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We derive exact analytic solutions of nonlinear Dirac equations with Kerr-like cubic nonlinearity. The equations
model, among many physical systems, a Bose-Einstein condensate confined by a two-dimensional honeycomb
optical lattice as well as relativistic solitons in optical waveguide arrays. The nonrelativistic limit of the solutions
is derived, and the role of the nonlinearity on localization is discussed. The possibility of realizing some of these
solutions in waveguide arrays and Bose-Einstein condensates is pointed out.
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I. INTRODUCTION

The recent increasing interest in the nonlinear Dirac
equation (NLDE) was stimulated by the realization that it
models many physical systems, such as electron transport in
graphene [1], Bose-Einstein condensates (BECs) confined by a
honeycomb optical lattice [2], and optical pulses in waveguide
arrays [3,4]. The possibility of observing relativistic effects in
these systems at very low velocities is particularly appealing.
For instance, the effective speed of light in graphene equals
the Fermi velocity, which is two orders of magnitude smaller
than the speed of light in vacuum [1]. In Bose-Einstein
condensates it is even more dramatic, where the effective
speed of light equals the speed of sound, which is ten orders
of magnitude smaller than the speed of light in vacuum [2].
Relativistic effects have indeed been investigated in some of
these systems [5–8].

Many generalizations of the NLDE have been considered
and studied in the literature, including extensions to higher
dimensions [9–18] and different nonlinearities [19–22] such
as the well-known Thirring model [19] and the Gross-Neveu
model [21]. The fact that solutions of the NLDE and its gen-
eralizations correspond to extended particles of the associated
physical systems [20,23] has stimulated extensive interest in
the existence and stability of its solutions [9–22,24–26].

Recently, Haddad and collaborators have extended their
earlier work on the NLDE of Bose-Einstein condensates
confined by a two-dimensional (2D) honeycomb lattice [2]
by presenting a thorough analysis of the soliton solutions of
the 1D NLDE corresponding to an isolated zigzag or armchair
line in the 2D lattice [24]. Using conformal degree arguments,
Haidari has presented a generalized NLDE with various forms
of the cubic nonlinear coupling from which these two models,
in addition to many other well-known models such as the
Thirring and Gross-Neveu models, arise as special cases [27].

In Ref. [24], near exact (graphical) solutions were obtained
for the massless NLDE. In Ref. [26], one single soliton solution
was derived for the massive version of the same equation
within the context of waveguide arrays. In both of these
works, the so-called symmetric coupling was considered, i.e.,
linear coupling. Here, we consider the same 1D NLDE for
the massless and massive cases with symmetric (linear) and
nonsymmetric (nonlinear) coupling. We derive exact localized
and oscillatory analytic solutions for the relativistic case as
well as the nonrelativistic limit. We show that by properly

taking the nonrelativistic limit, the relativistic solutions indeed
tend to their nonrelativistic counterparts. We calculate physical
quantities associated with these solutions, such as the total
energy, momentum, and spin, and we point out the possibility
of realizing these solution waveguide arrays and Bose-Einstein
condensates.

In the next section, we present the NLDEs to be considered.
Section III is devoted to presenting our solution method and
the resulting solutions for the various cases. We discuss in
Sec. IV the possible extensions of the solutions found here to
NLDEs in a moving frame and with external potentials, and
we end with final remarks and an outlook for future work.

II. THE NONLINEAR DIRAC EQUATIONS

Requiring the different components of the spinor La-
grangian to have the same conformal degree, Haidary [27]
has constructed a general Lagrangian that includes nonlinear
coupling. Generalized nonlinear Dirac equations were then
obtained by variation of the spinor action. It turns out that
many of the well-known NLDE models, in addition to the ones
considered here, emerge as special cases of this generalized
model, as will be detailed below. The general model for the
one-dimensional coupled nonlinear Dirac equations reads

i∂tψ+ = mψ+ + ∂xψ− + (α+|ψ+|2 + α−|ψ−|2)ψ+
+αW (ψ+ψ∗

− + ψ∗
+ψ−)ψ−, (1)

i∂tψ− = −mψ− − ∂xψ+ + (α−|ψ+|2 + α+|ψ−|2)ψ−
+αW (ψ+ψ∗

− + ψ∗
+ψ−)ψ+, (2)

where ψ±(x,t) are the spinor field components of a fictitious
spin-1/2 system. Here, m corresponds to the rest mass, and
α± = αV ± αS and αW are real dimensionless parameters
corresponding to coupling strengths of the nonlinear self-
interaction. The massive Thirring model [19] is obtained
as the special case of a pure vector coupling mode, where
αS = αW = 0, and the massive Gross-Neveu model [21]
is obtained as the special case of a pure scalar coupling
mode, with αV = αW = 0. Furthermore, the above-mentioned
physical models of graphene, BEC, and waveguide arrays
with cubic nonlinearity are obtained with the special case
of αW = α− = 0. This case is denoted below as the spin
symmetric case, in contrast with another special case with
αW = α+ = 0, which we denote as the pseudospin symmetric
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case [27]. For the spin symmetric special case, the NLDE takes
the form

i∂tψ+ = mψ+ + ∂xψ− + α+|ψ+|2ψ+, (3)

i∂tψ− = −mψ− − ∂xψ+ + α+|ψ−|2ψ−, (4)

and the pseudospin symmetric case corresponds to

i∂tψ+ = mψ+ + ∂xψ− + α−|ψ−|2ψ+, (5)

i∂tψ− = −mψ− − ∂xψ+ + α−|ψ+|2ψ−. (6)

Equations (3) and (4) are the massive NLDE with cubic (Kerr-
type) nonlinearities. The rest of this paper is devoted to finding
exact analytic stationary solutions to Eqs. (3)–(6). Solutions
will be obtained in both the relativistic and nonrelativistic
limits.

III. SOLUTION METHOD AND RESULTS

The simpler nonrelativistic case is started within the
following subsection. We derive the relativistic solutions in
Sec. III B, from which the proper nonrelativistic results are
then extracted by a limiting procedure in Sec. III C. Oscillatory
solutions are derived for the pseudospin symmetric case in
Sec. III D.

A. Nonrelativistic limit

1. Spin symmetric case

We look for the stationary solutions of Eqs. (3) and (4),
which can be written as

ψ+(x,t) = φ+(x) eiλ+t , (7)

ψ−(x,t) = φ−(x) eiλ−t , (8)

where φ±(x) are real functions and λ± are real constants
corresponding to the energy of the excitations. Substituting
in Eqs. (3) and (4), we get

φ′
− e−i(λ+−λ−)t + α+φ3

+ + (m + λ+)φ+ = 0, (9)

φ′
+ ei(λ+−λ−)t − α+φ3

− + (m − λ−)φ− = 0, (10)

where a prime denotes a derivative with respect to x. The
nonrelativistic case is attained when the energy equals the rest
mass, namely λ− = λ+ = m. In this case, the last equations
simplify to

φ′
− + α+φ3

+ + 2mφ+ = 0, (11)

φ′
+ − α+φ3

− = 0. (12)

Solving these coupled equations is detailed in Appendix A,
where we obtain the analytic solutions

φ+(x) = ±2

√
−m

α+

1√
1 + 16m4(x − x0)4

, (13)

and Eq. (A1) gives

φ−(x) = ±4m

√
−m

α+

x − x0√
1 + 16m4(x − x0)4

. (14)

Clearly, for real solutions, α+ and m should have opposite
signs. In Fig. 1(a), we plot both components for some specific
values of the parameters.

2. Pseudospin symmetric case

Following a similar procedure, the solutions of the pseu-
dospin case, Eqs. (5) and (6), can be derived and take the
form

φ+(x) = 1
1
4e−2c1+ec1 (x−x0) + 2mα−e−ec1 (x−x0)

, (15)

φ−(x) = − 1

α−

(
1

4
e−c1+ec1 (x−x0) − 2mα−ec1−ec1 (x−x0)

)
, (16)

where c1 and x0 are arbitrary real constants. The solution is
plotted in Fig. 1(b).

B. Relativistic regime

1. Spin symmetric case

Here, we solve Eqs. (3) and (4) for the relativistic case,
namely with m �= λ±. It should be noted that throughout this
section, it is assumed that λ± > m. While localized solutions
are obtained with this assumption, the case λ± < m apparently
corresponds to oscillatory solutions. Substituting the stationary
solutions Eqs. (7) and (8) in Eqs. (3) and (4), we obtain for
λ− = λ+ = λ

φ′
− + α+φ3

+ + (m + λ)φ+ = 0, (17)

φ′
+ − α+φ3

− + (m − λ)φ− = 0. (18)

Attempting to solve this system in a similar manner as in the
previous section, namely solving Eq. (18) for φ− and then
substituting in Eq. (17), will not be possible here since φ−
turns out to be a complicated function of φ′

+ and thus Eq. (17)
will not be separable. Alternatively, we follow the following
approach. Defining the auxiliary functions

F+(x) = m + λ + α+φ2
+(x), (19)

F−(x) = m − λ − α+φ2
−(x), (20)

Eqs. (17) and (18) take the form

F ′
− − 2F+

√
F+ − m − λ

√
m − λ − F− = 0, (21)

F ′
+ + 2F−

√
F+ − m − λ

√
m − λ − F− = 0. (22)

Multiplying Eq. (21) by F−, Eq. (22) by F+, and then adding,
we find the following conservation relation for F− and F+:

F 2
− + F 2

+ = c2
1, (23)

where c1 is an arbitrary real constant. This result can be used
to decouple Eqs. (21) and (22) and derive one equation for,
say, F+,

F ′
+ + 2

√
c2

1 − F 2+
√

F+ − m − λ

√
m − λ −

√
c2

1 − F 2+ = 0.

(24)
This equation can be solved by transforming to polar coor-
dinates, as detailed in Appendix B. Then using Eq. (19), the
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FIG. 1. (Color online) The exact stationary solutions (13)–(16), (26), (25), (32), and (33) of the NLD Eqs. (3) and (4). (a) Nonrelativistic
spin symmetric case with m = −α+ = 1 and x0 = 0. (b) Nonrelativistic pseudospin symmetric case with m = α−/4 = 1/4 and c1 = x0 = 0.
(c) Relativistic spin symmetric case with λ = 10m = −α+ = 1 and x0 = 0. (d) Relativistic pseudospin symmetric case with λ = 1, α− = 0.8,
m = 1.2, and x0 = 0. The solid blue line corresponds to φ+ and the dashed red line corresponds to φ−.

solution φ+ is obtained,

φ+(x) = −8
√

λ1√
α

y√
1−c
c

[16 (c2 − 1)2 + 32c(c2 − 1)y + 8 (3c2 + 1)y2 + 8cy3 + y4]
, (25)

where y(x) = e
√

2
√

a
√

b x and we have set the arbitrary peak position to zero. The expression for φ−(x) can be derived using
Eqs. (20) and (23), which reads

φ−(x) =
√

2λ√
α(1 − c)2

4(1 − c2) + y2√
−1

(1−c)3 [8(3c2 + 1)y2 + 32c(c2 − 1)y + 16(c2 − 1)2 + 8cy3 + y4]
. (26)

In Figs. 1(c) and 1(d), we plot these solutions, where it is
observed that they are off-centered. The shift from the center
is given by the root of the odd component, φ−, namely

xr = − log [(m − λ)2/16mλ]√
8
√

a
√

b
, (27)

such that when m approaches λ the two peaks in φ+ merge and
shift to the left and the saturation values of φ− approach zero.

2. Pseudospin symmetric case

A different approach will be used here since there will
be no need to define the auxiliary functions F±. In terms of
the stationary profiles φ±, the pseudospin symmetric NLDEs,
Eqs. (5) and (6), become

φ′
− + α−φ2

− φ+ + (m + λ)φ+ = 0, (28)

φ′
+ − α−φ2

+ φ− + (m − λ)φ− = 0, (29)

where we have assumed again λ− = λ+ = λ �= m. We multi-
ply Eq. (28) by φ′

+, Eq. (29) by φ′
−, subtract the two equations,

and then solve the resulting differential equation for φ− to
obtain

φ− = ±
√

α− (m + λ) φ2+ + λ2 − m2 − c1√
−α− (α− φ2+ + λ − m)

, (30)

where c1 is an arbitrary constant. Substituting back in
Eq. (6), we obtain a differential equation for φ+, which
is separable, and, upon using the substitution φ+ =√

(m − λ)/α− cos [θ (x)], it can be integrated to give

(x − x0) α−
√

(m − λ)/α−
√

(m − λ) α−
√

m2 − λ2

= ln

(
cos θ

2 − sin θ
2

cos θ
2 + sin θ

2

)
, (31)
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where x0 is another arbitrary constant corresponding to the center of the localized solution. Notice that the quantities under
the square roots may be negative, hence we did not combine them under a single square root sign. Invoking that φ+ =√

(m − λ)/α− cos [θ (x)], we solve this equation for φ+ to finally get

φ+(x) = 2 (m − λ)

α− (m − λ) e
√

m−λ
√

m+λ (x−x0) + e−√
m−λ

√
m+λ (x−x0)

, (32)

and upon using this result in Eq. (30), we obtain

φ−(x) = 2
√

(m − λ) α−
√

(m + λ) α−
α− [α− (m − λ) e

√
m−λ

√
m+λ (x−x0) − e−√

m−λ
√

m+λ (x−x0)]
. (33)

The two solutions are plotted in Fig. 1(d). It is clear that φ−
diverges at the peak position of the well-behaved φ+.

C. Extracting the nonrelativistic results from
the relativistic ones

Here we outline the derivation of the nonrelativistic solu-
tions, Eqs. (13) and (14), from the relativistic ones, Eqs. (26)
and (32).

The nonrelativistic limit is obtained by taking the limit
λ → m. Before taking this limit, it should be noted that the
center of the relativistic solutions is shifted by the value of
xr given by Eq. (27). Since the nonrelativistic solutions are
centered at the origin, we start, without loss of generality,
by shifting back the relativistic solutions to the origin with
the transformation x → x + xr applied to Eq. (26). This step
turns out to be crucial since xr itself diverges as 1/(λ − m).
Then we expand in powers of the small quantity λ − m. In
the limit λ → m, only the zeroth-order term remains while all
higher-order terms vanish. This leads to the relativistic result
Eq. (13), namely

lim
λ→m

φ+(x + xr ) = ±2

√
−m

α+

1√
1 + 16m4x4

. (34)

In a similar manner, the nonrelativistic pseudospin solution
Eq. (14) can be derived from the relativistic solution Eq. (32).

D. Oscillatory solutions

As noted earlier, the localized solutions found here for the
spin symmetric case are valid only for λ > m. Attempting to
obtain oscillatory solutions, apparently for λ < m, requires
φ± to be complex functions. Such solutions have indeed been
found by Haddad et al. [24], though for the massless case.
While the field components φ± are oscillatory, the total field
amplitude is a soliton over a finite background.

For the pseudospin symmetric case the situation is different,
in that real oscillatory solutions can be found, as we show
below. Here we solve the pseudospin Eqs. (28) and (29)
following the same approach of Sec. III B, namely by defining
the auxiliary functions F±, as in Eqs. (19) and (20). It turns
out that this procedure results in oscillatory solutions.

In terms of F±, Eqs. (28) and (29) take the form

F ′
− = −2

√
F+ − m − λ

√
m − λ − F−(F− − 2m), (35)

F ′
+ = 2

√
F+ − m − λ

√
m − λ − F−(F+ − 2m). (36)

Dividing the two equations and then integrating, the following
conservation relation is obtained:

1

F−
+ 1

F+
= 1

2m
+ c1

2m F− F+
, (37)

where c1 is an arbitrary constant. Invoking the dependence
of F± on φ±, through Eqs. (19) and (20), we solve the last
equation for φ−,

φ− =
√

−α− (m + λ) φ2+ + λ2 + 3m2 − c1

α− (α−φ2+ + λ − m)
. (38)

Substituting back in Eq. (28), we obtain the following
differential equation for φ+:

φ′
+ + (m − λ − α− φ2

+)

√
−α− (m + λ) φ2+ + λ2 + 3m2 − c1

α− (α−φ2+ + λ − m)

= 0, (39)

with the solution

φ+(x) =
√

m − λ√
α−

sn

(√
a (x − x0)

∣∣∣∣ba
)

, (40)

where sn(x|n) is the Jacobi elliptic function, a = 3m2 + λ2 −
c1, and b = λ2 − m2. Substituting back in Eq. (38), and
then using the relations sn(x|n)2 + cn(x|n)2 = 1 and notic-
ing that a − b2 sn(

√
a x| b2

a
)2 = a dn(

√
a x| b2

a
)2, the following
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FIG. 2. (Color online) The exact oscillatory solutions (40)
and (41) of the NLD Eqs. (28) and (29) for the relativistic pseudospin
symmetric case with m = −α− = 1, λ = 5, and c1 = x0 = 0. The
solid blue line corresponds to φ+ and the dashed red line corresponds
to φ−.
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simplified expression for φ− is obtained:

φ−(x) = −
√

a

α− (m − λ)

dn
[√

a (x − x0)| b
a

]
cn

[√
a (x − x0)| b

a

] , (41)

where cn(x|n) and dn(x|n) are Jacobi elliptic functions.
In Fig. 2, we plot these solutions for some values of the
parameters.

IV. DISCUSSION AND OUTLOOK

A. Conserved quantities

It is instructive to use the exact solutions found here to
calculate important physical quantities such as total energy,
total linear momentum, and total spin (charge). Since the
solutions we derive here of the pseudospin symmetric case
diverge, we restrict the calculation to the spin symmetric case.
We start by constructing the Lagrangian density,

L =
(

i

2

)
(�̄γ μ∂μ� − ∂μ�̄γ μ�)

−α+ �̄(�̄A1�A1 + �̄A2�A2)�, (42)

from which Eqs. (3) and (4) are derived by ∂L/∂�̄. Here,
�̄ = �†γ 0, where �† is the transpose conjugate of the spinor,

� =
(

ψ+
ψ−

)
, (43)

and the matrices A1,2 are given by

A1 =
(

1 0
0 0

)
, A2 =

(
0 0
0 1

)
. (44)

The Einstein summation rule is implied such that γ μ∂μ =
γ 0∂t + γ 1∂x , with γ 0,1 being related to the Pauli matrices as
follows:

γ 0 = σ3 =
(

1 0
0 −1

)
, γ 1 = iσ1 = i

(
0 1
1 0

)
. (45)

The momentum energy tensor is then written as

T μν =
(

i

2

)
(�̄γ μ∂μ� − ∂μ�̄γ μ�) − gμνL, (46)

where the metric gμν is equivalent to γ 0. This gives the
Hamiltonian density

H = T 00

=
(

i

2

)
(�̄γ 1∂x� − ∂x�̄γ 1�) + m�̄�

+α+ �̄(�̄A1�A1 + �̄A2�A2)� (47)

and current

J = T 01 =
(

i

2

)
(�̄γ 0∂x� − ∂x�̄γ 0�). (48)

The spin density is defined as

s = �̄γ 0�. (49)

The total energy, momentum, and spin are thus given by

E =
∫ ∞

−∞
H dx, P =

∫ ∞

−∞
J dx, Q =

∫ ∞

−∞
s dx. (50)

FIG. 3. (Color online) Total spin Q̄ and total energy Ē vs
λ/m. The upper and lower dashed horizontal lines indicate the
nonrelativistic and massless values [

√
8 π/α+ and 3π/(

√
8/α+)],

respectively. The value α+ = −1 is used.

Clearly, for stationary solutions the linear momentum van-
ishes, P = 0. For the nonrelativistic spin symmetric case,
Eqs. (13) and (14) are used to calculate the total energy and
spin, where the following analytical results are obtained:

E = −Q

m
= −

√
8 π

α+
. (51)

It should be noted that α+ < 0 is a condition for the solutions
φ± of Eqs. (13) and (14) to be real. This leads to the fact
that Q is positive and E is negative. The latter indicates that
the solutions at hand correspond to a bound state, as expected
for a solitonic solution. For the relativistic spin symmetric
case, the energy and spin integrals diverge due to the fact
that the solutions (32) and (33) have nonzero background.
Nonetheless, one can calculate the renormalized energy and
spin where the contribution of the background is canceled as
follows:

Ē =
∫ ∞

−∞
(H − H∞) dx, Q̄ =

∫ ∞

−∞
(s − s∞) dx, (52)

where

H∞ = lim
x→±∞ H = λ − m

α+
λ, s∞ = lim

x→±∞ s = m − λ

α+
,

(53)
and Eqs. (32) and (33) have been used to explicitly calculate
these limits. Scaling x with the rest mass as m x → x shows
that the integrals in Eq. (52) become a function of only λ/m,
Ē = Ē(λ/m), and Q̄ = Q̄(λ/m).

In contrast with the nonrelativistic case, the results of the
integrations for the relativistic case cannot be obtained ana-
lytically. Therefore, we compute the integrations numerically
for a range of λ/m values and show the result in Fig. 3. Since
our solutions are valid only for m � λ, the ratio λ/m ranges
from 1 to ∞, where the lower boundary corresponds to the
nonrelativistic limit and the upper boundary corresponds to the
massless limit. As noted in Sec. III C, the peak of the solutions
shifts away from the origin with an amount that is proportional
to how deep the solution is in the relativistic regime, namely
xr as given by Eq. (27). For numerical integrations, this causes
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a problem when the boundaries of the integration are finite.
Similar to the procedure of Sec. III C, we shift the solutions
φ+(x) → φ+(x + xr ) before performing the integrations. This
brings the nontrivial part of the solution back to the origin
and it results in shorter convergence times. The curves of the
quantities Q̄ and −Ē/λ turn out to be identical, which agrees
with the nonrelativistic result Eq. (51) for m = λ. The curve
starts at λ/m = 1 from the nonrelativistic value

√
8 π/α+ and

saturates for large vales of λ/m at the value that corresponds
to the massless NLDE. To calculate this limiting value, we
set m = 0 in the solutions (32) and (33) and then calculate
the integrals (52). Scaling x to λ as xλ → x, the resulting
integral becomes independent of λ and the integration gives
3π/(

√
8α+).

Another conserved quantity for the relativistic spin sym-
metric case was found in Sec. III B, namely F 2

− + F 2
+. Using

the solutions (32) and (33) gives F 2
− + F 2

+ = (m + λ)2, which
is equivalent to the T 11 element of the momentum energy
tensor, as noticed by Ref. [28].

B. Movable solutions and solutions in the presence
of external potentials

Here we investigate the possibility of finding transforma-
tions that lead to solutions in a moving frame and in the
presence of external potentials. Such solutions would be useful
to study the solitons dynamics and scattering by potentials.

In the moving frame, the solution � ′(x ′,t ′) should be related
to the solution at the rest frame, �(x,t), through the Lorentz
transformation � ′ = S �, where

S =
(

a1(v) a2(v)
a3(v) a4(v)

)
, (54)

x ′ = x − v t , t ′ = t − v x, and a1−4(v) are constants that
depend only on the speed of the moving frame v. For such
movable solutions to exist, the NLDEs (3) and (4) should
be covariant under the Lorentz transformation. Applying the
Lorentz transformation on these equations, it turns out that the
system (3) and (4) is not covariant under this transformation.
This means that movable solutions cannot be obtained for the
present case. This result is in fact expected due to the fact
that the NLDE contains a nonlinear term that violates Lorentz
invariance, as was shown on a fundamental level by Ref. [2].

It will also be interesting to find solitonic solutions of
the NLDE in the presence of an external potential, V (x),
such as that of an electromagnetic field [29]. The NLDE that
corresponds to the Lagrangian (42) [namely Eqs. (13) and (14)]
will then be modified by adding the term −γ 0V (x)� [29]. To
find solutions of this inhomogeneous NLDE in terms of the
solutions of the homogeneous NLDE, one typically performs
a similarity transformation for the fields and their dependent
variables as follows: �(x,t) → eiA(x,t)�(X(x,t),t). Requir-
ing this field to be a solution of the inhomogeneous NLDE
forces A(x,t) and X(x,t) to satisfy a system of two coupled
differential equations. The solutions of these equations define
the similarity transformation, which can then be used to
map the solutions of the homogeneous NLDE to those of
the inhomogeneous NLDE. For the NLDE considered in
this paper, it turns out that only trivial solutions for A(x,t)
and X(x,t) exist, namely A(x,t) = const and X(x,t) = x,

which indicates that the similarity transformation used here
is insufficient to obtain solutions of the NLDE in the presence
of external potentials. It should be noted that in Ref. [29] a
different nonlinear term is used, which allows for the existence
of alternative solutions of the inhomogeneous NLDE.

C. Applications to physical systems

There are two physical systems that are described by
the NLDE with Kerr-like nonlinearity, namely light solitons
in waveguide arrays and Bose-Einstein condensates in a
honeycomb optical lattice. As suggested theoretically by
Longhi [6], the first experimental realization of an optical
analog for relativistic quantum mechanics was demonstrated
by simulating the Zitterbewegung of a free Dirac electron in an
optical superlattice [7]. In this setup, binary waveguide arrays
represent a rather simple physical system that is described
by the NLDEs (3) and (4). In terms of the electric field
amplitude in the nth waveguide, an, the fields ψ± are given
by (ψ+,ψ−) = (−1)n(an,ia2n−1), which means that ψ+ and
ψ− correspond to the even and odd waveguide amplitudes,
respectively. In the continuum limit, the equation of motion
that describes the evolution of the discrete modes in the tight-
binding approximation becomes identical with the NLDEs (3)
and (4), namely [26]

i∂t� = −iκγ 0∂x� + σγ 1� − α+G, (55)

where G = (|ψ+|2ψ+,|ψ−|2ψ−)T . Here, κ is the coefficient
of coupling between two adjacent waveguides, σ is the
propagation mismatch, and α+ is the nonlinear coefficient of
waveguides. By comparing the last equation with NLDEs (3)
and (4), we conclude that the rest mass m corresponds to the
propagation mismatch σ , the nonlinear coupling coefficient α+
is the nonlinear coefficient of waveguides, and the waveguide
coupling coefficient κ = 1 in our case. The latter is of course
equivalent to scaling κ with x, as x/κ → x. It is thus expected
that the solutions found here will be realizable by such an
experimental setup.

Another physical system that is modeled by the NLDEs of
the present paper is a Bose-Einstein condensate confined by a
honeycomb optical lattice, as was first shown by Haddad and
Carr [2]. They pointed out later that a one-dimensional version
of the NLDE describes the condensate along a zigzag or arm-
chair lines on the lattice [28], and then they proposed a detailed
experimental procedure to excite relativistic vortices [30]. The
NLDEs of the present paper, (3) and (4), describe in particular
the condensate along the zigzag line. The NLDE of this system
reads [2]

i�∂t� = −icsγ
0∂x� − UG. (56)

Here, the speed of sound cs is the effective speed of light, and U

is the strength of the interatomic interaction that is proportional
to the s-wave scattering length. The field components ψ+
and ψ− correspond to the condensate wave function in two
degenerate sublattices [2]. In comparison with the solutions
found by Haddad et al. [24] for the massless NLDE, our
solutions correspond to the massive NLDE. In the context
of BEC in a honeycomb lattice, the massive NLDE would
model a break in the sublattice degeneracy [31]. In current
experimental setups, the values of the two parameters can be
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controlled within a wide range, allowing for the possibility of
exciting the localized solutions derived in this paper.

D. Final remarks and outlook

The solutions found here are stationary solitonic solutions
since they preserve their shape over time. They are analogous
to the sech solutions of the nonlinear Schrödinger equation
(NLSE). However, there is an important difference between
the two cases. The solitons of the NLSE have their width
and amplitude dependent on the strength of the nonlinearity
such that their norm is constant. In the NLDE solitons,
say (13) and (14), the width is independent of the strength
of nonlinearity and the amplitude is inversely proportional to
it. Therefore, it will be interesting to study the interaction
of two NLDE solitons, as it is expected to be fundamentally
different from the case of NLSE solitons.

It is noticed that the solutions of the pseudospin symmetric
case diverge. As a result, the associated physical quantities
such as total energy and spin also diverge. For waveguide
arrays and Bose-Einstein condensates this is not physical,
hence the pseudospin symmetric solutions cannot be realized
in these systems.

Oscillatory solutions for the spin symmetric case are yet to
be sought. It should be noted that the solutions derived here are
restricted to λ � m. For λ < m, the expressions for φ± become
complex and do not solve the designated NLDEs. Thus, the
problem of finding oscillatory solutions needs to be treated
separately and is left for future work.

For the pseudospin symmetric case, localized solutions are
obtained for energies larger than the rest mass, λ > m, while
oscillatory solutions are obtained for λ < m. This situation is
opposite to that of the linear case. Solving Eqs. (28) and (29)
without nonlinearity, α− = 0, we get

φ+(x) = c1 cosh(x
√

m2 − λ2)

− c2

√
m2 − λ2

m + λ
sinh(x

√
m2 − λ2), (57)

φ−(x) = c2 cosh(x
√

m2 − λ2)

− c1
m + λ√
m2 − λ2

sinh(x
√

m2 − λ2). (58)

Clearly, oscillatory solutions are obtained for |λ| > m. This
exhibits the role of nonlinearity in binding the extended
particles to which the localized solutions correspond.

The NLDEs considered in Refs. [25,29] are similar to the
one considered here but with a different cubic nonlinear term

that is similar to that of the Thirring model [19] and the
Gross-Neveu model [21]. Due to the fact that these cubic
terms preserve the Poincaré covariance, movable solutions
were possible to obtain. In our case, the cubic nonlinearity
breaks the Poincaré covariance, and movable solutions were
not possible to obtain with a Lorentz transformation.

The solution found by Tran et al. [26], in the context of
discrete waveguide arrays, is a sech-like localized solitonic
solution for the massive NLDE. Our solutions are fundamen-
tally different in the sense that they are localized on a finite
background. Finally, it should be mentioned that the stability
of these solutions is yet to be investigated via the typical
modulational stability analysis.
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APPENDIX A: DERIVING THE SOLUTION
OF EQS. (11) AND (12)

Solving Eq. (12) for φ−,

φ− =
(

φ′
+

α+

)1/3

, (A1)

and then substituting in Eq. (11), we get

φ′′
+

3α
1/3
+ φ′+

2/3
+ α+φ3

+ + 2mφ+ = 0. (A2)

Using φ′′
+ = φ′

+ × dφ′
+/dφ+, this equation becomes separable

and can be integrated to give

c1 − 3mφ2
+ − 3

4
α+φ4

+ = 3

4α
1/3
+

φ′
+

4/3
, (A3)

where c1 is a constant of integration. Integrating the last
equation, we get(

4α
1/3
+
3

)3/4

(x − x0) =
∫

dφ+
[c1 − 3mφ2+ − (3/4)φ4+]3/4

,

(A4)

where x0 is another constant of integration. Performing the
integral, the last equation reads

(
4α

1/3
+
3

)3/4

(x − x0) =
√

2 2F1
(

1
2 , 3

4 ; 3
2 ; y

)
φ+

(−6m+2q−3α+φ2
+

−3m+q

)3/4( 6m+2q+3α+φ2
+

3m+q

)1/4

(4c1 − 12mφ2+ − 3φ4+)3/4
, (A5)

where q =
√

9m2 + 3c1α+, y = 2qφ2
+/[2c1 + (−3m + q)φ2

+], and 2F1( 1
2 , 3

4 ; 3
2 ; y) is the hypergeometric function. To find φ+,

the inverse of the functional on the right-hand side has to be found. For such a complicated form, this may not be feasible.
Simple special cases are therefore sought. The special case of c1 = 0 leads to an analytic solution. Setting c1 = 0 in Eq. (A4)
and performing the integration, we get Eqs. (13) and (14).
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APPENDIX B: SOLVING EQ. (24)

Although Eq. (24) is separable, direct integration leads to an integral that cannot be performed. However, with the change of
variables F+ = c2 cos θ , where c2 is an arbitrary real constant, the last equation takes the form

−2 dx = −c2 sin θ dθ√
c2

1 − c2
2 cos2 θ

√
c2 cos θ − m − λ

√
m − λ −

√
c2

1 − c2
2 cos2 θ

. (B1)

With c2 = c1 = −(m + λ), this equation simplifies to

−2 dx = −dθ√
a(1 + cos θ )

√
b(1 + c sin θ )

, (B2)

where a = −(m + λ), b = m − λ, and c = −a/b. Integrating both sides of Eq. (B2), we obtain

2(x − x0) =
√

2√
a

√
b

log [2(c +
√

sec2(θ/2)(1 + c sin θ ) + tan (θ/2))], (B3)

which simplifies to

z =
√

2

1 + f

√
1 + c

√
1 − f 2 +

√
1 − f

1 + f
, (B4)

where z = e(
√

2
√

a
√

b) x/2 − c and f = cos θ = F+/c1. The last equation is quadratic in f with the solutions

f1 = −1 − 4c2 + 8c z − 6z2 + z4

4c2 − 8c z + (1 + z2)2
, (B5)

f2 = −1 + 4c2 + 8c z + 6z2 − z4

4c2 + 8c z + (1 + z2)2
. (B6)

Choosing the second solution, we substitute F+ = c1 f2 in Eq. (19) and then solve for φ+ to finally obtain Eq. (25), from which
φ− of Eq. (26) can be derived.
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[5] F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and
A. Szameit, Europhys. Lett. 97, 10008 (2012).

[6] S. Longhi, Opt. Lett. 35, 235 (2010).
[7] F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte,
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