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Hamiltonian formulation of the standard PT -symmetric nonlinear Schrödinger dimer
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The standard PT -symmetric dimer is a linearly coupled two-site discrete nonlinear Schrödinger equation with
one site losing and the other one gaining energy at the same rate. We show that despite gain and loss, the standard
PT dimer is a Hamiltonian system. We also produce a Lagrangian formulation for the dimer.

DOI: 10.1103/PhysRevA.90.045802 PACS number(s): 42.65.Wi, 42.65.Tg, 42.82.Et, 63.20.Ry

I. INTRODUCTION

The Schrödinger dimer is a two-site discrete nonlinear
Schrödinger equation of the form

i
du

dz
+ v + F (u,u∗,v,v∗) = 0,

i
dv

dz
+ u + G(u,u∗,v,v∗) = 0.

The physically interesting situation pertains to the functions
F and G being covariant under the simultaneous phase shifts
in u and v; that is,

F (eiαu,e−iαu∗,eiαv,e−iαv∗) = eiαF (u,u∗,v,v∗),

G(eiαu,e−iαu∗,eiαv,e−iαv∗) = eiαG(u,u∗,v,v∗)

for any real α.
The Schrödinger dimers with various polynomial nonlin-

earities are workhorses of photonics, where they serve to model
stationary light beams in coupled optical waveguides [1,2]. The
variables u and v represent the corresponding complex beam
amplitudes, and z measures the distance along the parallel
cores.

Dimers also occur in the studies of the Bose-Einstein
condensate trapped in a double-well potential [3,4]. Here,
u and v are the complex amplitudes of the mean-field
condensate wave functions localized in the left and right well,
respectively [3], or the amplitudes of the ground and the
first excited state [4]. The nonlinear Schrödinger dimers were
employed, extensively, in the solid state physics—where they
give the simplest discrete self-trapping equations [5–7]—and
in the context of electric lattices [7].

With the advent of the parity-time (PT ) symmetry [8], the
studies of the optical couplers expanded to include structures
consisting of a waveguide with loss and a guide with an equal
amount of optical gain. While a variety of cubic nonlinearities
were considered, the most frequently used nonlinear model
has the form [2,9–13]

i
du

dz
+ v + |u|2u = iγ u,

(1)

i
dv

dz
+ u + |v|2v = −iγ v.

This discrete nonlinear Schrödinger equation is occasion-
ally referred to as the standardPT -symmetric dimer. Here, the
quantities P1 = |u|2 and P2 = |v|2 give the powers carried by

the active and lossy channel, respectively, and γ > 0 is the cor-
responding gain-loss rate. The model also has an interpretation
in the matter-wave context where it emulates a PT -symmetric
arrangement of two boson-condensate traps with gain and loss
of particles [14]. There is substantial mathematics literature
on the standard PT -symmetric dimer, concerning stationary
points [15], periodic orbits [12], conserved quantities [11], the
blow-up phenomena [16,17], and the geometry of the phase
space [17,18].

Equations with parity-time symmetry combine properties
of dissipative and conservative systems. A surprising recent
result is that despite the presence of gain and loss of
energy, a PT -symmetric system may admit the Hamiltonian
formulation [19,20]. In particular, there are Hamiltonian PT -
symmetric dimers; an example was produced in [20]:

i
du

dz
+ v + (|u|2 + 2|v|2)u + v2u∗ = iγ u,

(2)

i
dv

dz
+ u + (|v|2 + 2|u|2)v + u2v∗ = −iγ v.

The system (2) can be written in the cross-gradient form

i
du

dz
= ∂H

∂v∗ , i
dv

dz
= ∂H

∂u∗ , (3)

with the Hamilton function

H = −(|u|2 + |v|2)(1 + u∗v + uv∗) + iγ (uv∗ − u∗v). (4)

This observation leads one to wonder about the Hamiltonian
structure of the most important two-site nonlinear Schrödinger
equation, namely, the standard dimer (1). The standard dimer
is known to have two functionally independent integrals of
motion [11,16–18]—yet no explicit Hamiltonian formulation
has been put forward so far.

The Hamiltonian structure is a fundamental property of
a dynamical system. Physically, it establishes regularity of
motion (conservation of phase volume and in some cases,
compactness of the accessible part of the phase space) and
paves the way for quantization. Mathematically, the Hamilto-
nian structure implies a deep symmetry of the system which
leads to considerable analytical simplifications and allows one
to use powerful methods, e.g., the Hamilton-Jacobi approach
and the Liouville integrability.

The aim of this Brief Report is to establish the Hamiltonian
formulation for the standard dimer. We also provide the
Lagrangian framework for this system.
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II. THE HAMILTONIAN FORMALISM

The canonical formulation for the standard lossless dimer
is well known (see, e.g., [5,21,22]). The system (1) with γ = 0
can be written as

i
du

dz
= ∂H

∂u∗ , i
dv

dz
= ∂H

∂v∗ , (5)

where the Hamilton function is

H = −(uv∗ + u∗v) − |u|4 + |v|4
2

. (6)

The two pairs of canonical variables are u and u∗, and v

and v∗. We emphasize the difference between Eq. (5) and
the Hamiltonian structure of the nonlinearly coupled dimer,
Eq. (3), where the canonical pairs were u and v∗, and v and
u∗.

Unlike Eq. (3), the structure (5) does not survive the addition
of the gain-loss terms—that is, u and u∗, and v and v∗ are not
the canonical variables for the system (1) with γ �= 0. That
being the case, we attempt to transform both dimers to a new
set of coordinates where the similarity of the two systems
would allow one to model the Hamiltonian structure of the
standard PT -symmetric dimer on the canonical formulation
of the system (2).

A natural choice of coordinates is furnished by the Stokes
variables,

X = u∗v + uv∗

2
, Y = i

u∗v − uv∗

2
, Z = |u|2 − |v|2

2
.

(7)

(These variables have proved useful in the whole range of
bimodal contexts; see a remark in the concluding section.) We
also introduce the notation

φ = φ1 + φ2, (8)

where φ1 and φ2 are the arguments of the complex variables u

and v:

u = |u|eiφ1 , v = |v|eiφ2 .

In terms of X, Y, Z, and φ, the standard dimer (1) acquires
the form

φ̇ =
(

r + X

r

)
cosh ψ, (9a)

Ẋ = −YZ, Ẏ = (X − 1)Z, Ż = γR + Y. (9b)

In Eq. (9a), r is the magnitude of the two-component vector
(X,Y ):

r =
√

X2 + Y 2, (10)

whereas in (9b), R denotes the length of the vector (X,Y,Z):

R =
√

X2 + Y 2 + Z2.

The hyperbolic angle ψ is defined by

R = r cosh ψ, Z = r sinh ψ, (11)

and the overdot stands for the derivative with respect to t = 2z.

Using the same set of variables, the anharmonically coupled
dimer (2) becomes

φ̇ =
[

2r + (1 + 2X)
X

r

]
cosh ψ, (12a)

Ẋ = 0, Ẏ = −(1 + 2X)Z, (12b)

Ż = γR + (1 + 2X)Y. (12c)

Consider, first, the system (2) which admits the Lagrangian
and Hamiltonian formulation. The Lagrange function for the
dimer (2) is

L = i

4
(uzv

∗ − u∗
zv + vzu

∗ − v∗
z u)

+ (1 + uv∗ + u∗v)
|u|2 + |v|2

2
+ i

γ

2
(u∗v − uv∗).

The corresponding Lagrangian for the system in the form (12)
results by transforming to X, Y, Z, and φ. Dropping a total
derivative, we have

L = Ẋφ + Ẏψ + (1 + 2X)R + γ Y. (13)

We choose X and Y as the coordinates of the fictitious classical
particle described by the Lagrangian (13). The canonical
momenta are then

PX = ∂L
∂Ẋ

= φ, PY = ∂L
∂Ẏ

= ψ,

and the Hamiltonian of the particle results by the Legendre
transform:

H = −(1 + 2X)R − γ Y, (14)

where

R =
√

X2 + Y 2 cosh ψ.

The Hamilton equations

Ẋ = ∂H
∂PX

, ṖX = −∂H
∂X

;

Ẏ = ∂H
∂PY

, ṖY = −∂H
∂Y

reproduce Eqs. (12).
The Hamiltonian (14) is remindful of the expression for an

integral of motion of the standard dimer, I = −R − γ θ , with
the role of θ being taken over by Y . Here θ is one of the two
polar coordinates on the (X,Y ) plane defined by

X = 1 + ρ sin θ, Y = ρ cos θ.

(This choice of polar coordinates is crucial for the elucidation
of the geometry of the phase space of the standard dimer [17].)
Modeling on the Hamiltonian (14) and noting that

R = r cosh ψ, r =
√

ρ2 + 1 + 2ρ sin θ, (15)

we define

Pθ = ψ (16)

and propose the following expression for the Hamiltonian of
the standard dimer:

H = −
√

ρ2 + 1 + 2ρ sin θ cosh Pθ − γ θ. (17)
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The Hamiltonian (17) describes another fictitious classical
particle—the “standard” particle—with the coordinates ρ and
θ . The canonical equations are

θ̇ = ∂H

∂Pθ

= −r sinh ψ, ρ̇ = ∂H

∂Pρ

= 0, (18a)

Ṗθ = −∂H

∂θ
= γ + ρ cos θ

r
cosh ψ, (18b)

Ṗρ = −∂H

∂ρ
= ρ + sin θ

r
cosh ψ. (18c)

The formulas (18a) and (18b) are equivalent to Eqs. (9b)
while Eq. (18c) can be used to define the momentum Pρ .
Namely, comparing (18c) to (9a) and using ρ̇ = 0 yields

Pρ = −φ

ρ
+ 2

ρ

∫ t

0
R(τ )dτ. (19)

III. THE LAGRANGIAN FORMALISM

The aim of this section is to propose a Lagrangian formula-
tion for the standard PT -symmetric dimer. The Lagrangian
formulation complements the Hamilton equations and offers
a number of advantages, e.g., the freedom in the coordinate
transformations and access to Noether’s theorem.

Letting

φ1 − φ2 = χ,

the equations of the standard dimer (1) acquire the form

ṙ = −r sin χ sinh ψ,

χ̇ = (r − cos χ ) sinh ψ,
(20)

φ̇ = (r + cos χ ) cosh ψ,

ψ̇ = γ + sin χ cosh ψ.

Here φ, r , and ψ are defined by (8), (10), and (11); we
remind the reader that r admits a simple expression in polar
coordinates, Eq. (15).

To cast the system (20) in the form of the Lagrange-Euler
equations for some functional S = ∫

Ldt , we start with
introducing a new variable μ such that μ̇ = R. The constraint
μ̇ − R = 0 can be incorporated in the system by means of a
Lagrange multiplier; call it λ. Thus we consider the Lagrangian

L = 2μ − φ

ρ
ρ̇ + ψθ̇ + γ θ − λ(μ̇ − R). (21)

Here ρ, θ, φ, and ψ—as well as μ and λ—are regarded as
independent variables, whereas R is a function of ρ, θ , and ψ

given by Eq. (15).
A slightly modified version of (21) is arrived at by dropping

a total derivative:

L̃ = −(2μ̇ − φ̇) ln ρ + ψθ̇ + γ θ − λ(μ̇ − R). (22)

The formulation (22) makes it obvious that the variable φ is
cyclic; this is a consequence of the U(1) phase invariance
of the dimer (1). Therefore, ∂L̃/∂φ̇ = ln ρ is a conserved

quantity:

ρ̇ = 0. (23a)

The coordinate μ is also cyclic; hence

∂L̃

∂μ̇
= −2 ln ρ − λ

is another integral of motion—and so is λ.
The variation with respect to the remaining four indepen-

dent coordinates gives

θ̇ = −λr sinh ψ, (23b)

φ̇ = 2μ̇ − λ
ρ

r
(ρ + sin θ ) cosh ψ, (23c)

ψ̇ = γ + λ
ρ

r
cos θ cosh ψ, (23d)

and μ̇ = R. The constant λ may be chosen arbitrarily; different
choices of λ are equivalent up to a rescaling of t and
redefinition of γ . Choosing λ = 1, one can readily verify that
four equations (23) (with R substituted for μ̇) are equivalent
to the system (20).

IV. CONCLUDING REMARKS

In this Brief Report, we have revealed the Hamiltonian
structure of the standard PT -symmetric dimer, Eq. (1). The
Hamilton function is given by (17); the canonical coordinates
are ρ and θ , with the canonical momenta defined by (19)
and (16), respectively.

We have also proposed the Lagrangian formulation for the
standard dimer. The Lagrange function is in (21) and (22). Un-
like its Hamiltonian formulation, the Lagrangian description
requires the introduction of an auxiliary degree of freedom
[accounted for by the variables μ and λ in (21)].

We conclude with two remarks. First, we would like to
acknowledge the importance of the Stokes coordinates (7)
that were crucial for our construction. Mathematically, the
transformation (7) is an example of the Hopf fibration mapping
a three-sphere (a hypersphere in the four-dimensional space
formed by the real and imaginary components of u and v)
onto the two-sphere in the (X,Y,Z) space [23]. In physics,
the Hopf map was used to establish the equivalence of two
field-theoretic models on the plane: the CP1 model and the
O(3) σ model [23,24]. The same transformation is employed
in the studies of quantum two-level systems where it was
pioneered by Feynman and coauthors [25]. (Accordingly, the
X, Y , and Z are occasionally referred to as the Feynman
variables [21].) A closely related object is the Bose-Hubbard
dimer; in that context, the X,Y,Z triplet is known as the Bloch
vector [22]. The name Stokes variables hails from optics where
the X, Y , and Z parameters are used to describe the polarization
state of electromagnetic radiation. Jensen exploited the Stokes
parameters for the analysis of his two-waveguide optical
coupler [1].

Our second remark is on the integrability of the standard
PT -symmetric dimer. The fact that a system with two degrees
of freedom has two integrals of motion is generally insufficient
to claim that the system is Liouville integrable. Indeed,
assigning particular values to the two integrals reduces the
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motion to a two-dimensional manifold, e.g., a genus-two
Riemann surface, where the flow may happen not to be
integrable. However, if the system is known to be Hamiltonian,
the existence of the second integral of motion (which is
obviously in involution with the Hamilton function) implies
the complete integrability of the system. Thus, uncovering the
Hamiltonian structure of the standard PT -symmetric dimer
completes the proof of its integrability that was suggested
when two conserved quantities were found [11].
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