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Controllable optical bistability of an asymmetric cavity containing a single two-level atom
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Optical bistability of a single-mode cavity containing a two-level atom in the Purcell regime has been analyzed.
Compared with the case of a symmetric cavity, we find that the bistable regime of input power in an asymmetric
cavity can be controlled by adjusting the cavity-loss rates of the asymmetric walls. Such results provide an
optimal window of input power to realize giant optical nonreciprocity, which has promising application as the
smallest all-optical diode unit with low operation power and high transmitted contrast.
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I. INTRODUCTION

A cavity containing a two-level atom or quantum dot
is a classical model in quantum optics. There were many
works concerning such a simple model in the last century.
However, with the development of atomic manipulation and
nanotechnology, it still has attracted much attention in recent
years due to its significant nonlinear character. In 1995 an
experiment of detuned light transmitting through an atom-
cavity system showed considerable optical nonlinearity [1],
and then a giant optical nonlinearity was discovered in both
strong [2–4] and weak resonant coupling regimes [5,6]. By far,
many applications to quantum optical devices based on giant
optical nonlinearity have been proposed, such as quantum
phase gates [4,7], a cavity with controllable reflectivity
[8], a pulse-shape shaping scheme [9,10], a quantum states
transmission scheme [11], photon nonlocal entanglement [12],
an ultrafast all-optical switch [13,14], a quantum memory and
all-optical transistor [14,15], a single photon nondestructive
detector [16], and so on.

However, there was little work focusing on single-atom op-
tical bistability in asymmetric cavities. Since optical bistability
was proposed and realized first in Fabry-Perot resonators [17],
most works have focused on understanding bistability within
loss [18–22] or gain mediums [23,24] in symmetric systems,
and only a few works discussed single-atom bistability [25]
or bistability in asymmetric systems [26]. Various forms
of bistability, known as counterclockwise, clockwise, and
butterfly bistability, have been observed in the reflection in
the laser amplifier cavity, while the transmission has only
counterclockwise bistability [23,26].

Different from previous models, we focus on the transmis-
sion bistability of an asymmetric cavity containing a single
two-level emitter. To get the single-atom optical bistability,
the cavity is further limited to the Purcell regime, where the
atom-cavity coupling is stronger than the atomic decay rate
but smaller than the cavity-loss rates [6,27]. In this work, we
find the conditions to achieve single-atom optical bistability in
both a symmetric and asymmetric cavity. More interesting, it
shows that the bistable regime of input power can be controlled
by adjusting the asymmetric boundaries of the cavity, which
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provides a promising application as a single-atom all-optical
switch and diode.

This paper is organized as follows. In Sec. II, we establish
the coupled-mode equations concerning the asymmetric cavity
containing a two-level atom. In Sec. III, single-atom optical
bistability is analyzed theoretically. Its application as an optical
diode with high transmitted contrast is discussed. Finally, we
draw the conclusion in Sec. IV.

II. THEORETICAL MODEL

We consider a two-level atom with transition frequency ωa

embedded in the center of a single-mode cavity with frequency
ωc, as shown in Fig. 1. Different from the previous works
concerning symmetric cavities [6] or a single side cavity [7],
the cavity considered here can be asymmetric, whose cavity-
loss rates k1 and k2 of the walls are different from each other in
general. If the external input field (bin) is incident on left wall
(M1) of the cavity and transmits through the right wall (M2),
we define it as the forward input case, as shown in Fig. 1.
Meanwhile the backward input case is the opposite one, in
which input field is incident from M2 to M1.

In a frame rotating with the frequency of input field ωL, the
Hamiltonian concerning the atom and the cavity mode is

Hac = ��Sz + �(� + δ)a†a + ��(S+a + a†S−), (1)

where a is the annihilation operator of the cavity mode. S− =
|g〉 〈e| and Sz = (|e〉 〈e| + |g〉 〈g|)/2 are atomic pseudospin
operators. � = ωa − ωL is the detuning between the atom
and input field, and δ = ωc − ωa the detuning between the
cavity mode and the atom. � is the atom-cavity coupling
strength.

In order to discuss the input-output problem, operators
of input field bin, reflected field br , and transmitted field
bt should be introduced [28,29]. The input-output channels
include not only cavity-mode decay into port 1 with rate k1

and port 2 with k2, but also atomic spontaneous decay with
rate γat and cavity mode dissipation with rate γcav [7]. The
expectation values of several operators are defined as s =
〈S−〉, sz = 〈Sz〉, a = 〈a〉, bin = 〈bin〉, bt = 〈bt 〉. Therefore,
after tendentious deduction (more details shown in Appendix),
the Heisenberg-Langevin equations of the expectation values
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FIG. 1. Scheme of the atom-cavity coupling system under exter-
nal input. Here, the cavity-loss rate k1 (k2) represents the decay of
cavity mode into port 1 (2) through M1 (M2).

in the forward input case are as follows:

ṡ = −(i� + γat/2)s + 2i�sza, (2a)

ṡz = −i�s∗a + i�a∗s − γat(sz + 1/2), (2b)

ȧ = −i(� + δ)a − (k + γcav/2)a − i�s − i
√

k1bin, (2c)

bt = −i
√

k2a. (2d)

Here the superscript star states the complex conjugate. We
only consider the expectation of operators because they can
be measured by homodyne detection. With the semiclassical
hypothesis the quantum correlations between atomic operators
and field operators have been neglected.

In Eqs. (2) the input field is represented by bin. k =
(k1 + k2) /2 is the average of two cavity-loss rates k1 and
k2. The cavity is symmetric when k1 = k2, while it is
asymmetric when k1 �= k2. In the Purcell regime, k is much
larger than γat, γcav, and �, and they fulfill the rule of
(γat, γcav) < � < k. Because γcav is only combined with
k in Eq. (2c) and k � (γcav, γcav), it can be ignored. So
we set γcav = 0 in the following discussion without loss of
generality.

In our scheme, there are breakings of time-reversal and
spatial symmetries due to the dissipations and the differ-
ence between k1 and k2. Optical nonlinearity is inherent
due to the saturation of the atom. The cavity can provide
the feedback field. Thus our scheme is feasible to realize
optical bistability. To discuss the optical bistability quanti-
tatively, all the couplings and damping rates in Eqs. (2), i.e.,
k1, k2, k, γcav,�,�, and δ, are normalized by taking γat ≡ 1
in the following.

III. OPTIAL BISTABILITY AND TRANSMISSION
NONRECIPROCITY

A. Optical bistability in an asymmetric cavity

Optical bistability requires two stable output states under
certain input power. To get the input-output relation of our
scheme, we define nin = 〈b†inbin〉 and nt = 〈b†t bt 〉 as the
average incident and transmitted photon numbers per unit time,
respectively. As abbreviations, we denote nin and nt as the input
power and output power, respectively. Meanwhile, nc = 〈a†a〉
is photon numbers per unit time in the cavity. Therefore our
object is to find the relation between nin and nt . The procedures
are as follows. As optical bistability is a steady state, the

left time derivatives in Eqs. (2) all equal zeros. The relation
between nt and nc can be first obtained through Eq. (2d) as

nt = k2nc. (3)

Equation (3) indicates that nt is proportional to nc with
factor k2, and then from Eq. (2a) the steady atomic dipole
moment s can be expressed as

s = 2i�sza

i� + γat/2
. (4)

Inserting Eqs. (3) and (4) into Eq. (2b), we obtain the steady
atomic population sz as

sz = −1

2

1

1 + y
, (5)

where y is the saturation parameter with the expression as

y = nt/Pct. (6)

Here Pct is the critical power of nt to reach sz = −1/4,
satisfying

Pct = k2
(
�2 + γ 2

at/4
)

8�2
. (7)

Inserting Eqs. (4) and (5) into Eq. (2c), we can relate the
cavity field a to the input field bin as[

k+γcav

2
+ �2

(i� + γat/2)(1 + y)
+ i(� + δ)

]
a = −i

√
k1bin.

After modulus squaring both sides and combining it with
Eq. (3), we finally get the relation between nin and nt as

nin = nt

k1k2

⎧⎨
⎩

[
k + γcav

2
+ �2γat/2(

�2 + γ 2
at/4

)
(1 + y)

]2

+
[

(� + δ) − �2�(
�2 + γ 2

at/4
)
(1 + y)

]}2

. (8)

Equation (8) is the starting point of the analysis of optical
bistability and nonreciprocity. Notice Eq. (8) is satisfied only
for the forward input case, and this subsection is limited to the
forward input case, as shown in Fig. 1.

In principle, nonlinear optical systems combined with a
feedback environment may possess more than one output
state for a given input state. One consequence is the optical
bistability. Therefore it is possible to obtain single-atom
optical bistability in the present scheme. In the following
we set γat = 1, � = δ = γcav = 0, � = 50, and k = 500
as common parameters to calculate the input-output relation.
Notice that these parameters guarantee the Purcell regime’s
requirement, i.e., γat < � < k. In addition, since k =
(k1 + k2) /2, we choose k1 = k2 = 500 as the symmetric
cavity, and choose k1 = 400 & k2 = 600 and k1 = 600 &
k2 = 400 as two kinds of asymmetric cavities. The relations
of nt and nin are plotted in Fig. 2 to illustrate the optical
bistability.

In Fig. 2(a), it shows clearly that the transmission
undergoes a counterclockwise hysteresis in the symmetric
cavity. There are two critical input powers nl and nu to
identify the boundaries of the bistable regime. Thus we
can distinguish the bistable regime from the so-called linear
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FIG. 2. (Color online) Single-atom optical bistability in the forward input case. (a) nt vs nin in a symmetric cavity with k1 = k2 = 500.
Two vertical green dotted lines refer to the threshold intensities of bistable states nl and nu. (b) nt vs nin in two kinds of asymmetric cavities
with k1 �= k2. Common parameters are γat = 1, � = δ = γcav = 0, � = 50, and k = 500.

regime nin < nl , in which light is almost blocked, and from
the saturation regime nin > nu, in which light is almost
transmitted.

Then we discuss the case of an asymmetric cavity. In
Fig. 2(b), the solid curve refers to nt vs nin in the asymmetric
cavity, with k1 = 400 and k2 = 600, while the dashed curve
refers to that with k1 = 600 and k2 = 400. It can be seen that
the threshold intensities nl and nu are changed due to the cav-
ity’s asymmetry. Compared with the case of a symmetric cavity
in Fig. 2(a), the optical bistable regime in the asymmetric
cavity with k1 = 400 and k2 = 600 is shifted to a higher input
power, while the regime in the asymmetric cavity with k1 =
600 and k2 = 400 is shifted to lower input power. Figure 2(b)

indicates that optical bistability can be manipulated by the
asymmetry of the cavity. As we know, the cavity-loss rate kj

(j = 1,2) relates to the transmittivity Tj (j = 1, 2) of the
mirror Mj (j = 1, 2) and the larger Tj maps the larger kj .
Therefore the bistable regime shall be lower-shifted in cavity
with T1 > T2 and be higher-shifted in cavity with T1 < T2 in
the forward input case.

In order to explain the above result, after inserting Eqs. (6)
and (7) into Eq. (8), we can rewrite Eq. (8) as a cubic equation
of output power nt under a given input power nin, which is

a0n
3
t + b0(nin)n2

t + c0(nin)nt + d0(nin) = 0, (9)

where

a0 = [(k + γcav/2)2 + (� + δ)2]
(
�2 + γ 2

at/4
)2

/P 2
ct,

b0(nin) = 2
[
(k + γcav/2)

(
�2 + γ 2

at/4
) + �2γat/2

]
(k + γcav/2)

(
�2 + γ 2

at/4
)
/Pct

+ 2
[
(� + δ)

(
�2 + γ 2

at/4
) − �2�

]
(� + δ)

(
�2 + γ 2

at/4
)
/Pct − k1k2

(
�2 + γ 2

at/4
)2

nin/P
2
ct,

c0(nin) = [
(k + γcav/2)

(
�2 + γ 2

at/4
) + �2γat/2

]2 + [
(� + δ)

(
�2 + γ 2

at/4
) − �2�

]2 − 2k1k2
(
�2 + γ 2

at/4
)2

nin/Pct,

d0(nin) = −k1k2
(
�2 + γ 2

at/4
)2

nin.

It is obvious that optical bistability occurs when Eq. (9)
has three different positive real roots [30]. Thus we can get
the criteria to identify the optical bistable condition. The
discriminant reads

P (nin) = B2 − 4AC, (10)

where A = b2
0 − 3a0c0, B = b0c0 − 9a0d0, C = c2

0 − 3b0d0.
The optical bistable threshold intensities nl and nu can be
obtained by solving P (nin) = 0.

Retaining the common parameters as γat = 1, δ = γcav =
0, k = 500, and � = 50, we plot the bistable threshold
powers nl and nu vs detuning � in symmetric and asymmetric
cavities in Fig. 3. As expected, compared to the bistability
in the symmetric cavity (black curves, k1 = k2 = 500), the
bistable regimes in the asymmetric cavity with k1 = 400 and
k2 = 600 are shifted to stronger input power (blue curves),
while the bistable regimes in the asymmetric cavity with

k1 = 600 and k2 = 400 are shifted to weaker input power
(red curves) in both resonant and off-resonant cases. Optical
bistable phenomenon is remarkable in the resonant case but
vanishes when |�| > 0.5. Therefore, we will focus on the
resonant case to illustrate how to manipulate the optical
bistability with unequal cavity-loss rates k1 and k2 in the
following.

Here we discuss the influence of the asymmetry of the
cavity on the bistable regime. By fixing k, we can change
the degree of the cavity’s asymmetry by shifting k1, while
k2 should vary correspondingly according to the equation
k2 = 2k − k1. Adopting the common parameters, i.e., γat =
1, � = δ = γcav = 0, � = 50, and k = 500, we plot
threshold intensities nu and nl as functions of k1 in Fig. 4.
As expected, the bistable regime is shifted with k1, in other
words, the bistability can be controlled by the asymmetry of the
cavity.
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FIG. 3. (Color online) Optical bistable threshold intensities nl

and nu vs detuning � in the symmetric and asymmetric cavities.
γat = 1, δ = γcav = 0, � = 50, and k = 500.

Figure 4 also shows the way to manipulate optical bistability
by adjusting the asymmetric cavity. In the forward input case,
with the decrease of k1, the optical bistable threshold intensities
nl and nu increase and the optical bistable width nu − nl

enlarges, too. It provides us a way to shift the bistable regime
to higher input power by furnishing a higher-reflective mirror
in the input side and a lower-reflective mirror in the output
side. By interchanging the front mirror M1 and the back
mirror M2, we can shift the bistable regime to lower input
power.

Physical insight into the controllable bistability in the
asymmetric cavity is gained when one considers the different
degree of atomic absorptive saturation in the two input cases.
For a certain input power nin, the cavity average photon
number nc shall be larger for the case of k1 > k2 than that
of k1 < k2, and the larger optical nonlinearity induced by the
larger saturation shall lower the bistable threshold intensities
nl and nu. It is the origin of the controllable bistability in the
asymmetric cavity.
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FIG. 4. Optical bistable threshold intensities nl and nu as func-
tions of the left side cavity-loss rate k1 in an asymmetric cavity.
Common parameters are γat = 1, � = δ = γcav = 0, � = 50,
k = 500, and k2 = 2k − k1. Curves nu and nl bound the regime
of optical bistability (gray area).

B. Optical nonreciprocity

Optical nonreciprocity is the essence of an optical diode. In
our previous work [31], we have shown that an asymmetric
nonlinear system can generate optical nonreciprocity. Due
to the different degree of nonlinearity between the forward
and backward input cases in the asymmetric cavity, we have
introduced a considerable optical nonreciprocity in the single
atom-cavity coupling system beyond optical bistability. In this
work, we are aware of that a giant optical nonreciprocity can
be obtained by including the controllable optical bistability in
the asymmetry cavity.

As the atom is in the center of the cavity, the backward input
case is equivalent to the forward input case by interchanging k1

and k2. It allows us to get the optical properties of the backward
input case easily. For example, if we furnish the asymmetric
cavity with k1 = 600 and k2 = 400, the input-output curve
of the forward input case is the red dashed curve in Fig. 2(b),
while that of the backward input case is the same with the
blue solid curve in Fig. 2(b). It is clear that the behavior
of the input-output of the asymmetric cavity depends on
the input direction, which shows the existence of optical
nonreciprocity.

In order to explore the optical nonreciprocity explicitly,
we use transmittivity T = nt/nin to indicate the different
optical character under opposite input directions. In Fig. 5, we
plot the transmittivity T as a function of input power nin for
the cavity with k1 = 600 and k2 = 400. Other parameters
are the same as those in Fig. 4. From Fig. 5(a), the solid
curve refers to the case of backward input, which shows
that the cavity is almost blocked until nin > nl−b = 1.11
(right vertical dotted line); meanwhile, the dashed curve is
the transmittivity of the forward input case, which shows
that the cavity is transparent when nin > nu−f = 0.78 (the
left vertical dotted line). This difference originates from the
influence of the cavity’s asymmetry on the bistable state, as
mentioned in the above section. Notice the cavity is blocked
when the input power is located in the linear regime, while
it is transparent when the input power is in the saturated
regime.

According to Fig. 5(a), there is an optimal operation
power window, i.e., nin ∈ [nu−f , nl−b], to realize giant optical
nonreciprocity. When the input power nin falls into this
window, it can transmit through the cavity for a forward
incident but is blocked for a backward incident. To show
this behavior clearly, we extract the transmittivity curves
under such an optimal operation power window in Fig. 5(b).
The curves show a typical optical diode character, which
only permits light propagation in the forward input case.
The transmitted contrast CT = 10 × |log10(Tf /Tb)| is easy
to reach 13 dB in the optimal operation power window. Such
high contrast is due to the shift of the bistable regime induced
by the asymmetric cavity.

Actually, Fig. 4 can be used to identify the optimal operator
power window of nonreciprocity for the other asymmetric
cavity. A larger difference between k1 and k2 will provide
a wider optimal window. In the optimal operation power
window, input power nin is located in the linear regime for
one incident direction, while it falls into the saturated regime
for the opposite incident, and therefore the giant optical
nonreciprocity occurs. Our predication can be used to realize
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FIG. 5. (Color online) Transmittivity T as a function of input power nin with k1 = 600 and k2 = 400. (a) Input power ranges from 0 to
2.0. (b) Input power falls in the optimal operation power window [0.78, 1.11]. Solid blue curves refer to the backward input case, while the
dashed red curves refer to the forward input case. Common parameters are γat = 1, � = δ = γcav = 0, � = 50, and k = 500.

single-atom optical switch, optical diodes, optical memory,
and so on.

At last, we discuss the experimental possibility to ob-
serve our theoretical predictions. Recently, several atom-
cavity coupling systems have been realized experimentally
[7,32]. In the experiment performed in Ref. [7], a single
87Rb atom is trapped by the evanescent field at about 200
nm from the surface of a single-sided photonic crystal,
which is a one-sided cavity. The incident field with wave-
length λ = 780 nm is resonantly coupled to the atomic
transition of |5S1/2, F = 2〉 → |5P3/2, F

′ = 2〉. The atomic
spontaneous decay rate (γat = 2π × 6 MHz), cavity-loss
rate (k = 2π × 25 GHz), and atom-cavity coupling strength
(� = 2π × 0.55 GHz) are measured by using a polarization
interferometer. This is the reason why we adopt γat = 1, � =
50, and k = 500 to perform the simulation here. To check
our predication, the single-sided cavity should be extended to
the asymmetric double-sided cavity and the cavity-loss rates
should be lowered. The asymmetric double-sided cavity can
be obtained by adding other Bragg reflectors of the cavity
[33]. Or more directly, one may construct the asymmetric
cavity by iron implantation and thin-film deposition based
on silicon due to the development of nanotechnology. If we
adopt the parameters γat = 2π × 6 MHz and λ = 780 nm,
the operation input power Pth of optical bistability is about
ten picowatts, predicted by the formula Pth = nin × 2π�c ×
γat/λ, where c is the velocity of light in vacuum. Thus, it is
feasible to realize our scheme under the present technology.

IV. CONCLUSION

We have shown that a single two-level atom in an asymmet-
ric cavity can generate controllable optical bistability, which
leads to giant optical nonreciprocity in the Purcell regime. The
optical bistable conditions, as well as the controllable optical
bistable effects, have been discussed in detail. According
to our study, the linear, bistable, and saturated regimes can
be shifted by adjusting the asymmetric walls of the cavity.
Due to the controllability of optical bistable effects in the
asymmetric cavity, we propose an all-optical switch, as well

as a low-operation, high transmitted contrast all-optical diode
based on a single atom-cavity coupling system.
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APPENDIX: DERIVATION OF EQS. (2)

As shown in Fig. 1, the cavity mode is coupled to the outside
continuum modes via two ports labeled 1 and 2 with coupling
constants g1 and g2, respectively. The Hamiltonian of the atom-
cavity coupling system under rotating-wave approximation is
as follows:

H = �ωaSz + �ωca
†a + �

∑
k

ωkb
†
kbk + �

∑
l

ωlc
†
l cl

+ �

∑
k

g1(b†ka + a†bk) + �

∑
l

g2(c†l a + a†cl)

+ ��(S+a + a†S−). (A1)

Here a, bk , and cl are the annihilation operators of the cavity
mode, the modes of port 1 and port 2, respectively, while ωc,
ωk , and ωl are their corresponding angular frequencies. S− =
|g〉 〈e| and Sz = (|e〉 〈e| + |g〉 〈g|)/2 are atomic operators.
The first four terms in Eq. (A1) represent the Hamiltonian of
the atom, the cavity mode, and the continuum modes in ports 1
and 2, respectively. The last three terms represent the couplings
of the cavity mode, with the modes of port 1, modes of port 2,
and atom, respectively. � is the coupling strength between the
atom and cavity mode.
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We follow the standard procedure. We know that Heisen-
berg equations of motion for an arbitrary operator fulfills

∂



O

∂t
= 1

i�
[




O,H ]. (A2)

From Eq. (A1), the Heisenberg equations of motion for the
operators are

Ṡ− = −iω0S− − i�(−2Sz)a,

Ṡz = −i�S+a + i�a†S−,

ȧ = −i(ω0 + δ)a − i�S− − ig1

∑
k

bk − ig2

∑
l

cl,

(A3)
ḃk = −iωkbk − ig1a,

ċl = −iωlcl − ig2a.

We find for t > t0, where t0 is a reference of time,

bk(t) = bk(t0)e−iωkt − ig1

∫ t

t0

dua(u)e−iωk (t−u). (A4)

Following previous works [6,28], we define the input field
operator bin for port 1 for t > t0 in the Heisenberg picture and
then read

bin(t) = 1√
τk

∑
k

bk(t0)e−iωk (t−t0), (A5)

where τ is defined by∑
k

e−iωkt = δ(t)τ. (A6)

The quantity τ has the dimension of time and depends on the
mode density. The quantity b

†
inbin scales like a photon number

per unit of time and represents the incoming power in port
1. Summing Eqs. (A4) over all modes and using the Markov
approximation one can get∑

k

bk(t) = √
τkbin(t) − i

2
g1τka(t). (A7)

The evolution of the operator in the Heisenberg picture
holds antisymmetry of time reversal. By reversing the time and
carrying out the same procedure, we can define the reflected
field operator (br ). Finally, we can get the relation between br

and bin and the transmitted field operator (bt ):

br = bin − i
√

k1a,
(A8)

bt = −i
√

k2a,

where k1 = g2
1τk, k2 = g2

2τl represent the cavity-loss rates
from port 1 and port 2, respectively.

After some algebra arrangement the Heisenberg equations
for the slowly varying operators are finally written in the frame
rotating at a fixed drive frequency ωL:

Ṡ− = −i�S− − i�(−2Sz)a,

Ṡz = −i�S+a + i�a†S−,
(A9)

ȧ = −i(� + δ)a − ka − i�S− − i
√

k1bin,

bt = −i
√

k2a.

Here, � = ωa − ωL and δ = ωc − ωa are the detunings
between the bare atomic (ωa), cavity (ωc), and laser (ωL)
frequencies, respectively. k = (k1 + k2) /2 represents the
average cavity-loss rate. These equations are the quantum
coupled-mode equations for the evolution of the atom and
the cavity, driven by the external fields bin. By adding the
atomic and cavitary dissipations and quantum noises, the set
of Eqs. (A9) should be modified as follows:

Ṡ− = −(i� + γat/2) + S− − i�(−2Sz)a + G,

Ṡz = −i�S+a + i�a†S− − γat(Sz + 1/2) + K,
(A10)

ȧ = −i(� + δ)a − (k + γcav/2)a − i�S− − i
√

k1bin + H,

bt = −i
√

k2a.

Here γat and γcav are the dissipation rates of the atom and the
cavity mode, respectively, and G, K , and H are noise operators
due to the interaction of the atom and the cavity with their
respective reservoirs, respecting 〈G〉 = 〈K〉 = 〈H 〉 = 0. At
this stage we shall restrict ourselves to the Purcell regime.
With the semiclassical hypothesis the quantum correlations
between atomic operators and field operators can be neglected.
Therefore, we only consider the values of expectation of
operators, which can be measured by homodyne detection.
With the definition of dipole moment s = 〈S−〉, atomic
population sz = 〈Sz〉, and amplitude of cavity (incident and
transmitted) field a = 〈a〉 (bin = 〈bin〉 and bt = 〈bt 〉), we
obtain

ṡ = −i(� + γat/2)s + 2i�sza,

ṡz = −i�s∗a + i�a∗s − γat(sz + 1/2),
(A11)

ȧ = −i(� + δ)a − (k + γcav/2)a − i�s − i
√

k1bin,

bt = −i
√

k2a.

Thus we get the Heisenberg-Langevin equations (2).
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