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Photoionization of a hydrogen atom in a uniform electric field as visualization
of the Stokes phenomenon
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To describe the photoionization of a hydrogen atom in a static electric field, we considerably rely on the
properties of a global asymptotic of the Stark wave functions in momentum representation. The accurate analytical
photoionization cross section is found in terms of the Stokes multipliers for the quartic oscillator.
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Photoionization of an atom in a static electric field is one
of the direct manifestations of the Stark effect. Therefore,
the study of this process still proceeds, despite the significant
understanding already reached [1–13]. Particularly, consider-
able efforts have focused in recent years on the theoretical
and experimental study of the spatial distribution of Stark
electrons [14–17]. The recently developed photoionization mi-
croscopy technique has been successfully applied for studying
the dynamics of Rydberg states and for direct visualization of
the Stark wave functions [18,19].

The traditional approach in calculations of the photoion-
ization cross section is based on the first-order perturbation
theory and the dipole approximation. The complicated part
of the direct application of the theory is the calculation of
the continuum wave function of the final electronic state
of an atom in an electric field. The numerical calculations
of the ionization cross section include direct integration of
the Schrödinger equation for the Stark wave function [1–3]
or the complex coordinate method for calculation of Stark
resonances [4,5]. The main difficulties in direct calculations
are associated with the resonance structure of the Stark
wave functions. Calculations by numerical integration in
the complex coordinate space are very reliable, but there
still remains the problem of convergence of the series over
resonances and, also, the problem of the background term.
Analytical approaches are based on classical or semiclassical
WKB techniques in coordinate representation [7–10]. They
include matching of semiclassical waves in the barrier region
and meet difficulties already at the description of an isolated
resonance. Therefore, attempts to obtain accurate analytical
results for the cross section of photoionization of an atom in
an electric field are fully justified.

The accurate analytical calculations of the principal Stark
system were not available until recently as they require the
knowledge about the behavior of solutions of the reduced
biconfluent Heun equations. Some of the necessary results
were finally obtained in [20] by transformation of the Stark
equations into momentum representation. That opens the way
for analytical description by applying the global asymptotes of
solutions of a quartic oscillator equation. In this Brief Report,
we propose to implement this idea and to represent the Stark
photoionization as the Stokes phenomenon.
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Hydrogen in a uniform electric field is described by the
wave function

ψE,n1,m = χ1(ξ ) χ2(η)√
ξη

eimϕ, (1)

where (ξ,η) are parabolic coordinates [21] and the components
χ1(ξ ), χ2(η) satisfy the coupled reduced biconfluent Heun
equations,

d2χ1

dξ 2
+

[
−F

4
ξ + E

2
+ β1

ξ
− m2 − 1

4ξ 2

]
χ1 = 0, (2)

d2χ2

dη2
+

[
F

4
η + E

2
+ β2

η
− m2 − 1

4η2

]
χ2 = 0, (3)

β1 + β2 = 1, (4)

and physical boundary conditions. Equation (2) defines the
discrete spectrum of β1, which is labeled by the parabolic
quantum number n1. The solutions of Eq. (3) belong to the
continuous spectrum of energy E.

The Stark photoionization cross section in dipole approxi-
mation is

σ (E) = 4π2q2ω

c

∑
m,n1

σE,n1,m, (5)

where c is the speed of light, q is the charge of electron, and ω

is the frequency of light. The partial cross sections σE,n1,m are

σE,n1,m = |〈ψ0|r · e|ψE,n1,m〉|2, (6)

where e is the unit vector of light polarization, and ψ0 is the
normalized wave function of the initial electronic state of the
atom. The wave function ψE,n1,m of the final electronic state
is normalized to δm m′δn1n

′
1
δ(E − E′).

Following the strategy of Kondratovich and Ostrovsky [9],
we assume that the matrix elements in Eq. (6) converge at
relatively small distances, where one can neglect the influence
of the external field, and the wave functions χ1 (ξ ) and χ2(η)
coincide with the Coulomb functions

χ1(ξ ) = A1 f (m,ν,β1,ξ ), (7)

χ2(η) = A2 f (m,ν,β2,η), (8)

where

f (m,ν,β,ζ ) = e−ζ/2ν ζ (|m|+1)/2

×F

( |m| + 1

2
− νβ, |m| + 1, ζ/ν

)
, (9)
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F (a,b,z) is the confluent hypergeometric function, and A1

and A2 are the normalization constants. The parameter ν is
ν = 1/

√−2E .
Using expressions (7) and (8) for functions χ1 (ξ ) and

χ2 (η), we obtain the partial cross section

σm,n1,E = A2
1 A2

2|Im,n1,E |2, (10)

where the reduced matrix element Im,n1,E ,

Im,n1,E =
∫

ψ∗
0 r · e

f (m,ν,β1,ξ ) f (m,ν,β2,η)√
ξη

eimϕdV,

(11)

can be calculated analytically.
Calculation of the normalization constant A2 for the

continuum wave function χ2 (η) is the most complicated
and the most significant part of the problem. The accurate
calculations can be performed in the Laplace representation

χ2 (η) = W2 η(m+1)/2
∫
L

ezx �2 (z) dz. (12)

Here, W2 is the normalization constant, x = (F/4)1/3 η,
�2 (z) = e�/2ψm(z), � = z3/3 + tz, and the function ψm(z)
satisfies the equation for the quartic oscillator,

d2ψm

dz2
+

[
λ + m z −

(
z2 + t

2

)2]
ψm = 0, (13)

with

t = 2E

(2F )2/3 , λ = 2

(2F )1/3 β2. (14)

The Laplace transform of Eq. (2) is totaly analogous to that of
Eq. (3) and leads to the equation for the quartic oscillator with
λ = −2β1/ (2F )1/3.

As will be shown below, the normalization constant A2 is
determined by the asymptotic behavior of the function ψm(z)
at |z| → ∞. The asymptotic representation of solutions of the
quartic oscillator equation at |z| → ∞ is given by the Thomé
series [22]

ψm(z) = Cm(z), Dm(z), (15)

where

Cm(z) = zm−1e−�/2
∑

cn/z
n, (16)

Dm(z) = z−m−1e�/2
∑

dn/z
n. (17)

The coefficients cn and dn satisfy the recurrence relations
(see [20,23] for details)

ncn + λcn−1 + t(n − m − 1)cn−2

+ (n − m − 1)(n − m − 2)cn−3 = 0, (18)

ndn − λdn−1 + t(n + m − 1)dn−2

− (n + m − 1)(n + m − 2)dn−3 = 0, (19)

with initial conditions

c0 = 1, c1 = −λ, c2 = 1
2 (λ2 − t + t m), (20)

d0 = 1, d1 = λ, d2 = 1
2 (λ2 − t − t m). (21)

The complex plane of the variable z is divided into six domains
by the anti-Stokes lines,

arg z = πk/3 − π/6, k = 1, . . . ,6, |z| → ∞. (22)

These six domains are labeled by roman numbers from I
to VI counterclockwise, starting from the domain around
the semiaxis z > 0. The function Cm is exponentially small
(recessive) in comparison with the function Dm in domains I,
III, and V. The function Dm is recessive in domains II, IV, and
VI, where the function Cm is dominant.

At |z| → ∞, the asymptotic representation of a general
solution of Eq. (13) in different domains is

Domain I: ψm = s1Dm(z) + (s1Tm,1 �1 + r1) Cm(z), (23)

Domain II: ψm = s2Cm(z) + (s2Tm,2 �2 + r2) Dm(z), (24)

Domain III: ψm = s3Dm(z) + (s3Tm,3 �3 + r3) Cm(z), (25)

Domain IV: ψm = s4Cm(z) + (s4Tm,4 �4 + r4) Dm(z), (26)

Domain V: ψm = s5Dm(z) + (s5T
∗
m,3 �̃5 + r5) Cm(z), (27)

Domain VI: ψm = s6Cm(z) + (s6T
∗
m,2 �̃6 + r6) Dm(z). (28)

Here, the step functions �k and �̃k = 1 − �k are defined in
domains k (k = I . . . VI). The function �k is changed from 0
to 1 when the Stokes line is crossed in the positive direction.
The constant coefficients sk and rk satisfy the condition that
the asymptotic expansions in the adjacent domains coincide
on the anti-Stokes line between these domains. Parameter Tm,k

is the Stokes multiplier for domain k. The Stokes multipliers
for domains VI and V are complex conjugate to those of
domains II and III.

The coefficients cn and dn obey the following relation:

dn (−m) = (−1)n cn (m) . (29)

The symmetry of coefficients cn and dn leads to the following
symmetry of asymptotic solutions Cm(z) and Dm(z):

C−m(ze±iπ ) = −e∓iπmDm(z),
(30)

D−m(ze±iπ ) = −e±iπmCm(z).

This symmetry is the consequence of the symmetry of Eq. (13),
which conserves its shape at variable change

z = −z, m → −m. (31)

As a result, together with the solution ψm(z), the function
ψ−m(−z) is also a solution of Eq. (13) and we find the
following symmetry properties of the Stokes multipliers:

Tm,1 = e2iπmT−m,4, Tm,2 = −e2iπmT ∗
−m,3. (32)

In [20], we have shown that the basic physical properties
of the Stark system can be expressed in terms of the Stokes
multipliers for the quartic oscillator equation. The complex
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Stark resonances are the solutions of equation

T|m|,3 (β2) = 0. (33)

The argument of the multiplier T|m|,3 (β2) defines the scattering
phase. The quantization condition for Eq. (2) is

T|m|,1 (β1) = 0. (34)

The Stokes multipliers have been found in [20,23] in an
analytical form. The multiplier Tm,1 for arbitrary energy and
the multiplier Tm,3 at positive energies are expressed through
the parameters of asymptotic solutions of recurrences (18)
and (19). The multiplier Tm,3 at negative energies has been
found in the frame of complex asymptotic analysis.

Below we show that the Stark photoionization is also
directly related to the Stokes phenomenon.

To calculate the function χ2(η), we choose in Eq. (12) the
integration contour L which goes parallel to the imaginary
axis in the right half-plane of complex variable z. Taking into
account the asymptotic behavior of functions ψm(z) at |z| →
∞, we can show that at such choice of integration contour, the
Laplace transform (12) exists for any m < 1. For that reason,

below we take

m � 0. (35)

To satisfy the physical boundary condition for the function
χ2 (η) at η → 0, the function ψm(z) must be taken recessive
in domain I. In this case, in the limit η → 0, the integration
contourL can be displaced into the asymptotic region |z|→∞
to make the integrand in Eq. (12) as small as possible. The
function ψm(z) in the asymptotic region is described by the
leading term of the asymptotic expansion Cm(z), and we find

χ2 (η → 0) = W2 η(m+1)/2
∫
L

ezx zm−1dz (36)

= W2

(
4

F

)m/3 2iπ

� (1 − m)
η(1−m)/2. (37)

At η → ∞, the main contribution to the integral in Eq. (12)
originates from two saddle points located in the asymptotic
region of the imaginary axis. In the vicinity of the imaginary
axis (along the anti-Stokes lines), the asymptotic form of the
function �2 (z) is

�2(z) =
{

e�/2(Cm + Tm,2Dm) ≈ zm−1 + Tm,2e
�z−m−1, Im(z) → +∞,

e�/2(Cm + T ∗
m,2Dm) ≈ zm−1 + T ∗

m,2e
�z−m−1, Im(z) → −∞.

(38)

The saddle points correspond to terms Tm,2e
�z−m−1 and

T ∗
m,2e

�z−m−1 in this asymptotic expansion. Calculating con-
tributions of the saddle points, we find the asymptotic form of
solution at η → ∞,

χ2 (η → ∞) = B W2|Tm,2|
η1/4

cos

[
1

3F
(Fη + 2E)3/2

−π
m + 1

2
+ arg Tm,2 − π

4

]
(39)

= B W2|T|m|,3|
η1/4

cos

[
1

3F
(Fη + 2E)3/2

+ 3πm

2
− arg T|m|,3 + π

4

]
, (40)

with B = 2i
√

π (4/F )m/6+1/4.
The normalization coefficients for functions χ1(ξ ) and

χ2 (η) are determined by conditions

∫ ∞

0

χ∗
1 (ξ ) χ1(ξ )

ξ
dξ = 1

π
, (41)

and ∫ ∞

0
χ∗

2,E (η) χ2,E ′ (η) dη = 2δ(E − E
′
) (42)

(cf. [9]). The asymptotic form (40) of solution χ2 (η) and
normalization condition (42) lead to

W2 = − i

2π |T|m|,3|
(

F

4

)m/6

. (43)

As a result, we get

χ2 (η → 0) = 1

|T|m|,3| |m|!
(

4

F

)m/6

η(1+|m|)/2. (44)

FIG. 1. The (0,3,0) resonance in the photoionization cross section
of hydrogen in the field of 2.61 MV/cm. The solid curve is calculated
via Eq. (45). The dashed curve presents the Fano profile from
work [5]. Theoretical data are convoluted with the experimental
line-shape function. Points are the experimental data taken from Fig. 3
in [11].
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A comparison of Eq. (8) with Eq. (44) results in the following
expression for the normalization constant A2:

A2 = 1

|T|m|,3| |m|!
(

4

F

)m/6

. (45)

As it was already mentioned, zeros of the Stokes multiplier
T|m|,3 determine the positions and widths of the Stark reso-
nances. The resonance behavior of the Stokes multiplier T|m|,3
at negative energies directly reveals itself in the behavior of the
normalization constant A2 and, consequently, in the resonance
structure of ionization cross section.

Figure 1 illustrates the result of application of Eq. (45) to
calculation of the photoionization cross section of the ground-
state hydrogen near the (n1,n2,m) = (0,3,0) resonance, which
has been observed in the intense static electric field of
2.61 MV/cm in the experiment [11]. This resonance is located
almost on the top of the Stark potential barrier and reveals
an elevation of the base line on the high-energy side. This
elevation is the direct consequence of the transition from
tunneling to the over-barrier photoionization dynamic and,
also, it reflects the qualitatively different behavior of the Stokes

multiplier T|m|,3 at λ below and above the barrier between the
wells of the quartic oscillator potential.

Figure 1 presents our theoretical results (solid curve) and
the Fano profile from [5] (dashed curve). To compare the
calculated cross sections with the experimental data, both
our data and the Fano profile have been convoluted with the
instrumental line-shape function [8,11]. The vertical scale of
the experimental points has been adjusted for best match with
the solid curve. The small difference between solid and dashed
curves is due to the background term, which was neglected
in [5].

It should be noted that the values of normalization constant
A1 and of the reduced matrix element Im,n1,E do not change
inside the width of the resonance shown in Fig. 1. The shape
of this resonance is totaly described by the behavior of the
Stokes multiplier T|m|,3 in Eq. (45). In this sense, the Stark
photoionization is the direct physical visualization of the
Stokes phenomenon.
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A. Gijsbertsen, J. H. Jungmann, C. Bordas, and M. J. J.
Vrakking, Phys. Rev. Lett. 110, 213001 (2013).
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