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In this paper we present a detailed critical study of several recently proposed non-Markovianity measures. We
analyze their properties for single-qubit and two-qubit systems in both pure-dephasing and dissipative scenarios.
More specifically we investigate and compare their computability, their physical meaning, their Markovian to
non-Markovian crossover, and their additivity properties with respect to the number of qubits. The bottom-up
approach that we pursue is aimed at identifying similarities and differences in the behavior of non-Markovianity
indicators in several paradigmatic open system models. This, in turn, allows us to infer the leading traits of the
variegated phenomenon known as non-Markovian dynamics.
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I. INTRODUCTION

The past decade has seen a renewed interest in theoretical
and experimental investigations on fundamental studies of
open quantum systems. The reasons for such interest are
manifold. On the one hand, we have witnessed a tremendous
advance in the development of quantum technologies, stem-
ming from the ability to coherently control in a robust and
efficient manner the dynamics of an ever-increasing number
of particles. Quantum technologies need to be scalable to
reach the market, which entails understanding and minimizing
environment-induced decoherence effects in order to achieve
the required thresholds for error correction. On the other
hand, the environment itself has been proven to be exper-
imentally controllable and modifiable. Nowadays reservoir
engineering techniques are used for both minimizing the
effects of environmental noise and as test beds of theoretical
models.

All recent investigations on open quantum systems dynam-
ics highlight the existence of two different classes of dynamical
behavior known as Markovian and non-Markovian regimes.
Historically, in the quantum domain Markovian dynamics has
been associated to the semigroup property of the dynamical
map describing the system evolution. If one thinks in terms of
a microscopic model of system, environment, and interaction,
a Markovian description of the open system requires a number
of assumptions, such as system-reservoir weak coupling, and
leads to a master equation in the so-called Lindblad form
[1,2]. In certain scenarios, however, such approximations
are not justified and one needs to go beyond perturbation
theory. It is clear that, due to the general complexity of
the problem to be studied, exact solutions exist only for
simple open quantum systems models such as the well-known
Jaynes-Cummings model [3], the quantum Brownian motion
model [4], and certain pure-dephasing models [5–7]. Despite
the fact that these models are often idealized versions of what
can be implemented in current experiments, it is undoubtedly
very important to fully understand and study these systems

*These two authors contributed equally to this work.

and compare the theoretical predictions with experimental
implementations.

One of the first features that emerges from the analysis
of exact models is that memory effects, usually associated
with recoherence and information backflow, are not connected
to the semigroup property of the dynamical map, but are
rather associated to the more general property known as
divisibility, as discussed, for example, in Refs. [8–10]. In this
spirit, a non-Markovianity measure quantifying the deviation
from divisibility has been proposed in Ref. [10]. Other
measures (and corresponding definitions) are based on the
behavior of quantities such as distinguishability between
quantum states, as measured, e.g., by trace distance [11,12]
or fidelity [13], quantum mutual information between initial
and final state [14], channel capacities [15], Fisher information
[16], and the volume of accessible physical states of a
system [17].

What one defines as Markovian or non-Markovian dynam-
ics is, in a sense, a question of semantics. It is tautological
to say that, in general, different definitions and corresponding
measures of non-Markovianity do not coincide. We prefer to
follow a more pragmatic approach. We do not insist on the
concept of “the best” definition of non-Markovianity but we
rather look at different measures as descriptions of different
properties of the open quantum systems.

Our study encompasses the Rivas, Huelga, Pleanio (RHP)
divisibility measure of [10], the Breuer, Laine, Piilo (BLP)
distinguishability measure [11], the Luo, Fu, Song (LFS) co-
herent information measure [14], and the Bylicka, Chruściński,
Maniscalco (BCM) channel capacity measures [15]. We first
consider the case of one and two qubits immersed in indepen-
dent and common purely dephasing environments. We then
extend our analysis to the study of dissipative environments,
again for single qubits and two qubits.

The paper is structured as follows. We begin by reviewing
both the definitions and the properties of the non-Markovianity
measures used in the paper (Sec. II) and their properties and
physical meaning (Sec. III). In Secs. IV and V we present
the results of the dynamics of single qubits and two qubits
interacting with pure-dephasing and amplitude-damping envi-
ronment, respectively. Finally, Sec. VI summarizes the results
and presents conclusions.
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II. NON-MARKOVIANITY MEASURES

Let us begin by recalling basic definitions of the theory
of open quantum systems. The time evolution of the density
matrix, describing the state of an open quantum system, is
given by a t-parametrized family of completely positive and
trace preserving (CPTP) maps �t , known as the dynamical
map: ρt = �tρ0, with ρ0 the density matrix of the open system
at the initial time t = 0. The dynamical map is divisible when
it can be written as the composition of two CPTP maps �t =
�t,t ′�t ′,0, ∀ t ′ � t . Nondivisibility, therefore, occurs if there
exist times t ′ at which �t,t ′ is not CPTP.

A common feature of all non-Markovianity measures
described in the following sections is that they are based on the
nonmonotonic time evolution of certain quantities occurring
when the divisibility property is violated. However, while
nonmonotonic behavior of such quantities always implies
nondivisibility, the inverse is not true; i.e., there can be
nondivisible maps consistent with monotonic dynamics. In
this sense, if one would assume divisibility as the definition of
non-Markovianity, all the other non-Markovianity measures
should be considered as non-Markovianity witnesses.

A. Rivas, Huelga, Plenio measure

With the defining attribute of all non-Markovian dynamics
in mind, namely the violation of the divisibility property,
Rivas, Huelga, and Plenio propose a measure based on the
Choi-Jamiolkowski isomorphism [18]. The inability to write
the dynamical map �t as a concatenation of two independent
CPTP maps connects with intuitive reasoning of present
dynamics being dependent on memory effects.

For master equations written in the standard Lindblad form
but with time-dependent coefficients,

dρt

dt
= Lt ρt = −i[H (t),ρt ]

+
∑

k

γk(t)

[
Vk(t)ρtV

†
k (t) − 1

2
{V †

k (t)Vk(t),ρt }
]

, (1)

it is possible to show that the corresponding dynamical map
satisfies divisibility if and only if γk(t) � 0. If, on the other
hand, γk(t) becomes temporarily negative, there will exist
an intermediate map �t,t ′ which is not CPTP, defying the
composition law.

According to the Choi-Jamiolkowski isomorphism [18],
�t,t ′ is completely positive if and only if

(�t,t ′ ⊗ 1l) |�〉 〈�| � 0, (2)

where |�〉 is a maximally entangled state of the open system
with an ancilla. In light of this, one can quantify non-
Markovianity by considering the departure of the intermediate
map from a map which is completely positive [10],

NRHP =
∫ ∞

0
dt g(t), (3)

where

g(t) = lim
ε→0+

||[1l ⊗ 1l + (Lt ⊗ 1l)ε] |�〉 〈�| ||1 − 1

ε
(4)

and ε encapsulates the time elapsed between the initial time
t ′ to the final time t . The notation || · · · ||1 refers to the trace
norm.

Mathematically, an apparent advantage of this measure is
that no optimization over states is required. The measure is
most simple to calculate using only the specific form of the
master equation. However, Eq. (4) may be also calculated in
terms of the intermediate dynamical map �t,t ′ [10].

We note here, in Ref. [19], that another measure based
on criteria quantifying the deviation from Markovianity for
quantum channels has been introduced.

B. Breuer, Laine, Piilo measure

In Ref. [11], Breuer, Laine, and Piilo introduced a measure
based on the nonmonotonicity of the trace distance in order
to connect non-Markovian dynamics with a backflow of
information. The construction is based on the time evolution of
the trace distance between two initial states, describing their
relative distinguishability. The trace distance is contractive
under CPTP maps; therefore, for a divisible process, distin-
guishability of two initial states ρ

1,2
0 decreases continuously

over time. Hence, the derivative of the trace distance, that can
be seen as measuring the change of information content on the
system, i.e., the information flux, is negative. In formulas

σ
(
t,ρ

1,2
0

) = d

dt
D

(
ρ1

t ,ρ
2
t

)
� 0, (5)

where

D
(
ρ1

t ,ρ
2
t

) = 1
2 tr

∣∣ρ1
t − ρ2

t

∣∣ (6)

is the trace distance between two states ρ1
t and ρ2

t evolving
under the influence of a certain divisible dynamical map
�t : ρ0 → ρt . The authors of Ref. [11] then define as non-
Markovian a process for which, for certain time intervals,
σ (t,ρ1,2

0 ) > 0, i.e., information flows back into the system.
Following this, the measure of non-Markovianity NBLP is

found by summing over all periods of nonmonotonicity of the
information flux, including an optimization over all pairs of
initial states of the system:

NBLP(�t ) = max
ρ

1,2
0

∫
σ>0

dt σ
(
t,ρ

1,2
0

)
. (7)

Non-Markovian processes defined in this way are always
nondivisible; however, the converse is not necessarily true
[20–22].

The nonadditivity of this measure has been numerically
proven, highlighting the challenge presented when one wishes
to consider higher-dimensional systems of qubits [23–25].
Proofs of specific mathematical attributes of the optimal state
pairs have to some degree eased the numerical challenges of
this calculation by eliminating regions of the n-dimensional
Hilbert space one should consider [26]. Indeed, it has been
shown that the states which maximize the measure must lie
on the boundary of the space of physical states and must be
orthogonal. Finally, we note that, in the spirit of this measure,
trace distance is not a unique monotone distance and one may
also use others such as the statistical distance [27].
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C. Luo, Fu, Song measure

Luo, Fu, and Song in Ref. [14] introduced a measure
of non-Markovianity based on the monotonicity property
characterizing the time evolution of correlations between
system and ancilla when the dynamics are divisible. They
focus on the total correlations, including both classical and
quantum, captured by the quantum mutual information,

I (ρSA) = S(ρS) + S(ρA) − S(ρSA), (8)

where ρS = trAρSA and ρA = trSρSA are marginal states of a
system and ancilla, respectively, and S(ρ) is von Neumann
entropy of state ρ. The definition of this measure of non-
Markovianity is

NLFS(�) = sup
ρSA

∫
d
dt

I>0

d

dt
I
(
ρSA

t

)
dt, (9)

done over all possible initial states ρSA with arbitrary Hilbert
space of the ancilla and ρSA

t = (�t ⊗ I)ρSA. The authors insist
that the optimization of the formula above is done over all
possible initial states ρSA, where not only the state of the ancilla
but also its Hilbert space is arbitrary. Of course, this makes the
optimization problem extremely complicated. Therefore, the
authors [14] also propose a simpler version of this measure
without optimization,

NLFS0 (�) =
∫

d
dt

I>0

d

dt
I
(
ρSA

t

)
dt, (10)

where ρSA
t = (�t ⊗ I)|�〉〈�| and |�〉 is an arbitrary maxi-

mally entangled state.
Here we propose a slight simplification, a measure that is

more general than Eq. (10) but simpler than Eq. (9) and still
has a significant interpretation. When the initial state ρSA is
pure and so is the initial state of the environment with which
the system is interacting, one can rewrite I (ρSA) as the mutual
information between the input and the output of the channel
defining the system evolution,

I (ρ,�t ) = S(ρ) + S(�tρ) − S(ρ,�t ), (11)

with S(ρ) the von Neumann entropy of the input state,
S(�tρ) the entropy of the output state, and S(ρ,�t ) = S(�̃tρ)
the entropy exchange, i.e., the entropy at the output of
the complementary channel �̃t . Now the non-Markovianity
measure reads as

NI(�) = sup
ρ

∫
d
dt

I>0

d

dt
I (ρ,�t )dt. (12)

The main advantage of NI over the original measure NLFS

is that the optimization has to be done only over the input state
of the system.

D. Entanglement-assisted classical capacity measure

In Ref. [15] two measures that link non-Markovian
dynamics with an increase in the efficiency of quantum
information processing and communication are introduced.
This is motivated by observing that certain capacities of
quantum channels are monotonically decreasing functions of
time if the channel is divisible. This behavior is a consequence
of the connection between the data-processing inequality [28]

and the divisibility of the dynamical map. In other words,
the measures proposed in [15] can be treated as witnesses
of non-Markovian dynamics that cause revivals of quantum
channel capacities.

In that article the authors are concerned with two types of
capacities. The first one is the entanglement-assisted classical
capacity Cea , which sets a bound on the amount of classical
information that can be transmitted along a quantum channel
when one allows Alice and Bob to share an unlimited amount
of entanglement [29]. It is defined in terms of the quantum
mutual information I (ρ,�t ) between the input and the output
of the channel, as given by Eq. (11), by optimizing over all
initial states ρ,

Cea(�t ) = sup
ρ

I (ρ,�t ). (13)

Since the entanglement-assisted capacity is monotonically
decreasing in time when the channel is divisible, any increase
of Cea would indicate violation of the divisibility property
and so can be considered as a signature of non-Markovianity.
Based on this, a measure of non-Markovianity was introduced,

NC =
∫

dCea
dt

(�t )>0

dCea(�t )

dt
dt, (14)

where the integral is extended to all time intervals over which
dCea/dt is positive.

The measure presents some advantages with respect to,
e.g., NBLP. The first advantage is that the calculation requires
optimization only over the input state ρ, while the optimization
required in the definition of NBLP has to be done over pairs of
initial states, making it much more complicated to calculate,
even knowing that we can restrict ourselves to only orthogonal
pairs of states (having in mind that beyond the one-qubit case
more than one corresponding orthogonal state may exist).

The second advantage is the additivity property. Thanks
to the additivity of the mutual information one can prove
the additivity of NC in the case of n identical independent
channels, i.e., NC(�⊗n) = nNC(�).

E. Quantum capacity measure

The second quantity discussed in Ref. [15] is the quantum
capacity Q. It gives the limit to the rate at which quantum
information can be reliably sent down a quantum channel and
is defined in terms of the coherent information between the
input and the output of the quantum channel Ic(ρ,�t ) [29],

Q(�t ) = lim
n→∞

maxρn
Ic

(
ρn,�

⊗n
t

)
n

, (15)

with Ic(ρ,�t ) = S(�tρ) − S(ρ,�t ) [30].
Following the same line of reasoning done for Cea , a

measure of non-Markovianity based on the nonmonotonic
behavior of the quantum capacity was introduced,

NQ =
∫

dQ(�t )
dt

>0

dQ(�t )

dt
dt. (16)

It it worth noting that the two measures of non-
Markovianity based on capacities, in general, do not coin-
cide even for degradable channels. The distinction between
them is actually quite subtle. We notice, indeed, that as
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ADDIS, BYLICKA, CHRUŚCIŃSKI, AND MANISCALCO PHYSICAL REVIEW A 90, 052103 (2014)

I (ρ,�t ) = S(ρ) + Ic(ρ,�t ), with ρ the input state, we have
d
dt

I (ρ,�t ) = d
dt

Ic(ρ,�t ). Therefore, a measure based on
the violation of the data-processing inequality for certain
nondivisible maps and NI would not be able to distinguish
between an increase in the different types of correlations. The
optimizing state in the definitions (13) and (15), however, is
time dependent and does not coincide for the two quantities;
hence, dQ/dt 	= dCea/dt .

Contrarily to the entanglement-assisted classical capacity,
the quantum channel capacity is, in general, not additive.
However, for degradable channels [31], the general definition
coincides with the one-shot capacity, Q(�t ) = maxρ Ic(ρ,�t ),
and additivity for identical independent channels holds.

III. PROPERTIES AND INTERPRETATION
OF THE NON-MARKOVIANITY MEASURES

In this section we review some properties and physical
interpretations of the considered non-Markovianity measures.

A. Physical interpretation

Most of the non-Markovianity measures discussed here
were born from an attempt to quantify and unveil the so-called
reservoir memory effects. The manifestation of such mem-
ory effects, stemming from long-lasting and non-negligible
system-reservoir correlations, leads to a partial recovery of
quantum properties previously lost due to the destructive
effects of noise induced by the environment.

The BLP measure, proposed in Ref. [11], was arguably the
first attempt in this direction. The distinguishability between
pairs of states, indeed, can be seen as a way to quantify the
amount of information present in a quantum system. The more
we know about the system, i.e., the more information we have,
the more we are able to distinguish between quantum states.
The environment’s action of continuously monitoring the
system gradually causes a loss of information and therefore a
decrease of state distinguishability. In this description memory
effects lead to information backflow, i.e., a temporary increase
of distinguishability.

It is worth noting here a common abuse of this interpreta-
tion. When talking of BLP non-Markovianity, many authors
refer to the flow of information from the system to the
environment and then back into the system or, equivalently, of
a backflow of information previously lost in the environment.
The BLP definition, however, is based on quantities defined on
the Hilbert space of the system only and in no way takes into
account the information content of the environment or how it
changes due to the interaction with the system.

In order to answer to this question, and therefore to look at a
connection between changes of information in the system and
in the environment, we started investigating the capacity-based
measures [15]. The entropy exchange term appearing in
Eq. (11) is indeed the change in entropy of the environment,
and the von Neumann entropy is one of the most common ways
of quantifying the information content of a quantum state. A
similar consideration holds for the LFS measure. However,
while the LFS measure associates non-Markovianity to a
memory-induced restoration of previously lost total (quantum
+ classical) correlations between an open quantum system and

an ancilla, as measured by the mutual quantum information, the
capacity-based measures look at a temporary increase of the
entanglement-assisted and quantum channel capacities. The
latter ones, therefore, physically measure the total increase,
due to reservoir memory, of the maximum rate at which
information can be transferred in noisy channels for a fixed
time interval or a fixed length of the transmission line.

The RHP measure, associated with divisibility, is often
criticized for not having a clear physical interpretation and
for being rather a mathematical definition than a physical one.
Here we would like to conjecture, however, that a physical
interpretation can be given in terms of the non-Markovian
quantum jumps unraveling [8]. Whenever the system can
be described in terms of a time-local master equation in
Lindblad form with time-dependent coefficients, indeed, one
can describe the dynamics of the open system in terms of
an ensemble of state vectors whose evolution consists of
non-Hermitian deterministic dynamics interrupted by random
quantum jumps with statistics connected to the time-dependent
rates of the master equation. It is shown in Ref. [8] that
when the rates become negative, i.e., the dynamical map is
nondivisible and the RHP measure is nonzero, reverse quantum
jumps restoring previously lost coherence occur. In this sense
reverse jumps would be the physical manifestation of memory
effects quantified by the RHP definition. Reverse quantum
jumps always cancel or undo previous jumps and therefore a
jump-reverse jump pair describes a virtual process that is, in
principle, not directly observable.

A rigorous mathematical theory linking the RHP and the
BLP measures has been presented in Ref. [9], while a general
connection between the other measures presently does not exist
and, we believe, is unlikely to be found.

B. Experimental implementability

Simulation of open quantum systems in both Markovian
and non-Markovian regimes is nowadays in the grasp of the
experimentalists [32–35]. It is therefore important to identify
the minimum requirements for implementing experiments
measuring non-Markovianity. All non-Markovianity measures
here studied cannot be written in terms of a system’s observ-
ables. Presently, all proposed witnesses of non-Markovianity
rely on the full knowledge of the density matrix at all times
t [36]. So, generally, experiments aimed at revealing one of
the measures require quantum process tomography. However,
that is not all. The only measure that does not require an
optimization procedure is the RHP measure that, however,
assumes the knowledge of either the dynamical map or the
explicit form of the master equation. In contrast, the BLP,
LFS, and BCM measures do not, in principle, require an
assumption on the specific model of open quantum system
dynamics. However, this comes with the heavy overload
that the optimization should be performed experimentally.
Alternatively, one may assume the validity of a given model
and solve the optimization problem either numerically or
analytically. In this case, it is generally sufficient to know
the evolution of the density matrix, so, once again, process
tomography is generally required. From this more realistic
perspective the requirement for experimental implementation
of all measurements are comparable. We conclude by noticing
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that both the BLP and the RHP measures have been exper-
imentally observed in optical experiments simulating pure-
dephasing environments [5–7].

C. Interest for quantum technologies

We conclude this section with a few remarks on the potential
usefulness of non-Markovianity for quantum technologies.
Recent results have shown that, in certain circumstances,
the manipulation of reservoir spectral properties may lead to
improvements in certain quantum technologies [37–42]. First
of all, it is worth noticing that the improvements demonstrated
for quantum metrology [37] and for quantum key distribution
[38] do hold also when the dynamical map is divisible, i.e.,
they are not directly connected to memory effects, as they
may occur also when the dynamics is Markovian according to
the measures here discussed. Other results work instead in the
specific case of correlated dephasing environments, where the
effect of the noise is known, such as the quantum teleportation
scheme of Ref. [39]. The only general answer to the question
of the connection between certain quantum technologies and
non-Markovian memory effects is given in Ref. [15] and
was, in fact, one of the motivations of the introduction of the
channel capacity measures. Whether non-Markovianity can
be seen as a resource for quantum technologies is still an open
problem and would require rephrasing the question in terms
of resource theory. We hope that such a direction will be the
object of future studies.

IV. PURE-DEPHASING DYNAMICS

We begin our analysis by looking at the dynamics of one
or two qubits interacting with environments leading to pure
dephasing. Note that, as there is no general monotonicity
relation between the different non-Markovianity measures,
it does not make sense to compare their absolute values.
Therefore, in the paper we renormalize all measures to take
values between 0 and 1, and we look at both their qualitative
behavior and the Markovian to non-Markovian crossover when
certain physical parameters of the model are changed.

A microscopic model of the total system-environment
dynamics is presented in Refs. [5–7]. One of the advantages
of this model is that it is amenable to an exact solution [5–7].
We consider initially the case of a single qubit interacting
with a reservoir with spectral density of the Ohmic class. The
behavior of all non-Markovianity measures in this case has
been studied in Refs. [10,11,43,44]. We then extend the analy-
sis to the case of two qubits in both independent and common
environments. Both BLP and RHP measures have been studied
also in this case in Refs. [23–25]. The analysis of the LFS and
BCM measures for two qubits is the first result of our paper.

In the following section we present results on the behavior
of the four non-Markovianity measures here considered. A
thorough comparison and discussion about these results is
given in Sec. VI.

A. Single qubit: The model

The dynamics of a purely dephasing single qubit is captured
by the time-local master equation [45]

Lt ρt = γ1(t)[σzρtσz − ρt ], (17)

with γ1(t) the time-dependent dephasing rate and σz the Pauli
spin operator. The decay of the off-diagonal elements of the
density matrix is described by the decoherence factor e−	(t),
where 	(t) � 0 and, for zero-temperature environments [6],

	(t) = 2
∫ t

0
dt ′ γ1(t ′)

= 4
∫

dω J (ω)
1 − cos(ωt)

ω2
, (18)

with J (ω) the reservoir spectral density [6,44].
We consider a reservoir spectral density of the form

J (ω) = ωs

ωs−1
c

e−ω/ωc , (19)

where ωc is the cutoff frequency and s is the Ohmicity
parameter. Further details on this model can be found in the
Appendix.

In this model recoherence occurs when 	(t) temporarily
decreases for certain time intervals, corresponding to a neg-
ative value of the dephasing rate γ1(t). One may analytically
determine the times t ∈ [ai,bi] encapsulating nonmonotonic
intervals of 	(t), i.e., corresponding to γ1(t) = 0, with i =
1,2,3, . . . the number of such time intervals. The extremes of
the time intervals, ai and bi , will depend on the Ohmicity
parameter s, as changing s one changes the form of the
reservoir spectral density. In Ref. [46] it is shown that, for
s � 2, γ1(t) > 0 at all times, or equivalently, 	(t) increases
monotonically. For 2 < s � 4 : a1 = tan π/s,b1 = ∞ and for
4 < s � 6 : a1 = tan π/s,b1 = tan 2π/s; i.e., we only have
one time interval of nonmonotonic behavior. For s > 6, i > 1,
i.e., there are more than one interval of time for which the
dephasing rates become negative.

We give here the analytical expressions of 	(t) at times ai

and bi as these are used in

	(a1) = 2	̃[s][1 + coss(π/s)]

s − 1
, (20)

	(b1) = 2	̃[s][1 − coss(2π/s)]

s − 1
4 < s � 6, (21)

	(b1) = 2	̃[s − 1] 2 < s � 4, (22)

where 	̃[x] is the Euler 	 function.

B. Single qubit: The measures

1. RHP measure

Inserting Eq. (17) into Eq. (4) and using Eq. (3) one
immediately obtains the analytical expression for the RHP
non-Markovianity measure NRHP for a single qubit [10]:

NRHP = −2
∫

γ1(t)<0
dt γ1(t) =

∑
i

	(ai) − 	(bi). (23)

For the sake of simplicity we look at values of the Ohmicity
parameter in the interval 0 � s � 6. In this case there is only
one interval of negativity of the decay rates and the only values
needed are 	(a1) and 	(b1), defined in Eqs. (20)–(22).

In Fig. 1 we plot NRHP for different values of the
Ohmicity parameter s (red stars). As one can see from the
analytical expression, for increasing s the area of the region of
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FIG. 1. (Color online) Non-Markovianity measures for a single
purely dephasing qubit as a function of the Ohmicity parameter s.
We show the RHP measure (red stars), the BLP (blue asterisks), the
LFS measure (green circles), the quantum capacity measure (purple
triangles), and the entanglement-assisted capacity measure (orange
diamonds). Note that the last three measures in this case coincide. All
the measures in this case are normalized to unity. Note that the value
of all measures for s � 2 is always nonzero, even if all measures
except RHP take very small values for s > 4.

negativity of the dephasing rates increases; hence, the measure
monotonically increases for higher and higher values of s.

2. BLP measure

It is straightforward to show that NBLP can be written in
terms of the two independent elements of the single-qubit
density matrix [47],

NBLP = −2 max
m,n

∫
γ1<0

dt γ1(t)
|n|2e−2	(t)√

m2 + |n|2e−2	(t)
, (24)

where m = ρ1
11(0) − ρ2

11(0) and n = ρ1
12(0) − ρ2

12(0), with
ρi

jj (0) the diagonal elements of the initial density matrices of
the pair and ρi

jk(0) their off-diagonal elements, with (i,j,k =
1,2). This expression shows immediately that σ (t) > 0 if and
only if γ1(t) < 0; i.e.,NBLP 	= 0 only when the dynamical map
is nondivisible [11].

For the model here considered it is possible to analytically
solve the optimization problem of Eq. (24) [48]. The pair
of states optimizing the increase of the trace distance are
antipodal states lying on the equatorial plane, e.g., the states
|±〉 = 1√

2
(|0〉 ± |1〉), with |0〉 and |1〉 the two states forming

the qubit. Hence, we now have

NBLP =
∑

i

e−	(bi ) − e−	(ai ), (25)

where again t ∈ [ai,bi] indicates the time intervals when
γ1(t) < 0.

Figure 1 shows the behavior ofNBLP when changing s (blue
asterisk). The measure remains nonzero for increasing values
of s but, contrarily to the RHP measure, it starts decreasing
taking small but finite values for s > 3.2.

3. LFS measure

Numerical results show that the optimizing state for this
measure is the maximally mixed state [15]. Since I ( I2 ,�t ) =
2 − H2( 1

2 + e−	(t)

2 ), where H2(·) stands for the binary Shannon
entropy, one has

d

dt
I

(
I

2
,�t

)
= −1

2
γ1(t)e−	(t) log2

(
1 + e−	(t)

1 − e−	(t)

)
, (26)

which indicates that the measure NI has nonzero value if
and only if γ1(t) < 0, i.e., whenever the dynamical map is
nondivisible.

The explicit expression for the measure NI is then easily
written as

NI(�t ) =
∑

i

[
H2

(
1

2
+ e−	(ai )

2

)
− H2

(
1

2
+ e−	(bi )

2

)]
.

(27)

It is worth noting that in the case of the dephasing channel
here considered, for the simple measure without optimization
we have, NI(�t ) = NLFS0 (�t ).

In Fig. 1 we plot NLFS as a function of s (green circles). We
note that the behavior of this measure is qualitatively similar
to that of NBLP.

4. BCM measures

In case of pure-dephasing channels the state optimizing the
formula for the classical entanglement-assisted capacity is a
maximally mixed state, independently of time or of the specific
properties of the environmental spectrum. This means that
there is a simple analytical formula characterizing it, namely,
CD

ea = I ( I2 ,�t ) [49]. Hence, the measures based on mutual
information and classical entanglement-assisted capacity, in
this particular case, coincide: NC(�t ) = NI(�t ).

The dephasing channel is degradable for all admissible
dephasing rates γ (t), i.e., whenever 	(t) � 0. This simplifies
the calculations of the quantum capacity. Indeed, we find that
the state optimizing the coherent information in the definition
of the quantum capacity is once again the maximally mixed
state. Having this in mind, one can show a very simple relation
between the two capacities, namely, CD

ea(t) = 1 + QD(t). It
follows immediately that NQ(�t ) = NC(�t ) = NI (�t ).

We conclude this section stressing that, for the single-qubit
case, all non-Markovianity measures detect nondivisibility;
hence, when studying their behavior as a function of the
parameter s we obtain the same crossover between Markovian
and non-Markovian dynamics, i.e., s = 2. A direct comparison
between the analytic expressions of Eqs. (23), (25), and (27)
clarifies the different qualitative behavior shown by the RHP
measure with respect to the other ones in Fig. 1. Indeed, the
increasing value of the former measure is due to the fact that,
for increasing s, the number of periods of negativity of the
dephasing rate increases and with it the terms contributing to
the sum of Eq. (23). On the contrary, the other measures all
depend on the dephasing factors e−	(t) calculated at times at
which the direction of information flow changes, i.e., t = ai

and t = bi . For increasing values of s, in the s � 3 parameter
space, however, e−	(ai ) � e−	(bi ); hence, the values of both
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NBLP and NI(�t ) = NQ(�t ) = NC(�t ) decrease, as one can
easily see from Eqs. (25) and (27).

From a physical point of view, having in mind the
interpretations that we discussed in Sec. III, this means that,
while the number of reverse jumps always increases with s

(as the number of periods of negativity in the dephasing rate
increases), the information backflow has a maximum for a
certain values of s � 3 and then decreases due to the fact that
the amplitude of oscillations in the decay rates become smaller
and smaller.

C. Two qubits in independent environment: The model

We now turn our attention to a bipartite system consisting of
two qubits, A and B, individually coupled to their own identical
and noncorrelated environment. The dynamical map in this
case is given by �AB

t = �A
t ⊗ �B

t , and the corresponding
master equation is the sum of two identical Lindblad terms
of the form of Eq. (17), describing the dynamics of each qubit,
both characterized by the same dephasing rate γ1(t).

1. RHP measure

From the form of the master equation one sees immediately
that the RHP measure for two independent qubits is exactly
additive. The measure has a simple expression for any form
of spectral density, i.e., of dephasing rate γ1(t). For the Ohmic
class of spectra we can again plot NRHP as a function of s

obviously obtaining exactly the same qualitative behavior as
the one of Fig. 1.

2. BLP measure

Already for the most straightforward generalization of
the single-qubit channel, namely, two qubits in identical
independent environments, the problem of finding the optimal
pair of states maximizing the increase of the trace distance
is nontrivial. Even more because, in practice, we need to
fix the time interval over which we describe the evolution
and, in general, the optimal pair does depend on the chosen
time interval. Here we have performed extensive numerical
optimization using random pairs of states (see also the plots in
Sec. 2 of the Appendix). We have compelling evidence that the
optimal states in this case are |±±〉 〈±±|, i.e., product states
of the single-qubit optimal pairs, as shown in Fig. 4.

We note in passing that these optimal states do depend
on the specific form the spectrum. For the Ohmic class here
considered they are always of the form |±±〉 〈±±|, but for
other forms of spectral densities such as the one of the Bose-
Einstein condensate reservoir [50] of Ref. [24] the optimal
pair is different (pair of Bell states), despite the fact that the
operatorial form of the master equation is the same as the one
here considered.

Having this in mind, and remembering the form of the
dynamical map �AB

t , one obtains that for this specific model
the BLP measure for two independent qubits is exactly that of
one qubit; i.e., it is given by Eq. (25). We stress once again
that this result relies on the specific form of the decoherence
factors that we have calculated for the Ohmic class of reservoir
spectral densities. In the model of Ref. [24], on the contrary,
the measure is subadditive.

3. LFS measure

Numerical evidence indicates that the optimizing state for
the measureNI is the two-qubit maximally mixed state. Notice
that this is a product state of states optimizing the single-qubit
channel discussed in Sec. IV A; hence, the additivity property
is satisfied NI(�AB

t ) = 2NI (�A
t ). As in the single-qubit case,

here again the simplified measure NLFS0 gives still the exact
value of NI .

4. BCM measures

For any number N of qubits interacting with independent
identical environments the dephasing channel is degradable
for all values of parameters. Hence, both measures based on
capacities of quantum channels are additive. Moreover, having
in mind that in the case of one-qubit dephasing channel both
capacity measures are equal to NI, which is also additive, we
can conclude that again these three measures are equivalent,
NQ(�AB

t ) = NC(�AB
t ) = NI(�AB

t ).
We conclude this section by noticing that, when compared

to the single-qubit case, the two qubits in independent
environments presents no new features. A comparison of the
renormalized measures gives a figure that is exactly identical
to Fig. 1. All measures in this case are additive, except for
the BLP measure having the property that the measure for one
qubit is the same as the measure for two qubits.

D. Two qubits in common environment: The model

The next level of generalization of the simple dephasing
model consists of assuming that the two qubits see a common
environment inducing pure dephasing. We consider specifi-
cally the model described in Ref. [6]. One of the properties
of common environments is the presence of a cross-talk term
acting as an effective reservoir-mediated interaction between
the qubits. Intuitively, we expect that the presence of this term
may affect the additivity property present in the individual
environments case.

The master equation describing the dynamics of the
composite system is given in Refs. [24,51]. The time evolution
is now described by two time-dependent coefficients γ1(t)
and γ2(t). The former one is the dephasing rate of the
single-qubit case appearing in Eq. (17), while the latter one
is the cross-talk term mentioned above. The master equation
is in Lindblad form with time-dependent dephasing rates
1
2γ±(t) = 1

2 [γ1(t) ± γ2(t)].
Also in this case an exact analytic solution can be found.

The density matrix at time t takes the form [6]

ρt =

⎛
⎜⎜⎜⎝

1 e−	(t) e−	(t) e−	−(t)

e−	(t) 1 e−	+(t) e−	(t)

e−	(t) e−	+(t) 1 e−	(t)

e−	−(t) e−	(t) e−	(t) 1

⎞
⎟⎟⎟⎠ ◦ ρ(0), (28)

where ◦ is the Hadamard product and

	±(t) = 2	(t) ± δ(t)

= 8
∫

dω J (ω)
1 − cos(ωt)

ω2
(1 ± cos ωts) , (29)
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FIG. 2. (Color online) Non-Markovianity measures for two-qubit systems interacting with a common pure-dephasing environments for
transit times ts (i) 0.25, (ii) 2, and (iii) 6. We plot the RHP measure (red stars), the BLP measure (blue asterisks), the LFS measure (green
circles), the quantum capacity measure (purple triangles), and the entanglement-assisted capacity measure (orange diamonds). All the measures
in this case are normalized to unity and plotted against the Ohmic parameter s.

with 	(t) given by Eq. (18) and

δ(t) = 4
∫ t

0
dt ′ γ2(t ′). (30)

The transit time ts describes the time it takes for a wave
propagating at the characteristic speed of sound to travel from
one qubit to the other, given that the qubit distance is R [6].
As before, for the sake of simplicity, we consider only the
zero-temperature reservoir case.

1. RHP measure

From the form of the master equation it is straightforward
to show that the RHP measure takes the form

NRHP = −2
∫

γ+(t)<0
dt γ+(t) − 2

∫
γ−(t)<0

dt γ−(t). (31)

Notice that it is sufficient that one of the coefficients appearing
in the master equation is nonzero to violate divisibility and give
a nonzero value of the measure. If we now specify our analysis
to the Ohmic class of spectral densities characterized by the
parameter s, we can numerically prove that the measure is
superadditive for any value of s.

In Fig. 2 we plot NRHP versus s (red stars) for increasing
values of separation between the qubits. Even if not clearly
visible from the plots, there exists a critical value of s

in correspondence of which the dynamics changes from
Markovian to non-Markovian. This value, however, depends
on the distance between the qubits. We have calculated
numerically that the critical value sc is �6.5 × 10−2 for case
(i), �6.6 × 10−2 for case (ii), and �6.9 × 10−2 for case
(iii) for the time period we consider. Generally, sc increases for
increasing values of the distance between the qubits, attaining
its maximum value sc = 2 for R → ∞ when γ2(t) → 0 and we
reobtain the case of independent environments. Therefore, for
R → ∞, the measure is additive in the sense that the measure
of the two-qubit case is equal to twice the measure for each
individual qubit.

2. BLP measure

The common dephasing environment shows in an exem-
plary way the subtle aspects connected to the optimization
procedure in the definition of the BLP measure. In this case

we have shown numerically that the optimizing pair depends
both on the value of s and on the distance R between the qubits,
as both are important parameters in the effective spectrum seen
by the qubits. More precisely, the changes in the optimizing
pair stem from the complex evolution of the cross-talk term
δ(t).

Extensive optimization procedures allow us to conclude
that the maximizing states are either the super- or the sub-
decoherent Bell states |�±〉 = 1√

2
(|01〉 ± |10〉) and |�±〉 =

1√
2
(|00〉 ± |11〉), depending on s and R, for any finite value of

R. This is shown in detail in Fig. 5 and discussed in Sec. 2 of
the Appendix. Note that the decoherence factors of the super-
and subdecoherent states are 	+(t) and 	−(t), respectively.

The analytical expression for the BLP measure can be
written as [24]

NBLP = max{N�,N�}, (32)

where N� = ∑
i e

−	−(bi ) − e−	−(ai ) is the measure if the
subdecoherent Bell states form the maximizing pair andN� =∑

i e
−	+(bi ) − e−	+(ai ) is the measure if the superdecoherent

Bell states form the maximizing pair. Time intervals t ∈ [ai,bi]
again indicate the periods of information backflow, manifested
as d	±(t)/dt ∼ γ1(t) ± γ2(t) < 0.

From the analytic expression ofNBLP one sees immediately
that, also in this case, BLP non-Markovianity coincides with
nondivisibility. However, the qualitative behavior of the BLP
measure when changing the reservoir spectrum is different
from that of NRHP, as shown in Fig. 2. We note that, for a
given value of ts (or equivalently of R), the change in the
optimizing pair is clearly visible [see Figs. 2(ii) and 5(a)(ii)].

Numerical investigation also shows that the measure is
superadditive as a result of the qubit dephasing collectively
through environment-mediated interactions, in contrast to
the independent-environment case. For R → ∞ the measure
reverts to the independent case with optimal pairs |±±〉 〈±±|
and superadditivity is lost.

3. BCM and LFS measures

The effect of the cross-talk term in the considered model
of common environment can be clearly observed for all three
measures, NLFS, NQ, and NC, especially when one compares
the case where two qubits are very close to each other,
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ts = 0.25, with the two cases where we take the qubits further
and further apart, for ts = 2 and ts = 6; see Fig. 2.

Generally, the two channel capacity measures and the
LFS measures have a similar behavior with the exception of
the case ts = 0.25, in which NC presents a different feature
when s is varied. More specifically, NC has two peaks, a
big one for s � 3 and an additional small one for s � 0.75.
As the distance between the qubits increases, the small peak
amplitude decreases and eventually vanishes, while the bigger
peak moves towards the value typical of the independent
environments case, i.e., s = 2.75.

This difference can be understood by looking at the
optimizing states. Numerical investigation shows that when the
qubits are close by [Fig. 2(i)] the optimizing states of all three
measures are of rank 2 with eigenvalues λ1,2 = 0.5 ± ε, where
ε ∈ [0,0.1). The corresponding values of NLFS and NQ differ
from those that would be obtained had the optimal state been
the maximally mixed one. On the contrary, due to the presence
of the term S(ρ) in the definition of the entanglement-assisted
capacity, NC takes a value similar to the one it would have if
the optimizing state were the maximally mixed one.

When ts = 2,6 the optimizing state for both BCM measures
is the maximally mixed state for all values of s. Notice that
this is the same state that is optimal in case of independent
environments and also here we obtain NC = NQ. Finally, for
NLFS the optimizing states are close to the maximally mixed
state; these are states of rank 4 with eigenvalues given by
0.25 ± εi , where εi ∈ [0,0.1) for i = 1, . . . ,4. From numerical
analysis we also know that, similarly to NBLP, the measures
NLFS, NC, and NQ are superadditive.

V. AMPLITUDE-DAMPING CHANNEL

Let us now consider the case in which the interaction
between the quantum system and its environment leads to
energy exchange between the two, resulting in dissipative open
system dynamics. As we did in Sec. IV, we focus on exemplary
open system models amenable to an exact analytical solution
as this allows us to gain a solid understanding of the physical
phenomena associated with reservoir memory.

Once again we proceed for increasing levels of complexity.
We consider first the single-qubit case interacting with a
quantized bosonic field with both Lorentzian and photonic
band gap (PBG) spectra. For the single-qubit Lorentzian case,
both the BLP and the BCM measures have been studied
numerically in Refs. [11] and [15], respectively. While only
the BCM measure has been investigated before in the PBG
model here used, the other measures indeed have not. We
then discuss for the first time the generalization to the
case of two qubits immersed in two independent identical
environments.

The common environment scenario is not considered here
because both the LSF and the quantum capacity measures
present a high level of difficulty in this case. It seems indeed
that the problem of calculating classical or quantum capacity
for two qubits interacting with a common environment has
never been considered in the literature. Here the optimization
problem is amplified by the fact that it should be performed at
each time instant of the evolution.

A. Single qubit: The model

The dynamics of a single amplitude-damped qubit is
captured by the time-local master equation [45],

dρt

dt
= γ1(t)

[
σ−ρtσ+ − 1

2
{σ+σ−,ρt }

]
, (33)

where σ± are the spin lowering and rising operators and

γ1(t) = −2Re
Ġ(t)

G(t)
. (34)

The function G(t) depends on the form of the reservoir spectral
density and is given in Appendix for the two models here
considered.

The state of the density matrix of the qubit at time t can
be written in terms of the initial density matrix elements ρij

(i,j = 1,2) as follows:

ρt =
(

1 − |G(t)|2ρ22 G(t)ρ12

G∗(t)ρ∗
12 |G(t)|2ρ22

)
. (35)

B. Single qubit: The measures

1. RHP measure

Since the master equation is in Lindblad form with time-
dependent coefficients it is straightforward to evaluate the RHP
measure for a generic spectral density [47]:

NRHP = −
∫

γ1(t)<0
dt γ1(t). (36)

We consider first the case of a Lorentzian spectrum,

J (ω) = γMλ2

2π [(ω − ωc)2 + λ2]
, (37)

with γM an effective coupling constant, λ the width of the
Lorentzian, and ωc the peak frequency. When the qubit
frequency, denoted ω0, coincides with ωc (resonant Jaynes-
Cummings model), the dynamical map is nondivisible for r >

rcrit = 0.5, with r = γM/λ [45]. From this critical value NRHP

diverges as a direct consequence of the divergent behavior of
γ1(t). Conversely, in the weak coupling regime, i.e., r < 0.5,
γ1(t) is positive for all times and hence the channel is always
divisible (NRHP = 0).

For the PBG model [52], using Eqs. (34) and (A11) we
can study the Markovian-to-non-Markovian crossover as a
function of the reservoir parameter z = �P /β, with �P the
detuning of the qubit frequency from the edge frequency ωe

of the band-gap spectrum and β a characteristic frequency.
Positive values of z correspond to the case in which the qubit
is outside the band-gap region while negative values of z

correspond to the qubit in the band-gap region. In the latter case
the well-known phenomenon of population trapping occurs as
the emission of energy in the reservoir is strongly inhibited.

For z < zcrit = 1.7, the rate γ1(t) temporarily attains nega-
tive values for certain time intervals. In fact, due to population
trapping, for z � zcrit the asymptotic long time limit is
characterized by small-amplitude oscillations between positive
and negative values which persist as t → ∞. This eventually
leads to a divergency not only of the NRHP measure but of
all non-Markovianity measures. In any practical experimental
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FIG. 3. (Color online) Non-Markovianity measures for a qubit undergoing amplitude damping for (i) the Lorentzian spectrum and
(ii) the photonic band gap model. We plot the RHP measure (red stars), the BLP measure (blue asterisks), the LFS measure (green circles),
the quantum capacity measure (purple triangles), and the entanglement-assisted capacity measure (orange diamonds). All the measures in this
case are normalized to unity. We consider the following time periods: (i) 0 � λt � 40 and (ii) 0 � βt � 20. For the Lorentzian spectrum, the
RHP measure is zero for r � 0.5, while it diverges for r > 0.5.

situation, however, the time of the experiment is finite. We
therefore calculate the measures for a fixed time interval,
longer compared to the typical times of the system but,
of course, shorter than the system-reservoir correlation time,
which in this case is ∞.

In Fig. 3(ii) we plot the RHP measure (red stars) for the
PBG reservoir as a function of the parameter z. As we can see
from the plot the measure has a sudden peak at values of z

close to the edge z = 0, reaching its maximum value for z =
1.0 before vanishing for z = 1.7. For increasingly negative
values of z under the critical point, the RHP non-Markovianity
measure decreases to small but finite values. This is due to the
decreasing amplitude of the oscillations in the decay rate.

2. BLP measure

We begin by deriving the analytical expression for NBLP

[47],

NBLP = − max
m,n

∫
γ1<0

dt γ1(t)
|G(t)|3m2 + 0.5|G(t)||n|2√

|G(t)|2m2 + |n|2
,

(38)

where m = ρ1
11(0) − ρ2

11(0) and n = ρ1
12(0) − ρ2

12(0) are co-
efficients to be optimized. We have compelling numerical
evidence that the maximizing states are the orthogonal states
|+〉 〈+| and |−〉 〈−| for both the Lorentzian and the PBG
spectral densities for any time t . Hence, the BLP measure
takes the form

NBLP = −1

2

∫
γ1<0

dt γ1(t)|G(t)|. (39)

As we expect when only one decay rate is present in the
master equation, NBLP 	= 0 if and only if the dynamics are
nondivisible, i.e., γ1(t) < 0.

Figure 3 shows NBLP (blue asterisks) for different values of
(i) r and (ii) z for the Lorentzian and PBG spectra, respectively.
The behavior is qualitatively similar to the one of the RHP
measure. In the PBG case the peak of non-Markovianity is

slightly shifted towards more negative values of z. In Ref. [53],
the BLP measure and RHP witness are calculated for quantum
harmonic oscillators in a band gap showing that both measures
are sensitive to the edge of the gap, which is what we also
observe.

3. BCM and LFS measures

For the amplitude-damping channel the quantum and
entanglement-assisted classical capacities, which we indicate
here with QA and CA

ea , respectively, are calculated numerically
[54,55]. The states optimizing Ic(ρt ,�t ) and I (ρt ,�t ) are
now time dependent. One finds [56] the formulas CA

ea =
maxp∈[0,1]{H2(p) + H2(|G(t)|2p) − H2([1 − |G(t)|2]p)}
and QA = maxp∈[0,1]{H2(|G(t)|2p) − H2([1 − |G(t)|2]p)},
which still need a simple optimization over the probability p ∈
[0,1]. The latter formula holds only for |G(t)|2 > 1

2 ; otherwise,
Q(�A

t ) ≡ 0. This is due to the fact that the amplitude-damping
channel is degradable for |G(t)|2 > 1

2 , while for |G(t)|2 � 1
2

is antidegradable with zero quantum capacity.
The behavior of the BCM and LFS measures in the two

cases of amplitude-damping channels is illustrated in Fig. 3.
For both the Lorentzian reservoir spectrum and the PBG
the measures, NC and NI take nonzero values if and only
if the amplitude-damping channel is nondivisible. Notice that
the measures NI and NC have very close values. This may
seem not surprising given that both measures are based on
quantum mutual information. However, the examples show
that there is no relation between them even in the simple
amplitude-damping model here considered. Indeed, a strong
dependence on the form of the environmental spectrum can be
noticed. More precisely, in the case of the Lorentzian spectrum
we have NC(�A) > NI(�A), while in the PBG model the
opposite relation holds [see Figs. 3(i) and 2(ii), respectively].

We would like to emphasize the difference in the behavior
of NQ for the Lorentzian reservoir spectrum. As shown in
Fig. 3(i), indeed, unlike the other measures NQ is equal
to zero even for a nondivisible channel and detects non-
Markovianity only in a very strong coupling regime, i.e., when
r > 43. This is due to the fact that the amplitude-damping
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FIG. 4. (Color online) Non-Markovianity measure (the largest value in each column for each plot) for independent two-qubit systems for
the following reservoir spectra: (i) Ohmic, (ii) Lorentzian, and (iii) PBG model. We define the dynamics using (a) the BLP measure and (b) the
LFS measure. All the measures are plotted against an environmental parameter which may be modified. In general, to maximize each measure,
random states are used, including maximally entangled (purple), pure (pink), mixed states (red) and product states (green). For the BLP measure
we include combinations of mixed and pure states (blue), Bell states (black), and the tensor product state |±±〉 〈±±| (yellow). For all other
measures we include separable states other than product states (dark green), the maximally mixed state (brown), and tensor product state of
the optimizing states for the one-qubit case (gold), which is parameter dependent. We consider for the Ohmic, Lorentzian and photonic the
following times periods: t ∈ [0,20] in units of ωct , t ∈ [0,40] in units of λt , and t ∈ [0,20] in units of βt .

channel is antidegradable for |G(t)|2 < 1
2 , so, from a quantum

information-processing point of view, only revivals that occur
in the region |G(t)|2 > 1

2 are important.
The above example is consistent with the intuitive idea that

the transmission of quantum information along a quantum
channel is more sensitive to noise than the transmission
of classical information (although assisted by entanglement
shared between Alice and Bob). Once again, this conclusion
is, however, spectrum-dependent. In the case of the PBG model
[Fig. 3(iii)] it is possible to set the parameters such that the
noise in the channel has almost the same effect on both kinds of
information. This is possible for z < 0, because |G(t)|2 in this
regime oscillates only above the value 1

2 , but it is no longer true
for 0 � z < 2, as shown in Fig. 3(ii), the biggest difference
occurring for z = 0.

C. Two qubits in an independent environment: The model

For two qubits interacting with identical noncorrelated
environments, the time evolution can still be calculated
analytically [57]. The solution is given in Appendix. It is
straightforward to confirm that, as for the pure-dephasing case,
the corresponding master equation can be written as the sum
of two Lindblad-like terms, describing the dynamics of each
qubit, respectively, with the time-dependent coefficient γ1(t)
given by Eq. (34).

1. RHP measure

Directly from the form of the master equation, we immedi-
ately can show that

NRHP = −2
∫

γ1(t)<0
dt γ1(t). (40)

As one would expect, the measure is additive and, hence, for
the PBG model it behaves identically to the single-qubit case
of Fig. 3(ii). On the other hand, for the Lorentzian spectrum,
NRHP = ∞ when the dynamical map is nondivisible, as it is
in the one-qubit case.

2. BLP measure

We numerically prove that for the case of the Lorentzian
spectrum, the maximizing pair is |±±〉 〈±±|. In this case we
obtain the following expression for the BLP measure:

NBLP = −
∫

γ1<0
dt γ1(t)

|G(t)| − 2|G(t)|3 + 1.5|G(t)|5√
2 − 2|G(t)|2 + |G(t)|4

.

(41)

This expression is clearly different from Eq. (39) for
the single-qubit case, and we can show that the measure is
subadditive in this case. However, its qualitative behavior as
r changes is exactly the same as the single-qubit case and the
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FIG. 5. (Color online) Non-Markovianity measure (the largest value in each column for each plot) for common two purely dephasing qubit
systems for transit times ts (i) 0.25, (ii) 2, and (iii) 6. We define the dynamics using (a) the BLP measure, (b) the LFS measure, (c) the quantum
capacity measure, and (d) the entanglement-assisted classical capacity measure. All the measures are plotted against the Ohmic parameter s,
which may be modified. In general, to maximize each measure, random states are used, including maximally entangled (purple), pure (pink),
mixed states (red), and product states (green). For the BLP measure we include combinations of mixed and pure states (blue), Bell states (black),
and the tensor product state |±±〉 〈±±| (yellow). For all other measures we include separable states other than product states (dark green),
mixed states of rank 2 with eigenvalues close to 1

2 (dark red), and the maximally mixed state (brown). We consider a time interval t ∈ [0,20] in
units of ωct . Note that for rows (c) and (d) we optimize for t = 5 for the quantum capacity Q and the entanglement-assisted classical capacity
Cea , respectively.

renormalized value of NBLP gives exactly the same curve as
the one shown in Fig. 3(i) (blue asterisks).

The PBG model presents a number of difficulties. Indeed,
in this case the pair of states maximizing the increase in trace
distance is very strongly dependent on the time interval chosen.

We numerically calculate the measure as a function of z in
Fig. 4(a)(iii). The non-Markovianity measure corresponds to
the highest value of each column of states. In more detail,
from Fig. 5(a) we see the measure is maximized for initial
pairs of mixed and pure states (blue dots) for −15 � z � −3,
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maximally entangled (purple dots) for −2 � z � −1, pure
(pink dots) for z = 0, and the tensor product state |±〉 〈±|
(yellow dots) for z = 1. We have not been able to exactly
identify the states for which the increase in trace distance
is maximal, even for a fixed time interval. By comparing the
numerical value ofNBLP with the single-qubit case of Fig. 3(ii),
we see, however, that also in this case the renormalized quan-
tity has the same qualitative behavior for one and two qubits.
In this case we have verified that the BLP is superadditive for
−15 � z � −2 and subadditive for −1 � z � 1. Moreover,
the measure is zero if and only if the channel is divisible.

3. LFS measure

Extensive numerical optimization shows that the state
maximizing the quantum mutual information in Eq. (11) for
two independent identical amplitude channels is of the form
ρ∗

AB = ρ∗ ⊗ ρ∗, where state ρ∗ is the maximizing state for
the one-qubit channel discussed in Sec. V B. Hence, as for the
two-qubit independent dephasing channels, the measure NI

is additive. This holds for both the Lorentzian and the PBG
spectral densities. Therefore, the two-qubits behavior of the
measure for different values of r or z is exactly the same as
the one shown in Fig. 3.

4. BCM measures

Having in mind that whenever the amplitude-damping
channel is not degradable it is antidegradable, and hence has
zero quantum capacity, one can clearly see that the measures
NC and NQ are additive and therefore display identical
behavior with respect to the system parameters as the one
discussed in the one-qubit scenario, shown in Fig. 3.

VI. DISCUSSION AND CONCLUSIONS

Let us now discuss the comparison between the measures
for the single and composite open quantum systems here
considered. The first observation that appears evident when
looking at Figs. 1, 2, and 3(ii) is that, generally, the behavior
of the RHP measure is different from that of all the other
measures. Indeed, after the crossover from Markovian to
non-Markovian, this measure tends to present a monotonically
increasing behavior, while the other measures often have a
maximum; i.e., there exist values of the reservoir parameters
for which the memory effects are maximal. This fact can be
traced back to the very definition of RHP measure, which
counts and sums the areas of negativity of the time-dependent
decay rates in the master equation. Often, the more structured
is the environment, the greater is the number of negativity
intervals and therefore the bigger is the RHP measure.
Physically, the number of reverse jumps is increasing, too,
leading to greater recoherence. However, the measure proves
problematic for the Lorentzian spectrum, where, as a direct
consequence of the decay rate diverging when the dynamics
is nondivisible, the measure diverges. Also, we notice that
this measure is additive for independent reservoirs, and the
qualitative behaviors for two qubits in either the independent
or the common (dephasing) environment are the same. For the
other measures, the situation is not so straightforward, as we
explain below.

We start from the pure-dephasing cases. Figure 1 (single
qubit and two qubits in independent environment) and Fig. 2
(two qubits in common environment) show a clear similarity
in the behaviors of the BLP, LFS, and BCM measures, in the
sense that they all have a peak for values of s between 2 and 4.
This means that manifestations of memory in terms of increase
of information on the system, increase of system-ancilla total
correlations, or increase of channel capacities arise in a similar
way when modifying the form of the spectrum.

In the common environment case of Fig. 2, we note that,
contrarily to the RHP measure, the other measures show
a stronger sensitivity to the distance between the qubits,
which, in turn, is connected to the cross-talk term, i.e., the
environment-mediated interaction that is known to contribute
to the overall memory effects [58]. The BLP, LFS, and BCM
measures seem to show a narrower peak as the distance
is increased, consistently with the independent qubit case
of Fig. 1.

The amplitude-damping case presents clear differences and,
contrarily to the pure-dephasing case, the crossover between
Markovian and non-Markovian is not the same for all the
measures. We note first of all that the presence of energy
exchange between the system and the environment introduces
a new relevant time scale, or frequency, i.e., the Bohr frequency
ω0 of the two-level system forming the qubit. In the dephasing
case the structure of the spectral density and the presence of
peaks in resonance with ω0 is not related to the occurrence
of non-Markovian dynamics. Rather, it is the form of the
spectrum at the origin ω = 0 that dictates the presence or
not of recoherence and revivals of information [46].

The situation is clearly different in the dissipative case
where the qubit is more likely to interact with environmental
modes of the same frequency of ω0. A clear sign of this
behavior is shown in Fig. 3(ii) for the PBG case. Here all
non-Markovianity indicators display the same key feature;
i.e., they have their maximum around ω0 = ωe, where the
coupling between the qubit and the modes is the strongest
[3]. In this case, indeed, the qubit exchanges periodically
energy with the environment and its population shows Rabi
oscillations. Consistently, memory effects associated with the
energy exchange between system and environment also lead to
oscillations of the information content of the system (backflow
of information), total correlations between system and ancilla,
and channel capacities.

Finally, another important point to notice emerges from
the comparison of the (finite) measures for the Lorentzian
model on resonance. Here the behavior of the BLP and
entanglement-assisted capacity are similar, while for the
quantum channel capacity measure, a much stronger coupling
with the environment is required to have a partial increase in
the maximum rate of information transfer for increasing times
or lengths of the channel. As we have discussed in Sec. V B,
this is not surprising as quantum information is more sensitive
to environmental noise than classical information.

The overall picture that surfaces is one in which,
despite the obvious differences between the measures, their
corresponding physical mechanisms contributing to memory
effects often appear correlated and show a similar connection
with the reservoir spectral features. In conclusion, the
non-Markovianity measures give different perspectives on the
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same complex physical process, a full understanding of which
requires them all.
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APPENDIX

1. Mathematical description of physical models

In this section, we present in detail the mathematical
description of each system considered in this work.

a. Purely dephasing model

One qubit. The Hamiltonian of the system is given as [6]

H = ω0σz +
∑

k

ωka
†
kak +

∑
k

σz(gzak + g∗
k a

†
k), (A1)

with ω0 the qubit frequency, ωk the frequencies of the
reservoir modes, ak(a†

k) the annihilation (creation) operators
of the bosonic environment, and gk the coupling constant

between each reservoir mode and the qubit. In the continuum
limit

∑
k |gk|2 → ∫

dω J (ω)δ(ωk − ω), where J (ω) is the
reservoir spectral density [6,44].

It is simple to obtain the operator-sum representation
φD

t (ρ) = ∑2
i=1 Ki(t)ρK

†
i (t) with time-dependent Kraus op-

erators; K1(t) =
√

1+e−	

2 I and K2(t) =
√

1−e−	

2 I.
Knowledge of the Kraus operators allows one to immedi-

ately also write the complementary map, needed to calculate
both the coherent information and the entropy exchange, which
appears in the definition of the mutual information of the
channel:

φ̃D
t [ρ] = 1

2 [(1 + e−	(t)) |1〉e 〈1| + (1 − e	(t)) |2〉E 〈2|]
+ 1

2

√
1 − e2	(t)Tr(ρσz)(|1〉E 〈2| + |2〉E 〈1|). (A2)

We write in full Eq. (18) to give the explicit form of 	(t):

	(t) = 2	̃[s]

−1 + s
{1 − (1 + t2)−s/2{cos[s arctan(t)]

+ t sin[s arctan(t)]}. (A3)

Two qubit. The Hamiltonian which describes the two qubits
i,j for the purely dephasing case is [6]

H = ωi
0σ

i
z + ωi

0σ
j
z +

∑
k

ωka
†
kak

+
∑

k

σ i
z

(
gi

ka
†
k + gi∗

k ak

) +
∑

k

σ j
z

(
g

j

k a
†
k + g

j∗
k ak

)
,

(A4)
The expression for the “cross-talk” term δ(t) is given as

δ(t) = 2	[s]

−1 + s

({(
1 + t2

s

)
[1 + (ts − t)2]

}− s
2
{
[1 + (ts − t)2]

s
2 cos[s arctan(ts)] + ts[1 + (ts − t)2]

s
2 sin[s arctan(q)]

− (
1 + t2

s

) s
2 (cos[s arctan(ts − t)] + (ts − t) sin[s arctan(ts − t)])

} + {(
1 + t2

s

)
[1 + (ts + t)2]

}− s
2
{
[1 + (ts + t)2]

s
2

× cos[s arctan(ts)] + ts[1 + (ts + t)2]
s
2 sin[s arctan(ts)] − (

1 + t2
s

) s
2 [cos[s arctan(ts + t)]

+ (ts + t) sin{s arctan(ts + t)}]}), (A5)

The form of the Kraus operators for this case is as follows:

K1 =

⎛
⎜⎜⎜⎜⎝

e− 1
2 	− 0 0 0

0 e− 1
2 	+ 0 0

0 0 e− 1
2 	+ 0

0 0 0 e− 1
2 	−

⎞
⎟⎟⎟⎟⎠ ,

K2 = (e−	− − 1)
√

e−	− + 1

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

K3 =
√

1 − e−	−

⎛
⎜⎜⎜⎝

−e−	− 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

K4 = (e−	+ − 1)
√

e−	+ + 1

⎛
⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

K5 =
√

1 − e−	+

⎛
⎜⎜⎜⎝

0 0 0 0

0 −e−	+ 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ .

b. Amplitude-damped models

One qubit. The following microscopic Hamiltonian model
describing a two-state system interacting with a bosonic
quantum reservoir at zero temperature is given by [45]

H = ωoσz +
∑

k

ωka
†
kak +

∑
k

(gkakσ+ + g∗
k a

†
kσ−). (A6)
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As usual, σ± are standard raising and lowering operators,
respectively.

The Kraus representation φA
t (ρ) = ∑2

i=1 Ki(t)ρK
†
i (t) for

the amplitude-damping channel is given by K1 = ( 1 0
0 G ) and

K2 = ( 0
√

1 − |G|2
0 0 ), which gives us a complementary map

defined by

φ̃A
t (ρ) = [1 − (1 − |G(t)|2)ρ22] |1〉E 〈1|

+ (1 − |G(t)|2)ρ22 |2〉E 〈2|
+

√
1 − |G(t)|2(ρ12 |1〉E 〈2| + ρ21 |2〉E 〈1|). (A7)

We now discuss the specific forms of G(t) for both
amplitude-damped systems, starting with the Lorentizan spec-
trum [45] using notation GL(t).

If the spectral density has a Lorentzian shape, i.e, J (ω) =
γMλ2/2π [(ω − ωc)2 + λ2], then the function GL(t) takes the
form

GL(t) = e− (λ−i�L)t
2

[
cosh

(
�t

2

)
+ λ − i�L

�
sinh

(
�t

2

)]
,

(A8)

with

� =
√

λ2 − 2i�Lλ − 4� 2, (A9)

where � = γMλ/2 + �2
L/4 and �L = ω0 − ωc.

For �L = 0, one obtains the solution

GL(t) = e−λt/2

[
cosh

(√
1 − 2r

λt

2

)

+ 1√
1 − 2r

sinh

(√
1 − 2r

λt

2

)]
, (A10)

with r = γM/λ.
For the PBG model, the specific form of GP (t) is [52]

GP (t) = 2v1x1e
βx2

1 +i�P t + v2(x2 + |x2|)eβx2
2 t+i�P t

−
3∑

j=1

vj |xj |
[
1 − �

(√
βx2

j t
)]

eβx2
j t+i�P t , (A11)

where �P = ω̃0 − ωe is the detuning from the band-gap edge
frequency ωe, set to equal zero as we consider only the
resonant case, and �(x) is the error function, whose series and
asymptotic representations are given in Ref. [59]. In addition:

x1 = (A+ + A−)ei(π/4),

x2 = (A+e−i(π/6) − A−ei(π/6))e−i(π/4), (A12)

x3 = (A+ei(π/6) − A−e−i(π/6))ei(3π/4),

A± =
{

1

2
± 1

2

[
1 + 4

27

�3
P

β3

]1/2
}1/3

, (A13)

v1 = x1

(x1 − x2)(x1 − x3)
(A14)

v2 = x2

(x2 − x1)(x2 − x3)
, (A15)

β3/2 = ω̃
7/2
0 d2/6πε0�c3. (A16)

The coefficient β is defined as the characteristic frequency, ε0

the Coulomb constant, and d the atomic dipole moment. We
have defined in our results z = �P /β.

We note that G(t) satisfies the nonlocal equation Ġ(t) =
− ∫ t

0 f (t − t ′)G(t ′)dt ′ with initial condition G(0) = 1, and
f (t) is the reservoir correlation function which is related via
the Fourier transform with a spectral density J (ω).

Two qubit. For the amplitude-damped channel, we consider
the Hamiltonian

H = ωoσ
A
z + ωoσ

B
z +

∑
k

ωka
†
kak

+
∑

k

(gkakσ
A
+ + g∗

k a
†
kσ

A
− )

∑
k

(gkakσ
B
+ + g∗

k a
†
kσ

B
− ).

(A17)

The diagonal elements of the amplitude-damping channel φA,B
t

are written as follows [60]:

ρ11(t) = |G(t)|4ρ11(0),

ρ22(t) = |G(t)|2ρ11(0)(1 − |G(t)|2) + ρ22(0)|G(t)|2,
ρ33(t) = |G(t)|2ρ11(0)(1 − |G(t)|2) + ρ33(0)|G(t)|2,
ρ44(t) = 1 − [ρ11(t) − ρ22(t) − ρ33(t)]. (A18)

For the off-diagonal elements, we have

ρ12(t) = |G(t)|2G(t)ρ12(0), ρ13(t) = |G(t)|2G(t)ρ13(0),

ρ14(t) = G(t)2ρ14(0), ρ23(t) = |G(t)|2ρ23(0),
(A19)

ρ24(t) = ρ13(0)G(t)(1 − |G(t)|2) + ρ24(0)G(t),

ρ34(t) = ρ12(0)G(t)(1 − |G(t)|2) + ρ34(0)G(t).

Since this is the model for two independent identical envi-
ronments, the Kraus operators are just tensor products of
Kraus operators of the one-qubit case, Kij = Ki ⊗ Kj , for
i,j = 1,2.

2. Optimal state pairs

In this section, we provide numerical evidence to support
the claims made in this work concerning the optimal states.
We do not include the RHP measure in any case as it
requires no optimization. For any previously unseen one-qubit
calculations, the states optimizing the measure are either
straightforward to realize analytically or numerically through
restricting the state space using necessary conditions. Indeed,
it is known for the BLP measure that it is sufficient to sample
only the antipodal states on the surface of the Bloch sphere
[26] and an analytical proof determining that the optimal pair
also exists in Ref. [48].

In Fig. 4, we consider the independent case for all models
using the BLP and LFS measures only as it is simple to
analytically conclude that the BCM measures are additive.
For the BLP measure [see Figs. 4(a)(i) and 4(a)(ii)], we see
that for both the Ohmic and the Lorentzian spectra, the initial
pairs of optimal states are the separable states |±〉〈±|. For the
PBG model, the maximizing state is dependent on z. From
Fig. 4(a)(ii), we see that the measure is maximized for initial
pairs of mixed and pure states (blue dots) for −15 � z � −3,
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maximally entangled (purple dots) for −2 � z � −1, pure
(pink dots) for z = 0, and the tensor product state |±〉〈±|
(yellow dots) for z = 1.

For the LFS measure, for all models of the independent
identical environments [see Fig. 4(b)] the optimizing states
are in the form of the product states of the state that optimizes
the measure for one-qubit dynamics. For the case of pure
dephasing, these are maximally mixed states (brown) and for
both amplitude-damping cases the states (gold) depend on the
parameters characterizing the reservoir.

In Fig. 5, we consider the Ohmic case for all measures
which require optimization for three different transit times
ts . For the BLP measure [see Fig. 5(a)], we see that the
optimal state is always an orthogonal pair of Bell states. In
more detail, depending on the value of the Ohmic parameter s,
the maximizing pair is either the sub- or superdecoherent Bell
state pair |�±〉 〈�±| or |�±〉 〈�±|.

Optimization of the LFS measure in the case of common
environments is much more challenging. In case where both
qubits are close by [see Fig. 5(b)(i)], the optimizing states
are of rank 2 with the eigenvalues given by λ1,2 = 1

2 ± ε,
where ε ∈ [0,0.1] (dark red), while for both cases of ts = 2
and 6 [see Figs. 5(b)(ii) and 5(b)(iii)] optimizing states

become close to maximally mixed states (with eigenval-
ues λ1,2,3,4 = 1

4 + ε1,2,3,4, where ε1,2,3,4, ∈ [−0.1,0.1] are
such that the normalization condition is satisfied), which
are the optimizing states in the independent-environment
model.

Unlike for for the independent case, here the additivity
property for BCM measures is no longer valid; hence, the
optimization is needed. Notice that in this cases we are not
optimizing measures NC and NQ directly, but rather looking
for the states that give the channel capacities, Cea and Q,
respectively. For ts = 0.25 for both capacities the optimizing
states are from the same class as in the case of the LFS
measure (dark red), for ts = 2 and 6 the optimizing states are
the maximally mixed states as in the independent-environment
scenario.

We would like to emphasize the clear effect of the “cross-
talk” term in the model of common reservoir dephasing on the
measures LFS and BCM, which is reflected in the states that
are optimizing the relevant quantities. The bigger the transit
time gets, or equivalently, the further the two qubits are apart
form each other, the closer the model is to the independent-
environment case and, hence, the closer the optimizing states
become to the maximally mixed state.
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