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Improving the cooling performance of a mechanical resonator with two-level-system defects
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We study the cooling performance of a realistic mechanical resonator containing defects. The normal cooling
method through an optomechanical system does not work efficiently due to those defects. We show that, by
employing periodical σz pulses, we can eliminate the interaction between defects and their surrounding heat
baths up to the first order of time. Compared with the cooling performance of the no σz pulses case, much better
cooling results are obtained. Moreover, this pulse sequence has the ability to improve the cooling performance
of the resonator with different defect energy gaps and different defect damping rates.
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I. INTRODUCTION

Preparing a ground state of a mechanical resonator is an
important topic, and it has applications in testing fundamental
quantum theory, exploring the boundary between classical
and quantum regions, and studying precision metrology [1–3].
Considering the inevitable interaction between the resonator
and its surrounding heat bath, the state of the resonator is far
away from the ground state in equilibrium, so cooling the me-
chanical resonator to the ground state becomes an urgent task.
So far, many proposals have been put forward to cool the res-
onator. Making use of the capacitive coupling, Lorentz force,
magnetic field, or strain field induced coupling with a two-
level system (Josephson qubit or negatively charged nitrogen-
vacancy center, etc.), one can cool the mechanical resonator
efficiently [4–13]. Other proposals design an optomechanical
system consisting of one cavity mode and a cooled resonator.
The radiative pressure from photons is applied to cool the res-
onator [14–19]. For all of these proposals, we can finally obtain
a resonator with a very small phonon number in the long-time
limit.

In a realistic experimental optomechanical system, the
mechanical resonator is often made by silica. Because of the
amorphous nature of silicon, defects reside in the amorphous
native oxide of the silicon surface [20–23]. As shown in
Ref. [24], due to the coupling between the defect with the
resonator and their couplings with heat baths, the thermal noise
from the heat bath of the defects can be effectively transferred
to the mechanical resonator. Therefore, the normal cooling
method used in the optomechanical system does not work
well.

In this paper, we show that, by employing the periodical
σz pulses, we can efficiently remove the detrimental effect of
defects and cool the resonator efficiently. The reason is that
the periodical σz pulses can induce the sign of operators σ−
and σ+ to be flipped [25–31]. The interaction between defects
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and the surrounding heat bath can be eliminated up to the
first order of time. We display the cooling performance of
the resonator with different defect energy gaps and different
defect damping rates. We find that with a large number of
σz pulses (N = 99) the phonon occupation of the resonator
reduces to a lower value, when compared with the case
of no σz pulses. We also study the difference between the
cooling results through two different calculation approaches;
one uses the master equation based on polariton doublets,
and the other is a “simple approach” in which the defects
and coupling are added into the master equation of the bare
resonator directly [24]. In our discussion, we find that these
two approaches give a similar qualitative picture in cooling, but
the obtained values of phonon occupations are quantitatively
different.

The structure of this paper is as follows. Section II intro-
duces the total system we shall study. In Sec. III, we explore
the cooling performance with different defect energy gaps
and different defect damping rates. The paper is concluded
in Sec. IV.

II. MODEL

The total system contains one cavity mode, a mechanical
resonator, defects, and their surrounding heat baths. The total
Hamiltonian is [23,24]

Htot = HOM + HJC + Ha,e + Hb,e + Hσ,e + HB. (1)

Here, HB denotes the Hamiltonian of the three non-interacting
baths. An optomechanical component consists of one cavity
mode and the mechanical resonator, that is,

HOM = −��La†a + �g(a + a†)(b + b†), (2)

where �L = ωL − ωc is the detuning of cavity driving fre-
quency ωL from cavity mode frequency ωc. The operators a

(a†) and b (b†) stand for the annihilation (creation) operator of
the cavity mode and mechanical resonator, respectively.

As discussed above, the defects couple to the mechanical
resonator inevitably. Here, we only consider the case of one
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defect, which can be regarded as a two-level system (TLS) [20–
24]. The Hamiltonian for the resonator and the defect can be
written as a Jaynes-Cummings (JC) form [23,24]:

HJC = �ωmb†b + 1
2 �ωzσz + �λ(σ+b + b†σ−), (3)

where ωz(ωm) is the frequency of a TLS (mechanical res-
onator), and λ is the coupling strength.

In our discussion below, we take the interactions between
each of these three systems with their surrounding heat
bath into account. The interaction Hamiltonian takes the
form of

Ha,e =
∑

k

ga,k(aa
†
k + a†ak), (4a)

Hb,e =
∑

k

gb,k(bb
†
k + b†bk), (4b)

Hσ,e =
∑

k

gσ,k(σ−c
†
k + σ+ck). (4c)

Here, ga,k , gb,k , and gσ,k are the coupling strength between
the cavity mode, the mechanical resonator, the defects,
and each one’s heat bath. The bath modes are labeled
by k.

In many cases, the coupling strengths g and λ are compara-
ble, and the cavity damping rate is large. We define polariton
states as [24]

|n,α〉 = cn
α|n↓〉 + sn

α |(n − 1)↑〉, (5)

where n � 1, α = ±, |n〉 is the Fock state of the mechanical
resonator, and |↑〉 and |↓〉 are the eigenstates of σz. Here, cn

+ =
−sn

− = cos(δn/2), sn
+ = cn

− = sin(δn/2), and the expression of
δn satisfies the relation cos(δn/2) = √

(ωn + δω)/2ωn, where
δω = ωm − ωz and ωn = √

δω2 + 4λ2n.
By employing the projection operator technique [32,33],

and only keeping terms up to the second order of g, we can
obtain the dynamics of the reduced density matrix ρs for the
composite system of the TLS and resonator [24]:

ρ̇s = − i

�
[Hτ ,ρs] +

∑
n,α,β

�
nαβ

0

2
Lnαβ

0 ρs

+
∑
n,α,β

∣∣A(n)
β,α

∣∣2
[
�n

−,αβ

2
L

(
Oαβ

n

) + �n
+,αβ

2
L

(
Oαβ†

n

)]
ρs.

(6)

Here, Lnαβ

0 = (nnαβ

th + 1)L(Oαβ
n ) + n

nαβ

th L(Oαβ†
n ), and

L(o)ρ = 2oρo† − ρo†o − o†oρ. The polariton Hamiltonian
Hτ = ωn,α|n,α〉〈n,α|, where ωn,α are the eigenenergies
of the polariton states. The thermal population n

nαβ

th =
[exp(�ωnαβ/kBT ) − 1]−1, with ωnαβ = ωn,α − ωn−1,β . Here,
all heat baths have the same temperature T . The operator
O

αβ
n = |(n − 1),β〉〈n,α|. The expressions of �

nαβ

0 and �n
∓,αβ

are

�
nαβ

0 = ∣∣A(n)
β,α

∣∣2
γm + ∣∣σ (n)

β,α

∣∣2
γτ , (7a)

�n
∓,αβ = g2κ

κ2/4 + (ωnαβ ± �b)2
, (7b)

where γm, γτ , and κ stand for the damping rate of the mechan-
ical resonator, the TLS, and the cavity mode, respectively.
The coefficients A

(n)
β,α and σ

(n)
β,α are from the expressions of

b = ∑
A

(n)
β,αO

αβ
n and σ− = ∑

σ
(n)
β,αO

αβ
n .

The above system dynamics [Eq. (6)] is the evolution of
the density matrix based on polariton doublets; we will also
introduce the simple approach to show the different dynamics
between the master equation based on polariton doublets and
the simple approach. For the “simple approach”, the TLS and
its interaction with the bath are added into the system dynamics
of the bare mechanical resonator directly. The density matrix
in the simple approach is

ρ̇s = − i

�
[HJC,ρs] + γ̄

2
(n̄ + 1)L(b)ρs + γ̄

2
n̄L(b†)ρs

+ γτ

2
(n̄T + 1)L(σ−)ρs + γτ

2
n̄TL(σ+)ρs, (8)

where the damping coefficient is γ̄ = γm + A(−) − A(+) and
the population n̄ = γmnm+A(+)

γm+A(−)−A(+) . The coefficients, n̄T and nm

are the population of the TLS and mechanical resonator,
respectively. The parameter satisfies A(±) = g2κ

(κ/2)2+(�L∓ωm)2 .

σz pulses

Many studies have been devoted to designing different
pulse sequences, to keep the system away from decoherence
induced by the surrounding heat bath [25–31]. Here, we
use the periodical σz pulses, to eliminate the interaction
between the TLS and the bath up to the first order of time.
Considering the properties of the operator σz,

σzσ−σz = −σ−, σzσ+σz = −σ+, (9)

we can obtain

σze
−iHtott σze

−iHtott = e−itσzHtotσze−iHtott

= e−itf1+itf2e−itf1−itf2 , (10)

with the coefficients f1 = HOM + �ωmb†b + 1
2 �ωzσz +

Ha,e + Hb,e + HB , f2 = �λ(σ+b + b†σ−) + Hσ,e. Clearly, up
to the first order of time, we can eliminate the interaction of
the TLS and the corresponding heat bath. Combining Eqs. (6)
and (10), we obtain the time evolution for the density matrix
of ρs(t):

ρs(t) ⇒ · · · eH(tj −tj−1)σz · · · σz{eH(t2−t1)σz{eHt1ρs}σz}
× σz · · · σz · · · . (11)

Here, eH(tk−tk−1)ρs denotes the system evolution obey-
ing Eq. (6), and tk − tk−1 is the time duration be-
tween two adjacent pulses. With these, we can now
investigate the cooling performance of the resonator
numerically.

III. RESULTS AND DISCUSSIONS

First, by using the master equation based on polariton
doublets, we discuss the cooling performance of the me-
chanical resonator with different numbers of σz pulses [see
Fig. 1(a)]. The frequency of the mechanical resonator is set
as ωm = 200 MHz. As a result, the more σz pulses used,
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FIG. 1. (Color online) Residual phonon number (〈nosc〉) vs dif-
ferent numbers of σz pulses. Blue solid, N = 0; red dashed, N = 9;
green dotted, N = 19; black dotted-dashed, N = 49; purple circle
dot, N = 99 (a) Master equation based on polariton doublets. (b)
Simple approach. Parameters are ωm = 200 MHz, ωz/ωm = 0.9,
κ/ωm = 0.15, γm/ωm = 10−6, γτ /ωm = 2.5 × 10−4, g/ωm = 0.05,
λ/ωm = 0.05, �L/ωm = −1, and T = 0.1 K.

the lower the resonator phonon number. If the number of σz

pulses is too small (N = 9), the result is even worse than the
case of no σz pulses (N = 0). Although based on the analysis
above the periodical σz pulses can eliminate the interaction
between the TLS and its surrounding bath up to the first
order of time, when the time interval between two adjacent
σz pulses is too long the consequence of higher-order terms is
significant. When there are more σz pulses, the time interval
between two adjacent incident pulses is smaller, and the effect
of those higher-order terms becomes less significant. As shown
in Fig. 1(a), we achieve good cooling performance with the
pulse numbers N = 19, 49, and 99. For the case of no σz

pulses, at time ωmt = 200, the residual phonon number of the
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FIG. 2. (Color online) Residual phonon number (〈nosc〉) vs dif-
ferent numbers of σz pulses (N=0, 99, and 199). Parameters
are ωm = 200 MHz, κ/ωm = 0.15, γm/ωm = 10−6, γτ /ωm = 2.5 ×
10−4, g/ωm = 0.05, λ/ωm = 0.05, �L/ωm = −1, and T = 0.1 K.
From top to bottom, ωz/ωm is 0.6, 0.8, and 0.95.
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FIG. 3. (Color online) Residual phonon number (〈nosc〉) vs γτ .
Different numbers of σz pulses (N = 0 and 99) are applied. The
value of 〈nosc〉 is chosen at time t = 200ω−1

m , where the residual
phonon number has been stable already. Parameters are ωm =
200 MHz, κ/ωm = 0.15, γm/ωm = 10−6, g/ωm = 0.05, λ/ωm =
0.05, �L/ωm = −1, and T = 0.1 K.

resonator is 0.04289, while for the case of N = 99 the residual
phonon number of the resonator is 0.01793 at time ωmt = 200.
There is a decrease of 58.2%. In Fig. 1(b), the cooling results
obtained by using the “simple approach” are presented. The
same initial states are chosen for both approaches [Figs. 1(a)
and 1(b)]. We find that the evolution of the population of the
resonator given by the “simple approach” is qualitatively the
same as the case shown in Fig. 1(a), but the residual phonon
numbers of the resonator in the long-time limit through these
two approaches are quantitatively different. As pointed out in
Ref. [24], results from the master equation based on polariton
doublets [Fig. 1(a)] are more accurate. From Fig. 1(a), it is
clearly seen that we can cool the resonator more efficiently
with more injecting pulses.

Second, we study the cooling performance of the resonator
with different defect energy gaps. Figure 2 presents the results
of three different cases (ωz/ωm = 0.60, 0.80, and 0.95).
Cooling results from different pulse numbers, N = 99 and
199, are compared. These results show that, by employing
the periodical σz pulses, we can cool the resonator efficiently
within a wide range of defect energy gaps.

Finally, we compare the cooling performance of the
resonator with different TLS damping rates γτ in Fig. 3. The
near resonance condition is chosen (δω/ωm = 0.05), and the
parameters satisfy δω � λ < κ . From Fig. 3(a), we find that
when the TLS damping rate is small enough (between 10−6 and
10−5) the cooling performance of the resonator is insensitive
to the pulse number applied and the residual phonon number of
the resonator is very small (	0.004). In Fig. 3(b), we change
the defect energy gap to a new value, ωz/ωm = 0.60, and the
resonance condition is not satisfied, δω > λ = 0.05ωm. When
the TLS damping rate is larger than 5 × 10−5, the resonator
is cooled efficiently with the pulse number N = 99, while the
result is not effective with no σz pulses applied.

IV. CONCLUSION

In summary, we introduce periodical σz pulses to eliminate
the bad effect from the defects in cooling the mechanical
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resonator. The periodical σz pulses can remove the in-
teraction between the TLS and the heat bath up to the
first order of time. By applying σz pulses, we can cool
the resonator efficiently with different defect energy gaps
and different TLS damping rates. Other designed pulse
sequences eliminating the interaction in more than the
first order of time [26,28–31] might be more efficient
to cool the resonator. This deserves further study in the
future.
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