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Influence of the imaginary component of the photonic potential on the properties of solitons
in PT -symmetric systems
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Existence, stability, and dynamics of PT -symmetric fundamental bright solitons supported by localized
super-Gaussian potentials in a focusing Kerr medium are investigated theoretically. We address how the shape
and the magnitude of the transverse profile of the loss-gain distribution affect soliton stability. We find the stability
region for nonlinear wave packets via a linear stability analysis, interpreting the insurgence of instability as an
unbalanced flow of energy on the transverse plane. We confirm our results via numerical simulations, showing
that an unstable soliton first undergoes longitudinal oscillations in propagation due to the interference between
the soliton and the exponentially growing perturbation modes, eventually forming a highly localized single peak
in the gain region.
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I. INTRODUCTION

The postulates of quantum mechanics assume the Hermitic-
ity of any operator associated with any measurable quantity,
the latter defined as an observable. Bender and Boettcher [1]
generalized this axiom in a complex domain [2] by showing
that a certain class of complex non-Hermitian Hamiltonians
can have real spectra if they obey parity time (PT ) symmetry.
The parity reflection operator P and time-reversal operator T
are defined by their action on the position and momentum
operators x̂ and p̂ as p̂ → −p̂, x̂ → −x̂ and p̂ → −p̂,
x̂ → x̂, i → −i, respectively; from the above conditions, it
can be shown that the potentials associated with non-Hermitian
Hamiltonians must satisfy V (x̂) = V ∗(−x̂) [3]. This concept
of PT symmetry of a non-Hermitian Hamiltonian generalizes
quantum mechanics in a complex domain [2,4]. Even though
inadequacy of PT symmetry to model fundamental laws of
physics has been recently pointed out [5], its applications in
various areas of physics remain important and fruitful, ranging
fromPT -symmetric quantum oscillators [1] to linear [6,7] and
nonlinear optics [8,9], from electronics [10] to quantum field
theory [11]. The most fertile field has certainly been optics,
where the PT -symmetry condition reads n(x) = n∗(−x),
where n(x) is the pointwise dependent complex refractive
index of the material [12,13]: such transverse photonic
potential can be realized in optics, leading to experimental
demonstration of PT -symmetric systems in AlGaAs [14],
photorefractive materials [6], silicon [15,16], fiber optics [17],
and light-written guides in glass [18]. Several exotic effects
have been predicted, such as unidirectional light propagation
in complex Bragg grating [19], double refraction and power
oscillations [20], nonreciprocal Bloch oscillations [21], the
perfect coherent absorber [22], and multistability [23].

The enormous interest about PT symmetry in optics led
soon to its generalization to the nonlinear case, the latter
providing several interesting predictions, most of them still
waiting for an experimental verification; very recently, non-
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linear enhancement in the broken PT case and nonreciprocal
propagation has been observed in a pair of coupled ring res-
onators [24]. The action of Kerr nonlinearity inPT -symmetric
systems with localized and periodic photonic potentials was
analyzed first in Ref. [8] with reference to optical bright
solitons, that is, electromagnetic waves preserving their shape
in propagation due to the self-focusing effect [25]. Dependence
on optical power of the complex band structure, comprising the
PT transition, has been formulated both for solitons [8] and
nonlinear Bloch waves [9]. Following works studied existence
and stability of solitons both in periodic and in localized PT
potentials. Gap solitons have been discussed both in focusing
and defocusing materials [26,27], including dependence on
nonlocality [28,29]; existence of solitons in the presence of
a linear defect in a periodic potential has been discussed
as well [30]. Light self-trapping has been investigated also
in directional couplers [31]. Regarding localized photonic
potentials, fundamental and higher-order solitons supported
by complex PT -symmetric Gaussian potentials have been
studied for a focusing [32] and a defocusing [33] local Kerr
nonlinearity.

In the present work, we analyze existence and stability
of PT -symmetric solitons supported by Gaussian and super-
Gaussian defects in a material encompassing local Kerr
focusing nonlinearity, addressing how the transverse profile
of the imaginary potential affects light self-localization:
specifically, the behavior of the exceptional points and soliton
stability via a linear perturbation analysis is investigated. To
understand how the imaginary part of the photonic potential
affects nonlinear waves is a fundamental issue, both in
view of possible applications (e.g., active optical cavities)
as well as for the basic physics (i.e., understanding how
the energy transverse flux affects the self-localization of
nonlinear waves). We describe how wave instability develops:
specifically, we demonstrate that the wave does not undergo
a simple exponential amplification, but it is subjected to an
oscillatory motion due to the interference between the solitonic
wave and the perturbation mode, eventually leading to the
appearance of a strongly peaked spike in correspondence to
the peak region. To reach this goal, two different transverse
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profiles for the loss-gain distribution are examined. The
dependence of stability on the propagation constant (energy
for matter waves) is analyzed via a standard linear analysis,
showing that fundamental bright solitons below the linear
PT -symmetry breaking point undergo negligible (with respect
to their own Rayleigh distances) exponential amplification,
whereas fundamental bright solitons are affected by strong
instabilities when the underlying linear system spontaneously
breaks the PT symmetry. Predictions stemming from the
linear analysis are confirmed via beam propagation method
(BPM) simulations. Additionally, BPM simulations allow us
to study beam dynamics even beyond the perturbative limit
assumed by linear stability analysis: we show that the expo-
nential instability is accompanied by an oscillation in the
soliton trajectory due to the coherent interaction between the
soliton and the dominant unstable mode; when the instability
mode starts to dominate, a sharp peak in the gain region is
observed, subjected to an exponential growth enhanced by
the self-focusing effect. We would also like to stress that,
according to the available literature [20,32], solitons should
be stable below the exceptional point: we demonstrate that
this statement is wrong, showing that solitons actually are
quasistable; that is, the distance necessary for the instability to
become appreciable is much longer than the Rayleigh distance
of the soliton.

II. DEFINITION OF THE PHYSICAL SYSTEM

Propagation of monochromatic light in a (1+1)-dimensional
local Kerr medium embedding a linear defect obeys a modified
nonlinear Schrödinger equation (NLSE) [34]:

i
∂E

∂z
= − 1

2k

∂2E

∂x2
− k0n2|E|2E − k0�n(x)E, (1)

where k0 is the vacuum wave number, k = n0k0 with n0

the unperturbed refractive index of the medium, E is the
electric field, n2 is the Kerr coefficient, x is the transverse
coordinate, z is the propagation direction, and k0�n(x) =
k0�nR(x) + ik0�nI (x) is the linear local variation in the
refractive index distribution, the real part �nR(x) and the
imaginary part �nI (x) representing the local phase delay
and the gain or loss distribution, respectively. Hereafter we
will refer to focusing nonlinearity, that is, n2 > 0. Defining
wp as the typical width of the linear refractive index profile
�n and the normalized longitudinal length Lp = n0k0w

2
p,

Eq. (1) can be normalized defining ξ = x/wp, ζ = z/Lp, and
ψ =

√
n0n2w

2
pk2

0 E, providing [35]

i
∂ψ

∂ζ
= −1

2

∂2ψ

∂ξ 2
− |ψ |2ψ + V (ξ )ψ, (2)

where we defined the effective potential V (x) =
−n0k

2
0w

2
p�n(x). The Rayleigh length, LRx

= kw2
x/2, in

the normalized framework becomes LRξ
= w2

ξ /2, where wx

and wξ are the waist of the beam in physical and normalized
coordinates, respectively. We stress that Eq. (2) governs
evolution of the Bose-Einstein condensate (BEC) as well [36].

In case of a PT -symmetric potential, the potential satisfies
the condition VR(ξ ) = VR(−ξ ) and VI (ξ ) = −VI (−ξ ). In this
paper we will consider a super-Gaussian for the real part of

the potential:

VR(ξ ) = −Vr exp(−ξ 2l). (3)

Thus, l = 1 means a Gaussian profile, whereas for large l the
potential VR tends to a rectangular distribution. This choice
allows us to consider all the possible types of confining
structures presenting a single guiding layer, ranging from
step-index to smooth guides.

For the imaginary part we will consider two different
profiles in order to understand how transverse motion of
photons induced by inhomogeneous gain or loss affects light
propagation. Specifically, in the first case (called hereafter
type A) we will take VI equal to the first derivative of VR , thus
providing

V A
I (ξ ) = Viξ

2l−1 exp(−ξ 2l). (4)

When l increases, the loss or gain region becomes increas-
ingly concentrated at the edges of the potential, the two peaks
getting narrower as well. Thus, changing l it is possible to
verify how the spatial overlap between the self-confined wave
and the gain or loss region affects field evolution. We will
consider also the following class of potential, hereafter named
type B:

V B
I (ξ ) = Viξ exp(−ξ 2l). (5)

Profiles of VI almost maintain their shape as l changes, i.e.,
when the real potential VR(ξ ) is varied; in other words, the gain
or loss distribution is not subject to spatial localization on the
edge of the real potential when parameter l grows up. Thus,
type B potentials will be employed to address the dependence
of the field evolution on the transverse distribution of the linear
refractive index.

III. STATIONARY SOLUTIONS IN THE LINEAR CASE

Before dealing with the nonlinear case, let us study
the existence and the behavior of confined modes in the
linear case, i.e., in the absence of the Kerr effect. Bound
states can be found numerically from Eq. (2) making the
ansatz ψ(ξ,ζ ) = φ(ξ )eiμζ , providing the linear eigenvalue
problem μφ = 1

2
∂2φ

∂ξ 2 − (VR + iVI )φ. Noteworthy, due to the
presence of dissipative terms, eigenvalue μ in general will
be complex; that is, we can write μ = μR + iμI . Hereafter
we will refer to the fundamental guided mode (in quantum
mechanics commonly called the ground state), i.e., we will
consider the eigenfunctions with the highest μR . Throughout
the text, we have fixed Vr = 1. Figures 1 and 2 show that
eigenvalues of the system follow an analogous behavior as
the gain or loss magnitude Vi is changed. In fact, for Vi

lower than a critical value Vc, PT symmetry is conserved
and all the eigenvalues are real; in particular the maximum
μR , the latter corresponding to two degenerate eigenmodes,
is positive, in accordance with the well-known Hermitian
case, i.e., for vanishing Vi . The eigenmode has a symmetric
real and antisymmetric imaginary part (see Fig. 1, last row,
last column). Condition Vi = Vc identifies the exceptional
point where PT symmetry is spontaneously broken: the
two eigenvalues corresponding to the maximum μR becomes
complex; thus the corresponding eigenmodes are subjected to
an exponential decay or amplification, according to the sign of
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FIG. 1. (Color online) Ground state μ vs Vi for the linear poten-
tial of type A. The top row depicts real part μR and the middle row
depicts imaginary part μI , plotted vs Vi . Imaginary eigenvalues with
equal magnitude but opposite in sign appear at the exceptional point.
The stationary profile at Vi = 3, which falls in a different spectral
region for each l, is plotted in the last row; the black symmetric solid
line is the intensity, the blue dashed line is the real part of φ, and
finally the antisymmetric red solid line is the imaginary part of the
field φ. Here Vr = 1.

the imaginary part of μ. The real part of the eigenmode now
becomes asymmetric (an example is shown in Fig. 1, last row,
third column). Further increases in Vi induce an almost linear
growth for |μI |; μR follows a falling quasilinear trend versus
Vi as well. This trend is abruptly interrupted for a certain
threshold Vt : afterward, both the μR and μI vanish. At this
point eigenvalues are in the continuum and the corresponding
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FIG. 2. (Color online) Ground state μ vs Vi for the linear poten-
tial of type B. The top row depicts real part μR and the bottom row
depicts imaginary part μI , plotted vs Vi . As compared to type A, the
trend of the eigenvalue μI vs Vi depends much less on l given that
VI (ξ ) is kept constant. Here Vr = 1.

eigenmodes are spread in space (see Fig. 1, last row, first
two columns; the size of the numerical grid is [−40 40] with
solutions required to vanish at the boundary).

The dynamics described above is shared by both the types
of imaginary potentials VI described by Eqs. (4) and (5).
For potentials of type A [Eq. (4)] the critical potential is
V A

c ≈ lVr/2 + 1/5 (i.e., it linearly increases with l) and
follows more or less the trend for analytically solvable complex
Scarf II potential [37], whereas for the type B [Eq. (5)] the
transition occurs at V B

c � Vr for l � 2 (l = 1 is analogous to
type A), precisely undergoing small increases as l gets larger.
The threshold potential Vt follows an analogous trend, the
increase with Vi being larger for potentials of type A.

The behavior of Vc and Vt with the shape of VI (ξ ) can
be understood invoking the conservation of photons on each
point of the transverse plane [8,29]. Let us define the transverse
component of the Poynting vector as j = 1

2i
(ψ∗ ∂ψ

∂ξ
− ψ

∂ψ∗
∂ξ

)

and the local intensity as ρ = |ψ |2. For stationary modes we
have ∂ρ/∂ζ = 0; then conservation of photons provides [29]

∂

∂ξ

(
ρ

∂χ

∂ξ

)
= 2Vi(ξ )ρ, (6)

where φ = √
ρeiχ(ξ ). Equation (6) tells us that the eigenmodes

acquire a nonvanishing transverse profile, in turn inducing
a net motion of photons from the gain to loss regions, as
required to conserve local intensity during evolution along
ζ . In particular, large potentials Vi imply a nonsustainable
transverse flux of particles, leading to a continuous increase of
the energy in correspondence to the gain regions; mathemati-
cally, what happens is that Eq. (6) does not have any solution,
corresponding to an intensity ρ varying exponentially along ζ .
Our results confirm this interpretation: For potentials of type
A, the overlap between the mode and VI decreases as l gets
larger, thus explaining the behavior of V A

c with l. For the same
reason, PT symmetry is broken at lower Vi for potentials of
type B than for type A.

IV. STATIONARY SOLUTIONS IN THE NONLINEAR CASE

Let us now discuss the nonlinear case. In full analogy with
the linear case, solitonic solutions of Eq. (2) are in the form
ψ(ξ,ζ ) = φ(ξ ) exp(iμζ ), μ being the propagation constant
(the chemical potential in the BEC case); noteworthy, due to
the Kerr effect both φ(ξ ) and μ depend on the power carried
by the wave, defined in our dimensionless framework as P =∫ |ψ |2dξ . Equation (2) turns into

μφ = 1

2

∂2φ

∂ξ 2
− (VR + iVI )φ + |φ|2φ. (7)

Stationary solutions of Eq. (7) are sought using standard
relaxation technique based on pseudospectral differentiation
with Fourier differentiation matrices [38]. We look for station-
ary solutions for different l and VI keeping the amplitude
of real part Vr fixed and equal to 1. Typical profiles of
the shape-invariant solutions for potentials of type A are
depicted in Fig. 3 and for potentials of type B in Fig. 4;
noteworthy, in both figures soliton transverse profiles for
fixed values of the eigenvalue μ are plotted. In accordance
with Eq. (6), fundamental solitons have an even real part
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FIG. 3. (Color online) Soliton profiles for potentials of type A

for l = 1, 2, and 8 (top to bottom rows) for Vi as marked. Symmetric
solid curves represent the normalized real part of the profile for μ =
1.3 (solid lines) and μ = 6 (dashed lines). Antisymmetric curves
represent the imaginary part normalized to the peak of the real part;
the higher the magnitude the lower the μ. The behaviors of VR (blue
symmetric lines) and VI (red antisymmetric lines) vs ξ are shown in
the last column for each l for Vi = 3.

and an odd imaginary part [8,29,32,33]. The most striking
effect ascribable to the nonlinearity is the generation of a
nonlinear bound state featuring μR > 0 and μI = 0, regardless
of the magnitude of Vi (i.e., even above the exceptional point):
differently stated, the nonlinearity provokes a transition from
broken PT to a PT -symmetric state [8,9,29], even if all the
linear eigenvalues are complex.

Let us now discuss the soliton properties depending on
the shape of the potential, starting from type A. For Vi = 0.5
soliton profiles are slightly perturbed by the small transverse
flux [see Eq. (6)], whatever the power and the degree l are.
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FIG. 4. (Color online) Soliton profiles for potentials of type B

for l = 2 (other values of l provide almost identical results), for Vi

as marked. Symmetric blue curves represent the normalized real part
of the profile for μ = 1.8 (solid lines) and μ = 6 (dash-dotted lines).
Solid red lines are the imaginary component of the field normalized
with respect to the peak of the real part: the higher the magnitude
the lower the μ. Symmetric dashed black lines represent the real
part of the potential. The antisymmetric dashed green line represents
the imaginary part of the potential. Symmetric curves correspond to
the left axis and antisymmetric curves correspond to the right axis,
respectively.
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FIG. 5. (Color online) Features of the fundamental soliton vs Vi

for the lowest μR allowed, for potentials of both type A (blue solid
lines) and type B (red points). The first two rows depict real part μR

and imaginary part μI , respectively. The corresponding minimum
power Pmin and width wmin

ξ of the soliton are plotted in the last two
rows.

Increasing the magnitude of Vi , profiles of φ are affected by the
dissipative terms when power is small, corresponding to wide
solitons strongly overlapping with the gain or loss regions. To
minimize the spatial overlap between the intensity distribution
and the gain or loss regions, solitons get narrower as Vi in-
creases [see the third column in Fig. 3]. In agreement with this
interpretation, this effect disappears as l is increased. Solitons
propagating in type B potentials confirm our interpretation. In
fact, regardless of the shape of VR (i.e., independently from l),
solitons get narrower as Vi is raised up, given that the spatial
shape of VI does not vary appreciably with l.

An overview of the features of the fundamental soliton
showing the minimum μR for fixed Vi and l is reported in
Fig. 5. Noticeably, there is no upper cutoff in the value of
either μ or Vi at which nonlinear shape-preserving solutions
cease to exist. Conversely, the minimum value of μR does not
correspond with the linear value (i.e., for small P ) when a
significant spatial overlap between the soliton and Vi exists,
as shown in Fig. 5. The net effect is the generation of a
minimum power for the soliton formation, a peculiarity of
PT -symmetric systems, not occurring in transparent bulk
media showing a focusing response and a trapping linear
potential [8,39]. Confirming our physical interpretation, for
potentials belonging to type A the case l = 1 corresponds to
the largest growth of the minimum power Pmin versus VI , the
curve flattening toward the linear value Pmin = 0 for large l

(see the solid lines in the third row in Fig. 5); on the other
hand, for potentials of type B the trend of Pmin versus VI

depends weakly on l, given that the imaginary potential Vi

stays unvaried (see the marks in the third row in Fig. 5).
The corresponding soliton width wmin

ξ behaves according to
our interpretation: when Pmin diverges from zero, the soliton
becomes narrower than the corresponding linear eigenmode
(the fourth row in Fig. 5).
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FIG. 6. (Color online) Total power P (top) and the corresponding
power carried in the imaginary component PI (bottom) for potentials
of type A (solid lines) and of type B (dashed lines) for l = 2 (blue),
4 (black), and 8 (red), from top to bottom curves, respectively; Vi

values are marked in the figure. For low Vi total power P follows the
same trend for both the potentials.

We stress that, as we will show in the following section,
solitons obtained for Vi values above the PT -symmetry
breaking point tend to be strongly unstable. This is in contrast
to the periodic case where the nonlinear Bloch waves found at
the exceptional point were shown to be stable with respect
to PT -breaking perturbations, even if undergoing a small
modulation instability due to the nonlinear dynamics [9].

Finally, we address the relative weight of the real and
the imaginary part of φ(ξ ), labeled with φR and φI , re-
spectively. The overall power can be written as P = PR +
PI = ∫ |φR|2dξ + ∫ |φI |2dξ to enlighten the two different
contributions. Behavior of power P versus μR for different
Vi and l is plotted in Fig. 6. The two trends for potentials
of type A and of type B tend to converge to the same
curve for large powers, the curve being independent both
from l and Vi ; the soliton width undergoes an analogous
trend. Physical explanation is straightforward: the nonlinear
refractive index becomes dominant, and the effect of the linear
potential V (ξ ) becomes negligible. At low powers a different
behavior occurs: first, existence curves in the plane (μ,P )
change both with l and Vi ; moreover, when Vi is high and l

is low, soliton existence curves for the two types of potentials
diverge at small powers. In particular, differently from solitons
in non-dissipative confining potentials [34], a power threshold
for soliton existence appears (the effect is maximum for the
curve at Vi = 3) given that the nonlinear index well needs
to be large enough to compensate the transverse flux. The
power in the imaginary part PI versus μ decreases owing
to the larger light confinement around ξ = 0, at the same
time increasing with Vi . Noticeably, the magnitude of power
in the imaginary component is larger for potential B than
potential A due to the larger overlap with the dissipative
regions. In short, PT -symmetric systems exhibit a power

threshold; i.e., there is a minimum cutoff for soliton existence
which increases with increasing Vi (Fig. 5). Previous works on
localized potentials [20] have only dealt with this important
topic marginally and have not discussed in detail how the
soliton minimum power depends on the linear potential.

V. LINEAR STABILITY ANALYSIS

In order to understand the dynamical behavior, we now
address the stability analysis of the stationary solutions
with respect to small perturbations. The stability of the
solution is analyzed by considering perturbations to the
solitonic solutions in the form ψ = [φ + a(ξ,ζ )] exp(iμζ )
with a(ξ,ζ ) = p(ξ ) exp(iλζ ) + q(ξ ) exp(−iλ∗ζ ), yielding the
linearized eigenvalue problem [8]:

λ

[
p

q∗

]
=

[
L1 − iVI (ξ ) φ2

−(φ∗)2 −L1 − iVI (ξ )

] [
p

q∗

]
, (8)

where L1 = −μ + 1
2

∂2

∂x2 + 2|φ|2 − VR . The solution is lin-
early stable if Im(λ) = 0 for every λ, i.e., if the system
possesses solely real eigenvalues. Owing to thePT -symmetric
nature of the system, the eigenvalues appear in complex
conjugate pairs (i.e., if λ is an eigenvalue, λ∗ is an eigenvalue as
well). According to the global features of all the λ stemming
from Eq. (8), in general the wave behavior can be grouped
into three main categories. If all the eigenvalues are purely
real, nonlinear wave propagation is linearly stable; if at least
one of the eigenvalues is purely imaginary, soliton shape is
destroyed in evolution due to exponential amplification of
noise; finally, if eigenvalues are complex, oscillatory instability
is observed. Oscillatory instability (OI) with Im(λ) > 0(<0)
implies exponentially decaying (growing) modes, combined
with a longitudinal periodic variation of the intensity pro-
file [34].

We found numerically that all the eigenvalues computed
from Eq. (8) are either real or complex; thus nonlinear wave
evolution can be either linearly stable or subjected to OI;
moreover, eigenvalues appear in quartets (including λ, λ∗,
−λ, and −λ∗; check [29,40] and references therein). As an
example, the profiles of the eigenmodes corresponding to the
maximum growth rate (fixed by λdom) are shown in Fig. 7,
for four different values of Vi and having set l = 1 and μ =
1.3. Two different regimes can be identified: a quasilinearly
stable (that is, an amplification length of the instability mode
much larger than the Rayleigh distance) region for low Vi

corresponding to unbroken PT symmetry in the linear case
(case Vi = 0.1 and 0.5 in Fig. 7; compare with the linear
spectrum plotted in Fig. 1) and OI for high Vi (case Vi = 0.9
and 1, corresponding to broken PT symmetry in the linear
regime). As expected, in the case of the regime of high
instability the modes associated with quartets of eigenvalues
are featured by a strongly asymmetric profile with respect
to the transverse coordinate ξ , corresponding to growing or
decaying modes, if the field is concentrated into the gain or
loss region, respectively.

The correspondence between soliton stability and the linear
spectrum of the system holds valid, regardless of the values
assumed by μ and l and of the type of potential (A or B).
Figure 8 summarizes this property: here the imaginary part
of the complex dominant eigenvalue λdom is plotted versus Vi
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FIG. 7. (Color online) Stability spectrum for μ = 1.3 and l = 1.
Solid blue lines correspond to |p(x)|2 and dashed black lines
correspond to |q(x)|2 for the eigenvalue λ with the maximum
imaginary part, hereafter named λdom. The eigenvalue spectrum is
shown in the bottom row. For low Vi , the soliton is quasistable due to
the smallness of Im(λdom), whereas for high Vi the linear perturbation
modes are asymmetric and the soliton blows up.

and μ, for several l and for both the types of potentials. As
is well known, solitons are stable for purely real potentials
(Vi = 0) [34]; for low values of the imaginary part of the
potential Vi a small instability arises, for all l and μ values.

FIG. 8. (Color online) Stability eigenspectrum computed from
Eq. (8) in the plane (Vi,μ): l changes as marked in the figure. Top and
bottom rows depict results for potentials of type A and B, respectively.
The region embedded between the two horizontal lines corresponds
to the presence of complex eigenvalues in the linear spectrum, white
dashed lines and red solid lines representing Vc and Vt , respectively.
In general, solitons become highly unstable when Vi > Vc. Keeping
Vi fixed, larger l enhances soliton instability for potentials of type B

if compared with type A. Vertical blue lines represent the boundary
between regions allowing the existence of a solitonic solution (right
side) and the forbidden region (left side).

Noteworthy, solitary waves remain quasistable until the critical
value of the imaginary potential is reached (the exceptional
points in the linear case are indicated by the white parallel
lines); i.e., Vc ≈ lVr/2 + 1/5 for potentials of type A, thus
providing Vc ≈ 0.7 for l = 1, Vc ≈ 1.2 for l = 2, Vc ≈ 2.2
for l = 4, and Vc ≈ 4.2 for l = 8. For example, solitons are
quasistable for all Vi for l = 8, given that the maximum
considered Vi is smaller than Vc. For Vi values above the
horizontal red solid lines there are no bound states for the
linear potential, whereas, in the region between horizontal
white dashed and red solid lines, the linear potential supports
bound states subjected to amplification or decay (see also
Figs. 1 and 2). For potentials of type A, stability drastically
increases with l, whereas the quasistability region only slightly
increases with l for potentials of type B (the region below the
horizontal white dashed lines). This stability increase with l for
potentials of type A can be attributed to the fact that the overlap
between the soliton and the imaginary part of the potential
decreases as l increases (see Fig. 3). For Vi > Vc, the growth
factor versus the nonlinear eigenvalue μ is not monotonic:
at large μ solitons become strongly localized around ξ = 0,
thus minimizing the amount of transverse flux required from
the particle conservation (see Fig. 8). This interpretation is
confirmed by the behavior with l [smaller l correspond to a
larger instability, i.e., greater |Im(λdom)|] for potential of type
A, and from the independence of Im(λdom) from l for potentials
of type B. As an example, let us consider l = 1: when Vi = 0.1
the solution is quasistable for all μ values, whereas for Vi = 1
the instability first increases and then decreases with μ.

VI. PROPAGATION DYNAMICS

The results obtained above regarding the linear stability
analysis of solitons have been checked numerically by com-
puting soliton dynamics in the presence of noise. We employed
a standard beam propagation method using a Crank-Nicolson
scheme for diffraction. The Strang splitting, an asymmetric
operator splitting featuring second-order accuracy, is used
for simulations with high Vi , where stationary solutions are
obtained near the PT -symmetry breaking point.

We investigated field dynamics when a soliton, perturbed
with Gaussian noise encompassing a magnitude 1% of the
soliton amplitude, is taken as the input beam. Representative
results are shown in Fig. 9. For Vi = 0.1 the soliton is stable
over the numerical propagation length equal to ζ = 200 (cor-
responding to about 1600 Rayleigh distances for wξ ≈ 0.5),
whereas for Vi = 0.5 the solution experiences exponential
growth due to an instability mode with Im(λdom) ≈ 2 × 10−3

(the second column in Fig. 7); noteworthy, the growth starts to
be appreciable after ζ = 200, in good agreement with linear
stability analysis (LSA). Results from LSA are confirmed
also in the presence of stronger instability: in this case field
distribution loses its spatial symmetry and undergoes a much
stronger exponential growth. In the bottom row of Fig. 9,
transverse profiles of the beam at various longitudinal sections
are shown for Vi = 1, for both types A and B, and for various
l values. At each section the field is normalized to the local
power to improve visibility. Solitons acquire an asymmetric
profile across ξ while evolving, eventually converting to a
strongly localized mode undergoing exponential amplification.
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FIG. 9. (Color online) Top row: Intensity evolution of soliton solutions for μ = 3.4 and (left panel) Vi = 0.1 showing the quasistable
soliton and (right panel) Vi = 0.5 showing the unstable soliton. Bottom row: Transverse profiles of the solution for Vi = 1 and μ = 3.4 for
potential A are shown for ζ = 0 (blue solid line), ζ = 100 (black dotted line), and ζ = 110 (red dashed line) for l = 1; ζ = [0 140 150] for
l = 2; ζ = [0 150 200] for l = 8. Transverse profiles of the solution for Vi = 1 and μ = 3.4 for potential B (last two columns) are shown
for ζ = [0 130 140] for l = 2 and ζ = [0 129 135] for l = 8 showing narrowing and peak oscillation upon propagation. The profiles are
normalized with power for better visibility.

The oscillations in the peak of the solution owing to OI
can also be observed; the evolution along ζ of the center of
mass of the field 〈ξ 〉 = ∫ |ψ |2ξdξ/

∫ |ψ |2dξ is graphed in
Figs. 10 and 11, together with the width of the beam wξ .
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FIG. 10. (Color online) Evolution of soliton trajectory 〈ξ〉 for
Vi = 0.5 and 1 for l = 1 and μ = 3.4 showing the oscillations in
the nonlinear wave trajectory.

Specifically, solitons with three different μ values with low,
intermediate, and high magnitude were considered for the
propagation studies. The intermediate value is chosen to be
μ = 3.4, which for low l falls in the window where the
solutions are predicted to be quasistable by LSA; computed
field evolutions with ζ are depicted in Fig. 11. For reference,
a longitudinal distance ζ = 200 corresponds to about 4000
Rayleigh distances for waves with a width of 0.3. Evolution
of the beam width versus propagation distance ζ is depicted
for different l values as marked for propagation both with
noise (dotted lines) and without added noise (solid lines).
Simulations are in very good agreement with LSA predictions:
for low Vi solitons are quasistable for both the potentials;
LSA predicts a small exponential amplification for Vi = 0.5,
confirmed by numerics. A good agreement is found also for
Vi = 1: field intensity first starts to breathe along ζ owing to the
interference between the solitonic profile and the eigenmode
associated with λdom. At the same time, an exponential growth
of the perturbative mode occurs: after a given length [the
latter inversely proportional to Im(λdom)], the perturbation
becomes larger than the soliton itself, and the overall field
is mainly composed by a very narrow bell-shaped wave
positioned in the gain region (ξ < 0 in our reference system)
undergoing very strong amplification supported by nonlinear
self-focusing. Finally, instead of adding random noise we
varied the power of the soliton conserving its transverse shape.
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FIG. 11. (Color online) Evolution of trajectory 〈ξ〉 and width wξ

vs ζ for Vi = 0.5 (top two rows) and Vi = 1 (bottom two rows) for
potentials of type A (second and third column) and potentials of type
B (last two columns) for different l as marked; for l = 1 both the
potentials are equivalent. Dotted lines correspond to the propagation
of stationary nonlinear modes, whereas solid lines correspond to
wave evolution initially perturbed by 1% random noise in amplitude
for μ = 0.7 (�), μ = 3.4 (�), and μ = 6 (	).

As depicted in the plot of beam radius in Fig. 12, solitons
survive this kind of symmetric perturbation even for Vi = 1;
in particular, solid lines represent propagation dynamics of
the unperturbed soliton, whereas dashed lines represent beam
evolution when the input power is increased by 1%. This
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FIG. 12. (Color online) Evolution of wave radius vs ζ for l = 1
(first row) and potentials of type A (second row, first two columns)
and potentials of type B (second row, last two columns) for different
l and Vi = 1; for l = 1 both the potentials are equivalent. Solid
lines correspond to the propagation of unperturbed solitons, whereas
dashed lines correspond to evolution with 1.01 of the soliton power
for μ = 0.7 (�), μ = 3.4 (�), and μ = 6 (	).

behavior demonstrates once again that the main mechanism
for the insurgence of instability is related with PT -symmetry
breaking: in fact, a symmetric perturbation does not yield any
exponential growth of the field, given that the parity of the
system is conserved by this kind of perturbation. Physically,
instability is strictly related to the presence of some linear
eigenstates encompassing a complex eigenvalue, a general
property of localized complex potentials, different to what
happens in periodic systems [8,9]. Thus, we can conclude
that PT -symmetric solitons supported by localized potentials
are in general unstable, irrespective of the profile of the
refractive index. The instability manifests appreciably at large
propagation distances with respect to the Rayleigh length for
Vi < Vc, whereas solitons survive for short distances when
Vi � Vc. For example, in Ref. [8] authors claim solitons
are stable, whereas we demonstrate numerically (results not
shown here) that solitons in Scarff II potentials are actually
subjected to a small exponential growth, an important detail in
applications such as laser cavities.

VII. CONCLUSIONS

We studied the existence and stability of PT -symmetric
solitons in a medium with Kerr nonlinearity into which a linear
localized PT -symmetric defect is embedded. Effects of the
transverse profile of gain or loss on the existence of solitons
are studied by considering two different kinds of localized
photonic potentials differing in their imaginary part. The real
part of the potential is assumed to be super-Gaussian, whereas
the imaginary part is varied: in one case the imaginary part
is equal to the first derivative of the real part, whereas in the
other case the imaginary part is taken similar to a Hermitian
super-Gaussian function of order 1, regardless of the shape
of the real part of the photonic potential. The imaginary
part of the potential strongly affects the field dynamics, thus
allowing the control of wave evolution acting on the gain or loss
profiles solely. Soliton profiles are found to depend strongly
on the imaginary potential, undergoing lateral reshaping in
order to compensate transverse flux of energy occurring from
the gain towards the loss region. Solitons preserving their
shape and amplitude in propagation are found to exist even
when the ground eigenstates in the linear regime feature a
complex spectrum; that is, nonlinearity is able to reestablish
the PT symmetry, broken in the absence of the Kerr effect.
Interestingly, when transverse flux of energy occurs (i.e.,
in the presence of dissipative effects), a power threshold
for the soliton existence appears: we discussed how this
threshold depends on the linear potential, both the real and
the imaginary part. We then discussed soliton reaction to
small perturbations using linear stability analysis. In general
we found that solitons become strongly unstable when the
underlying linear system is beyond the exceptional point,
showing dominant perturbative modes localized into the gain
region, thus breaking the parity of the wave distribution,
and with a growth factor increasing with the magnitude
of the gain. In contrast with available literature [8,32], a
much smaller instability is found even below the exceptional
point, resulting in an exponential amplification negligible
over several Rayleigh distances. We checked our findings
via BPM simulations, showing that unstable solitons undergo
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oscillatory instability when perturbed with a parity-breaking
noise, eventually resulting in exponentially growing modes
localized into the gain region. Conversely, solitons survive
when their initial spatial symmetry is conserved by the applied
perturbation, thus confirming that PT -breaking mechanisms
are responsible for the observed wave instabilities.

We believe that our results can find application in the
design of a novel kind of semiconductor laser presenting
exotic and novel properties [7,41], where the transverse light
confinement is ensured by means of a linear waveguide
and inhomogeneous gain or loss can be achieved by space-
dependent charge injection, something realizable with current
technology, for example, in AlGaAs systems: we expect that
the Kerr effect plays a fundamental role in these setups owing

to the high intensities associated with cavities, permitting also
new functionalities such as the switching between different
emission states as the gain of the system is varied.
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