal angular
power distribution becomes

d2PTh,σ

d2	K
(φr; ωmin,ωmax)

= e2

4π2ε0c
[ReÃ(+)

Th,σ (φr; ωmin,ωmax)]2 , (63)

where the symbol Re means the real part. The corresponding
formulas for Compton scattering are the same, except that they
also depend on the initial and final spin degrees of freedom.

In order to account for the frequency scaling in Thomson
scattering, we calculate the complex Thomson amplitude
ATh,σ (ωTh

K ) [Eqs. (22) and (26)], and scale it such that

Ascaled
Th,σ (ωK ) = ATh,σ

(
ωK

1 − ωK /ωcut

)
. (64)

This amplitude is then inserted into Eqs. (61) and (63) to obtain
the frequency-scaled temporal power distribution for Thomson
scattering.

Figure 11 shows the temporal power distributions synthe-
sized from the frequency distributions presented in Fig. 6. As
we see, up to a normalization constant, the frequency-scaled
temporal power distribution for Thomson scattering perfectly
agrees with the corresponding distribution for Compton
scattering. Note that, without applying the frequency scaling to
the Thomson amplitude, the classical electrodynamics predicts
generation of much shorter radiation pulses (if for the synthesis
such frequencies are used which are comparable to the cutoff
frequency ωcut). The observed agreement proves that not only
the square of modulus of frequency-scaled Thomson amplitude
and Compton amplitude are equal (up to a normalization
constant), it also proves that dependence of their phases on
the frequency of emitted radiation is the same up to a constant
term (for the Thomson phase, we mean the dependence on the
scaled frequency). Again, the results presented in Fig. 11 show
the importance of the spin and polarization degrees of freedom
for high-frequency parts of spectra, as their contribution to the
temporal power distribution can be even more pronounced than
for the energy distribution.

In closing, we note that the validity of the frequency scaling
law (introduced by Seipt and Kämpfer [26] for finite but long
laser pulses) can be extended not only to arbitrary short laser
pulses and to the “erratic” part of the spectrum, but also to the
time domain of quantum and classical theories provided that
the electron spin is properly accounted for. Since the notion
of spin is absent in classical theory, one has to realize how
to compare both theories in a reliable manner. Our analysis
shows that this is possible only when the Thomson process
is compared with the spin-conserved Compton process. As
we also demonstrate, such a comparison makes sense even if
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FIG. 11. (Color online) Temporal power distribution of electro-
magnetic radiation generated by Compton and Thomson scattering,
and synthesize from energy distributions presented in Fig. 6. In
the upper panel, we compare temporal power distributions for
generated radiation linearly polarized in the scattering plane for
the spin-conserved Compton process (blue line) and the frequency-
scaled Thomson process (mirrored red line). Both distributions are
normalized to their maximum values. In the lower panel, we compare
the temporal power distribution for Compton scattering from the
upper panel (dashed red line) with the total power distribution
summed over the final spin and polarization degrees of freedom and
averaged over the initial spins (solid blue line). We see that spin and
polarization effects observed for power distributions are even more
pronounced than the ones observed for frequency distributions.

the spin-flipping Compton process occurs with a significant
probability.

X. CONCLUSIONS

In this paper, we compared the energy distributions of
emitted radiation in nonlinear Compton and Thomson pro-
cesses by shaped laser pulses. The presented numerical results
were obtained in the framework of quantum and classical
electrodynamics, respectively. We observed a typical blue-shift
of Thomson spectra with respect to the Compton spectra.
However, by employing a respective frequency transformation,
we showed that both spectra start to coincide. Specifically,
this concerned the Compton spectra for processes which
conserve the electron spin as compared to the Thomson
spectra. Therefore, the importance of spin effects in nonlinear
Compton scattering was stressed. In the case when the spin-
flipping Compton processes were negligible, the frequency
transformation was successfully applied to the spin-averaged
Compton distributions. One should note, however, that there is
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a limitation on the applicability of the scaling transformation
which comes from a sensitivity of classical results to the
polarization of emitted radiation. This was illustrated when
we analyzed angular distributions of emitted radiation.

In closing, we would like to stress that the frequency scaling
law introduced in this paper can be successfully applied to
Compton and Thomson spectra generated by pulses of an
arbitrary duration. Moreover, it extends far above a standard
validity range of a classical limit [see Eq. (37)]. As was
illustrated by numerical examples, our scaling law stays valid
even for a high-energy part of the emitted radiation. Finally,
we note that the scaling was previously introduced only in
the context of energy distributions of emitted radiation. In this
paper, we showed that the frequency transformation can be also
successfully applied to angular distributions and for the time

analysis of emitted radiation, which is particularly important
in the context of ultrashort pulse generation.
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[8] S. Varró, Laser Phys. Lett. 11, 016001 (2014).
[9] E. Raicher and S. Eliezer, Phys. Rev. A 88, 022113 (2013).

[10] E. Raicher, S. Eliezer, and A. Zigler, Phys. Plasmas 21, 053103
(2014).

[11] L. L. Lau, F. He, D. P. Umstadter, and R. Kowalczyk, Phys.
Plasmas 10, 2155 (2003).

[12] D. P. Umstadter, J. Phys. D: Appl. Phys. 36, R151 (2003).
[13] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1975).
[14] L. D. Landau and E. M. Lifshitz, The Classical Theory of Field

(Butterworth-Heinemann, Oxford, 1987).
[15] R. A. Neville and F. Rohrlich, Phys. Rev. D 3, 1692 (1971).
[16] L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705 (1964).
[17] I. I. Goldman, Zh. Eksp. Teor. Fiz. 46, 1412 (1964) [Sov. Phys.

JETP 19, 954 (1964)].
[18] A. I. Nikishov and V. I. Ritus, Zh. Eksp. Teor. Fiz. 46, 1768

(1964) [Sov. Phys. JETP 19, 1191 (1964)].
[19] N. D. Sengupta, Bull. Math. Soc. (Calcutta) 41, 187 (1949).
[20] Vachaspati, Phys. Rev. 128, 664 (1962).
[21] Vachaspati, Phys. Rev. 130, 2598 (1963).
[22] E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970).
[23] T. Heinzl, D. Seipt, and B. Kämpfer, Phys. Rev. A 81, 022125
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