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Dressed four-wave mixing second-order Talbot effect
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We theoretically demonstrate second-order Talbot effect (SOTE) based on entangled photon pairs. The photon
pairs are generated from the spontaneous parametric four-wave mixing (SPFWM) process in a cold atomic
medium and can be taken as the imaging light in order to realize coincidence recording. A strong standing
wave is used to create the electromagnetically induced grating in the entangled photon pairs channels. By
changing the frequency detuning of the standing wave or the other optical fields participating in the process,
we can manipulate the contrast of the second-order Talbot image. We use the second-order correlation function
and the dressed-state picture to explain the SOTE occurring in the SPFWM process. Moreover, we demonstrate
the scheme for SOTE based on the spatially correlated twin beams generated from the SPFWM process with
injection. This scheme provides a convenient detection proposal for the SOTE at the cost of the image contrast.
Compared to the previous self-imaging schemes, the present schemes have the characteristic of controllable
image contrast and of nonlocal imaging, and thus, they might broaden their applications in imaging techniques
and find applications in quantum lithography.
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I. INTRODUCTION

The Talbot effect is a near-field diffraction phenomenon first
discovered by Talbot in 1836 [1]. When a plane wave transmits
through a periodic structure, the image of the periodic structure
is repeated at regular distances (called Talbot lengths) without
need of any lens. Lord Rayleigh first analytically explained this
physical phenomenon in 1881 [2]. He elucidated that the Talbot
effect was a natural consequence of Fresnel diffraction and the
Talbot length is ZT = 2a2/λ, in which a and λ are the period
of the diffraction grating and the wavelength of the incident
light beam, respectively. Over the past years, researchers have
expanded this phenomenon into other areas such as waveguide
arrays [3,4], surface waves [5,6], and atomic waves [7,8].
Interestingly, Talbot effects of second-harmonic generation
[9,10] and two-wave mixings [11] extend this subject to
nonlinear optics. We are aware that rogue waves can also
form a nonlinear Talbot effect according to the cubic nonlinear
Schrödinger equation [12]. It is worth mentioning that all the
above investigations focus on the classical first-order Talbot
imaging, which happens when a periodic object is illuminated
with coherent light. Recently, second-order Talbot effect
(SOTE) created by pseudothermal light has been observed
experimentally [13,14]. The conditional Talbot effect and the
second-order quantum Talbot effect with entangled photon
pairs have been also theoretically discussed [15–17] and
experimentally observed [18]. The quantum self-imaging may
have extensive applications in quantum lithography [19,20],
because of a possible breakthrough in lithographic resolution
due to overcoming the diffraction limit. Furthermore, the
electromagnetically induced first-order Talbot effect in atomic
medium [21] was theoretically proposed for imaging ultracold
atoms and molecules, where electromagnetically induced
grating (EIG) was used to modify the optical response of
the medium to the weak probe field. The first-order Talbot
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effect with multiwave mixing (MWM) signals has been also
proposed [22], where the atomic coherence resulted from
the dressing field being used to control the nonlinear optical
coefficient χ (3) of the MWM signal [23,24]. A more thorough
introduction on the Talbot effect can be found in Ref. [25] and
references therein.

In this paper, we investigate the SOTE with the spontaneous
parametric four-wave mixing (SPFWM) process in a cold
atomic medium, where a strong standing wave is used to
modulate the nonlinear optical coefficient χ (3) of the SPFWM
process periodically. Self-images of the induced EIG by
the standing wave are formed from second-order correlation
function. Especially, we use the frequency detunings of the
optical fields to change the interference pattern of the EIG and
thus control the Talbot effect. The dressed-state picture and
the second-order correlation function are used in our analyses.
Compared with previous studies [15,21], the advantages of
our research include that a real grating object is avoided,
the grating structure is much easier to be controlled, and
higher-nonlinear processes are used. Moreover, we initially
investigate SOTE via the spatially correlated twin beams when
the SPFWM process is seeded with the phase-conjugate FWM
and six-wave mixing (SWM) signals. The results show that
the contrast of the second-order Talbot images obtained by
the biphotonic correlation is superior to that obtained by the
spatially correlated twin beams. However, the SOTE with the
twin beams can be detected more easily due to the higher
intensities of the twin beams.

This paper is organized as follows: In Sec. II, we
use the dressed-state picture to explain the effect resulting
from the standing wave in the SPFWM process. The formation
of the EIG in the atomic medium is discussed and how to con-
trol the EIG is investigated; in Sec. III, we investigate the SOTE
achieved by biphotonic correlation in the low-parametric-gain
case and discuss the contrast control of the second-order
Talbot imaging. The dressed-state picture and the second-order
correlation function are applied to our analyses; in Sec. IV, we
investigate Talbot effect in the high-parametric-gain case by
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FIG. 1. (Color online) (a) A simplified atomic energy level diagram and the laser coupling configuration. The frequency difference between
E3 and E′

3 beam is equal to the ground-state splitting of the atomic system. (b) Schematic for SOTE achieved by the SPFWM process.
(c) Schematic for SOTE achieved by the spatially correlated twin beams.

using the spatially correlated twin beams, when the SPFWM
process is seeded with the phase-conjugate multiwave mixing
signals; in the last section, we conclude this paper.

II. FORMATION OF EIG

At first, we introduce the SPFWM process for generating
the entangled Stokes and anti-Stokes photons. Consider a
cold atomic medium initially populated in the ground state
|1〉 as shown in Fig. 1(a), in which |0〉 and |1〉 are two
ground (hyperfine) states, and |2〉, |3〉, and |4〉 are three
excited states. The |0〉 → |2〉 transition is pumped by the
E1 beam (with frequency ω1, frequency detuning �1, and
wave vector k1). The |2〉 → |3〉 transition is coupled by the
E2 (with ω2, �2, and k2) and E′

2 (with ω2, �2, and k′
2)

beams. The |2〉 → |4〉 transition is coupled by E3 (with ω3,
�3, and k3) and E′

3 (with ω′
3, �′

3, and k′
3) beams. The atomic

resonant frequency for |i〉 → |j 〉 transition is denoted as �ji .
The frequency detuning for each field is defined as resonant
frequency minus optical field frequency. When only E1 with
strong intensity is on, an entangled source, denoted as Stokes
signal Es and anti-Stokes signal Eas, can be generated from
the SPFWM process. The two entangled fields, satisfying the
phase matching condition (PMC) ks = 2k1 − kas, propagate
along two different directions as shown by the bottom panel
in Fig. 1(a). According to the Liouville pathways [23,24],
the density-matrix element ρ

(3)
21(s) for the generated Es field

can be written as ρ
(3)
21(s) = −iG∗

asG1
2/(d ′

21d
′
10d21) via ρ

(0)
11

ω1−→
ρ

(1)
21

ωas−→ ρ
(2)
01

ω1−→ ρ
(3)
21(s), and ρ

(3)
20(as) for the Eas field can be

given as ρ
(3)
20(as) = −iG∗

s G
2
1/(d20d10d

′
20) via ρ

(0)
00

ω1−→ ρ
(1)
20

ωs−→
ρ

(2)
10

ω1−→ ρ
(3)
20(as), where d ′

21 = �21 + i�′
1, d ′

10 = �10 + i(�′
1 −

�as), d21 = �21 + i(�′
1 + �1 − �as), d20 = �20 + i�1, d10 =

�20 + i(�1 − �s), and d ′
20 = �20 + i(�′

1 + �1 − �s) with

�s and �as representing the frequency detunings of the Es

and Eas signals, respectively. �′
1 is the frequency detuning

of the E1 field from the transition |1〉 → |2〉. The term
Gi = μiEi/� (i = 1, 2, 3) is the Rabi frequency of the field
Ei . The term �ij is the decay rate between the energy levels
|i〉 and |j 〉.

Next, we consider the effect from the standing wave in the
SPFWM process. The strong E2 and E′

2 beams are open and
propagate almost along the opposite direction of the E1 beam
as shown in Fig. 1(b). Each of them has a θ1 angle with the
E1 beam. The E2 and E′

2 beams interfere with each other to
create a periodic standing wave in the transverse direction of
the atomic medium. The x and z directions are set as shown in
Fig. 1(b). Then the Rabi frequency of the standing wave can be
written as |G2t (x)|2 = G′

2
2 + G2

2 + 2G2G
′
2 cos[2(k2 sin θ1)x]

with the wave-vector module of the E2 and E′
2 fields k2 =

2π/λ2. For a dressed-state analysis [26], state |2〉 and |3〉
plus the standing wave can be considered as a coupled
atom-field system. The dressed states for this system can
be given as |G2t (x)±〉. Then the single Liouville pathway
for the Eas signal will be changed into a double pathway:
ρ

(0)
00

ω1−→ ρ
(1)
G2t (x)±0

ωs−→ ρ
(2)
10

ω1−→ ρ
(3)
G2t (x)±0(as). The corresponding

density matrix element for the Eas signal is modified as
ρ

(3)
20(as) = −iG∗

s G1
2/{[d20 + |G2t (x)|2/d30]d10d

′
20} with d30 =

�30 + i(�1 + �2). We can find that the ρ
(3)
20(as) varies period-

ically along the x direction due to the term |G2t (x)|2 and
the period is ax = λ2/(2sinθ1). The periodical modulation of
the ρ

(3)
20(as) corresponds to the modulation of the nonlinear

optical susceptibility χ (3) of the SPFWM process, which
can create an electromagnetically induced grating in the
anti-Stokes channel. Self-images of such a nonmaterial grating
can be obtained by second-order correlation function due to
the spatial correlation of the anti-Stokes and Stokes signals.
The dressing effect of the standing wave to the Es signal can
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FIG. 2. (Color online) (a1)–(a3) Coupled atom-field systems (top panels) and dressed-state levels (bottom panels) with �2 = 0, 2, and
−2 MHz, respectively. Other parameters are G2 = G′

2 = 5 MHz and ax = 150 μm. (b) Theoretical simulation of the normalized intensity
distribution of the anti-Stokes signal versus x and �1 at z = 0. Other parameters are G1 = 3.5 MHz, G2 = G′

2 = 5 MHz, �2 = 0, �10 = 0.2�20,
�30 = 0.1�20, �20 = �21 = 2π × 6 MHz, and ax = 150 μm.

be analyzed in the same way, and we do not describe it any
longer.

Now, we proceed to investigate the method for controlling
the EIG. Using the dressed-state analysis, the eigenfrequencies
corresponding to the dressed states |G2t (x)±〉 can be cal-
culated as λG2t (x)± = �2/2 ±

√
�2

2/4 + |G2t (x)|2. According
to the eigenfrequencies expression λG2t (x)± = ±|G2t (x)| with
�2 = 0, we show the dressed-state levels in the bottom panel
of Fig. 2(a1), where the top panel shows the coupled atom-field
system. We find that the two dressed states are symmetrical
about state |2〉 and vary periodically along the x direction. The
separation between the two dressed states is proportional to
the Rabi frequency of the standing wave, so we can control
the modulation amplitude of EIG by the intensities of the E2

and E′
2 beams. We also show the dressed-state levels with �2

taken as 2 and −2 MHz in Figs. 2(a2) and 2(a3), respectively.
When detuning �2 has a positive (negative) value, the two
dressed states will shift upward (downward) according to the
eigenfrequencies expression. These characteristics can also
help us to alter the EIG, so we can control the EIG by the
intensities and detunings of the E2 and E′

2 beams. Moreover,
the nonlinear optical susceptibility χ (3) can be enhanced
when the two-photon resonance condition (�1 + �2 = 0) is
satisfied [27], so we can also control the EIG by altering �1.

To demonstrate the spatial distribution of the EIG of χ (3),
we show the intensity distribution of the anti-Stokes signal in
Fig. 2(b), where the intensity distribution as a function of x

and �1 is obtained from the normalized amplitude of ρ
(3)
20(as). In

Fig. 2(b), when scanning �1 while keeping �2 = 0 at z = 0,
we can see a single peak at the nodes of the dressed-state levels
and two peaks at the antinodes of the dressed-state levels. This
can be explained by the dressed-state analysis as shown in
Fig. 2(a1). The double peaks are the Autler-Townes doublet,
which result from the dressing effect of the standing wave. At
the nodes, the Rabi frequency of the standing wave is zero due
to the destructive interference of the E2 and E′

2 beams, so there
is no dressing effect from the standing wave, and then only a
single peak can be observed in the intensity distribution of the
anti-Stokes signal. At the antinodes, the Rabi frequency has
maximum value, so the two dressed-state levels with the largest

separation can be obtained and the Autler-Townes doublet can
be observed. Therefore the EIG can be established by the
standing wave in the atomic medium, and the EIG structure
can be easily controlled by the optical fields.

III. SOTE WITH BIPHOTONS

Since the SPFWM process absorbs two pump photons and
produces one Stokes and one anti-Stokes photon simultane-
ously, the two output photons of the SPFWM process are
highly correlated. In the frequency space, they are entangled
owing to the frequency PMC 2ω1 = ωas + ωs . They are also
entangled with respect to the wave vector since they satisfy the
momentum conservation condition ksρ + kasρ = 2k1, which
implies the spatial correlation of the photon pairs. The
wave-vector correlation is of prime interest in second-order
Talbot imaging. In this paper, we will discuss how to achieve
SOTE by using the two-photon spatial correlation. This SOTE
scheme has a ghost imaging configuration [28–30], where
the entangled photon pairs serve as the imaging light and
the nonmaterial grating can be imaged nonlocally without
using any focus lens. Then the second-order two-photon Talbot
self-image can be obtained by coincidence count according
to Glauber’s quantum measurement theory [31]. To study
the SOTE resulting from the SPFWM process, let us look
at the two-photon joint-detection measurements as shown
in Fig. 1(b), where Stokes photons are detected by Ds and
anti-Stokes photons by Das. The normalized second-order
correlation function in this process can be expressed as

g(2) = 〈E(−)
s (rs ,ts)E(−)

as (ras,tas)E(+)
as (ras,tas)E(+)

s (rs ,ts)〉
〈E(−)

s (rs ,ts)E
(+)
s (rs ,ts)〉〈E(−)

as (ras,tas)E
(+)
as (ras,tas)〉

,

(1)

where E
(+)
i (r i ,ti) and E

(−)
i (r i ,ti) (i = s or as) are the positive-

and negative-frequency parts of the electric field evaluated at
position r i and detection time ti .

First, we use the differential wave interaction equations to
describe the propagation of the Stokes and anti-Stokes photons
[32]. According to these equations, the output Stokes and
anti-Stokes fields at the surface of the atomic medium can
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be obtained as

âs(L) = cosh(κL)âs(0) + sinh(κL)â†
as(0)

â†
as(L) = cosh(κL)â†

as(0) + sinh(κL)âs(0) (2)

Here, we just consider the single angular frequency mode. L is
the interaction distance of the wave; κ is the nonlinear coupling
coefficient. âs(L) [âs

+(L)] and âas(L) [âas
+(L)] are referred

to as the annihilation (creation) operators of the output Stokes
and anti-Stokes photons, respectively. âs(0) [âs

+(0)] and âas(0)
[âas

+(0)] represent the annihilation (creation) operators of the
input Stokes and anti-Stokes photons, respectively. If there
are no seeded fields at the Stokes and anti-Stokes ports, the
input fields will be the vacuum fields. The electric fields
detected by a photodetector can be described by the electric
fields on the output surfaces of the medium using the Green’s
function, which is the optical transfer function and describes
the propagation of each transverse mode,

E
(+)
i (r i ,ti) = E

(+)
i (ρi ,zi,ti)

=
∑

ki

Eigi(ki ,ωi ; ρi ,zi)âi(L)e−iωi ti (i = s, as),

(3)

where Ei = √
�ωi/2ε0, ki is the transverse wave vector, and ωi

denotes the frequency of the generated Stokes and anti-Stokes

fields. gi(ki ,ωi ; ρi ,zi) is the Green’s function and describes
the propagation of the mode with angular frequency ωi and
transverse wave vector ki from the source to the transverse
coordinate ρi of the detector Di , which is at the distance of zi

from the output surface of the atomic medium to the plane of
the detector. The Green’s function can be written as [31,33,34]

gs(ks ,ωs ; ρs ,zs) = −iωs

2πczs

ei ωs
c

zs

∫
source

dρsoT (ρso)

× {
e−iks ·ρsoei ωs

2czs
|ρso−ρs|2}

,

gas(kas,ωas; ρas,zas) = −iωas

2πczas
ei ωas

c
zas

∫
source

dρ ′
soT (ρ ′

so)

× {
e−ikas·ρ ′

soei ωas
2czas

|ρ ′
so−ρas|2}, (4)

where ρso and ρ ′
so are transverse wave vectors defined on

the output plane of the periodic source, ρi (i = s, as)
are the transverse vectors on the plane of the detector, T (ρso)
is the transmission function for the EIG induced by standing
wave, and c is the speed of light.

According to the definition of the second-order correlation
function, the three terms 〈E(−)

s (rs ,ts)E(−)
as (ras,tas)E(+)

as (ras,tas)
E(+)

s (rs ,ts)〉, 〈E(−)
s (rs ,ts)E(+)

s (rs ,ts)〉, and 〈E(−)
as (ras,tas)E(+)

as
(ras,tas)〉 can be calculated as follows:

〈E(−)
s (rs ,ts)E

(−)
as (ras,tas)E

(+)
as (ras,tas)E

(+)
s (rs ,ts)〉

= R2
asE

2
asE

2
s |cosh(κL) sinh(κL)|2

∣∣∣∣
∫

dkasρ

∫
dωasgs(ksρ,ρs)gas(kasρ,ρas)e

−iωasτ

∣∣∣∣
2

+RsE
2
s |sinh(κL)|2

∫
dksρ

∫
dωs |gs(ksρ,ρs)|2RasE

2
as|sinh(κL)|2

∫
dkasρ

∫
dωas|gas(kasρ,ρas)|2, (5a)

〈E(−)
s (rs ,ts)E

(+)
s (rs ,ts)〉 = E2

s Rs |sinh(κL)|2
∫

dksρ

∫
dωs

∣∣gs(ksρ,ρs)
∣∣2

, (5b)

〈E(−)
as (ras,tas)E

(+)
as (ras,tas)〉 = E2

asRas|sinh(κL)|2
∫

dkasρ

∫
dωas

∣∣gas(kasρ,ρas)
∣∣2

, (5c)

where τ = tas − ts and we have used the approximation

∑
ki

→ V

(2π )3

∫
dki = V

(2π )3

∫
dkiρ

∫
dkiz

dωi

dωi = V

(2π )3

∫
dkiρ

∫
dωi

υi

= Ri

∫
dkiρ

∫
dωi.

Here Ri = V /[(2π )3υi] (i = s, as) and υi is the velocity of the field.
We just consider the wave-vector correlation in our paper, so we assume that the Stokes and anti-Stokes photons have the

single angular frequency. Thus
∑

ki
= Ri

∫
dkiρ (Ri is a constant). Therefore the three terms in Eq. (5) can be calculated as

〈E(−)
s (rs ,ts)E

(−)
as (ras,tas)E

(+)
as (ras,tas)E

(+)
s (rs ,ts)〉

= R2
asE

2
asE

2
s |cosh(κL) sinh(κL)|2C1 + E2

s Rs |sinh(κL)|2C2E
2
asRas|sinh(κL)|2C3, (6a)

〈E(−)
s (rs ,ts)E

(+)
s (rs ,ts)〉 = E2

s Rs |sinh(κL)|2C2, (6b)

〈E(−)
as (ras,tas)E

(+)
as (ras,tas)〉 = E2

asRas|sinh(κL)|2C3, (6c)
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where

C1 =
(

ωs

2πczs

ωas

2πczas

)2∣∣∣∣
∫

source
d2ρsoT

2(ρso)ei ωs
2czs

|ρso−ρs |2

× ei ωas
2czas

|ρso−ρas|2
∣∣∣∣
2

, (7a)

C2 =
(

ωs

2πczs

)2 ∫
source

d2ρsoT
2(ρso), (7b)

C3 =
(

ωas

2πczas

)2 ∫
source

d2ρsoT
2(ρso). (7c)

C2 and C3 are constants. C1 is of basic importance for
the biphotonic correlation. In our paper, the periodic source
is a one-dimensional spatially periodic EIG. For simplicity,
we only discuss one-dimensional EIG, but extension of
the analysis to two-dimensional EIG is straightforward. We
change vector ρso into scalar x for one-dimensional EIG,
then T (ρso) is replaced by T (x), which is proportional
to the amplitude of ρ

(3)
20(as). The transmission function for a

general one-dimensional periodic object can be expressed
by a Fourier series, so T (x) can be expanded as T (x) =∑+∞

n=−∞ cne
−i(2πnx/ax ), where ax is the spatial period along

the x direction and cn is the coefficient of the nth harmonic.
Because any type of periodic object can be assumed for
the present analysis, we will not specify the form of cn.
Substituting the Fourier expansion of the T (x) into Eq. (7a)
and assuming that zs = zas = z, we can calculate C1 to be

C1 =
(

ωs

2πcz

ωas

2πcz

)2
∣∣∣∣∣

+∞∑
n=−∞

c2
n′e

−iπ n2

2a2
x
λz

e−i πn
ax

(xs+xas)

∣∣∣∣∣
2

. (8)

For simplicity, Rs=Ras is assumed, so the biphotonic
correlation of Stokes and anti-Stokes fields can be obtained
as

g(2)= |cosh(κL)|2C1

|sinh(κL)|2C2C3
+1. (9)

From Eq. (9), we can conclude that the biphotonic cor-
relation function is spatially periodic, and the condition for
revival patterns of the periodic structure is that the distance z

satisfies z = 4ma2
x/λ, where zsT = 4a2

x/λ is the second-order
Talbot length, and m is an integer. It is noteworthy that
the second-order Talbot length is twice the first-order Talbot
length.

Next, we will use the biphotonic correlation to investigate
SOTE. Let us consider the setup as shown in Fig. 1(b). The
Stokes and anti-Stokes photons from the SPFWM process
are noncollinear and propagate along two directions. The
periodic object is EIG, which creates spatially periodic χ (3)

of the atomic medium for the SPFWM process; so the EIG
can be reflected in the entangled photon pairs channels by
coincidence count, and the image of the EIG can be observed
through the correlation function g(2). The entangled Stokes and
anti-Stokes photons are detected by a two-photon detector. The
distance between the EIG and the two detectors are all z.

According to Eq. (9), we numerically simulate the second-
order correlation pattern by scanning both detectors simul-
taneously in the same manner along the z direction and the
transverse x directions while keeping �2 = 0. The second-
order correlation function versus z and x is shown in Fig. 3(a),
where the color bar denotes the value of the transverse two-
photon correlation, and the longitudinal (transverse) scanning
range is z = 0–50 cm (xs = xas = x = 0–0.6 mm). We see
that a typical Talbot carpet pattern emerges. We can find that
the image of the periodic EIG is repeated at integer multiples
of Talbot length zsT , and the Talbot length zsT is about 11.5 cm.
Here, we are mainly concerned with the control of the Talbot
imaging by tuning the optical field. To study the influence of
the detuning of �1 to the Talbot imaging, we show the second-
order correlation function at different �1 in Figs. 3(a1)–3(a5),
where �1 is taken as −0.8, −0.5, 0, 0.5, 0.8 MHz, respectively,
while �2 = 0 is the same. We can find the contrast of Talbot
image (versus x and z) changes with �1. It increases at first
and then decreases with increasing of �1. Next, we exhibit
the transverse profiles of these Talbot carpets at Talbot length
distance (z = 11.5 cm) in Fig. 3(a6), where the correlation is
the highest at the x position corresponding to the nodes of
the standing wave, and the correlation is the lowest at the x

position corresponding to the antinodes of the standing wave.
At �1 = 0, the two-photon resonance condition (�1 + �2 = 0)
is satisfied at the nodes of the standing wave; then the nonlinear
optical susceptibility χ (3) of the SPFWM process is enhanced.
At the antinodes of the standing wave with �1 = 0, the
two-photon resonance condition (�1 + �2 = 0) breaks down
due to the dressed splitting induced by the standing wave as
shown in Fig. 2(a1). Thus the nonlinear optical susceptibility
χ (3) of the SPFWM process is suppressed. Therefore the
structure of the EIG can be reflected by the Talbot image.
If �1 	= 0, the two-photon resonance condition cannot be
satisfied even at the nodes, where the correlation will decrease.
Therefore, the contrast is the highest at �1 = 0, so we can
control the contrast by the detuning �1.

Subsequently, we show that the contrast of the Talbot image
can also be controlled by the detuning �2. The second-order
Talbot images versus z, x, and �2 are shown in Fig. 3(b),
in which �1 = 0. In Figs. 3(b1)–3(b5), we show the Talbot
images in section at different �2, and the corresponding
transverse profiles of the Talbot carpets at Talbot length
distance (z = 11.5 cm) are shown in Fig. 3(b6). We can see that
the contrast of the Talbot image changes with �2 in a different
manner. This is because the variation of �2 will make the
dressed-state levels shift as shown in Figs. 2(a2) and 2(a3). At
the antinodes of the standing wave, when the shift makes the
E1 field near resonance with the dressed state, the correlation
is enhanced. At the nodes, the correlation is not obviously
changed due to |G2t (x)| = 0, so the contrast can be controlled
by �2, and the contrast is the highest when �2 = 0.

IV. SOTE WITH SPATIALLY CORRELATED TWIN BEAMS

In this part, we demonstrate the SPFWM process when
two other strong fields, E3 and E′

3, are added as shown in
Fig. 1(c). Both E3 and E′

3 beams counterpropagate with the
E1 beam. There is a very small angle between the E3 and E′

3
beams. If the detunings of the E3 and E′

3 beams are not equal,
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FIG. 3. (Color online) (a) Theoretical Talbot imaging carpets versus �1, x, and z obtained by scanning both detectors simultaneously
through z = 0–50 cm along the z direction and through x = 0–0.6 mm (xs = xas = x) along the transverse x directions while keeping �2 =
0 (a1–a5) Talbot imaging carpets versus x and z with �2 = 0: �1 = −0.8, − 0.5, 0, 0.5, 0.8 MHz from left to right, respectively; (a6)
second-order correlation degree versus x at a Talbot length distance (z = 11.5 cm) with �2 = 0 : |�1| = 0 MHz (top curve), |�1| = 0.5 MHz
(middle curve), and |�1| = 0.8 MHz (bottom curve). (b) Theoretical Talbot imaging carpets versus �2, x, and z obtained by scanning both
detectors simultaneously through z = 0–50 cm along the z direction and through x = 0–0.6 mm (xs = xas = x) along the transverse x directions
while keeping �1 = 0 : (b1–b5) Talbot imaging carpets versus x and z with �1 = 0 : D2 = −10, − 5, 0, 5, 10 MHz from left to right,
respectively; (b6) second-order correlation degree versus x at a Talbot length distance (z = 11.5 cm) with �1 = 0 : |�2| = 10 MHz (top curve),
|�2| = 5 MHz (middle curve), and |�2| = 0 MHz (bottom curve). The other parameters are chosen: G1 = 20 MHz, G2 = G′

2 = 45 MHz,
�10 = 0.2�20, �30 = 0.1�20, �20 = �21 = 2π × 6 MHz, ax = 150 μm, and λ1 = 780.240 nm.

and the E′
3 beam relative to the E3 beam is detuned by the

ground-state splitting of the atomic system, the system will
generate a phase-conjugate FWM and two phase-conjugate
SWM signals, which satisfy the PMCs kfw = k1 + k3 − k′

3
and ksw = k1 + k2(k′

2) − k2(k′
2) + k3 − k′

3, respectively. Ac-
cording to the PMCs, we find that the phase-conjugate FWM
and SWM signals propagate along the same direction, which
is opposite to that of the E′

3 beam. The frequency of the
phase-conjugate FWM and SWM signals are the same as the
central frequency of the Stokes signal. If the phase-conjugate

FWM and SWM signal are seeded into the Stokes port as
shown in Fig. 1(c), the whole process can be viewed as an
optical parametric amplifier, which can generate the spatially
correlated twin beams. In this process, the power of the E3 and
E′

3 beams is usually strong, so the dressing effect of the E3 and
E′

3 fields should also be considered. The dressing effect from
the E3 and E′

3 fields is not periodic, because their frequency
is different. Generally, the detuning of the E′

3 beam is much
larger than that of the E3 beam. Therefore we only consider
the dressing effect from the E3 field. Then the dressed density
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FIG. 4. (Color online) (a1) The primary dressing splitting induced by the standing wave; (a2) the secondary dressing splitting created by the
E3 field when the E3 field is tuned close to the dressed states |+〉, |++〉, and |+−〉, representing secondary dressed states; (a3) doubly-dressed-
state levels corresponding to (a2). Parameters are chosen: G2 = G′

2 = 6 MHz, �2 = 0, G3 = 4 MHz, �3 = 12 MHz; (a4) the secondary
dressing splitting created by the E3 field when the E3 field is tuned close to the dressed states |−〉, |−+〉, and |−−〉, representing secondary
dressed states; (a5) doubly-dressed-state levels corresponding to (a4). Parameters are chosen: G2 = G′

2 = 6 MHz, �2 = 0, G3 = 4 MHz,
�3 = −12 MHz. (b1,b2) Theoretical simulation of the normalized intensity distribution of the anti-Stokes signal versus x and �2 with primary
dressing of standing wave (i.e., E3 and E′

3 beams are turned off) and double dressing (i.e., E3 and E′
3 beams are turned on), respectively, and

�3 = 0; (b3,b4) theoretical simulation of the normalized intensity distribution of the anti-Stokes signal versus x and �3 with primary dressing
of the E3 field (i.e., E2 and E′

2 beams are turned off) and double dressing (i.e., E2 and E′
2 beams are turned on), respectively, and �2 = 0. Other

parameters are G1 = 3.5 MHz, G2 = G′
2 = 6 MHz, G3 = 4 MHz, �1 = 0, �10 = 0.2�20, �30 = �40 = 0.1�20, �20 = �21 = 2π × 6 MHz,

and ax = 150 μm.

matrix element for the Eas signal can be written as ρ
(3)
20(as) =

−iG∗
s G1

2/{[d20+|G2t (x)|2/d30 + G2
3/d40]d10d

′
20} via the

corresponding Liouville pathway: ρ
(0)
00

ω1−→ ρ
(1)
G2t (x)±G3±0

ωs−→
ρ

(2)
10

ω1−→ ρ
(3)
G2t (x)±G3±0(as), where d40 = �40 + i(�1 + �3). Be-

cause the induced periodic χ (3) in atomic medium is related to
ρ

(3)
20(as), the interference pattern of the EIG and then the Talbot

self-imaging can be controlled by the E3 field.
Next, the spatially correlated twin beams are applied

to achieve Talbot effects. As mentioned above, if E3 and
E′

3 beams are open, the generated phase-conjugate FWM
and SWM signals will act as a seed. Then the SPFWM

process will be replaced by an optical parametric amplification
(OPA) process and the output fields are correlated twin
beams. It has been confirmed that the correlated twin beams
have multiple spatial modes [35]. This character makes this
source of interest for optical imaging processes. Moreover, the
intensities of the generated Es and Eas fields are stronger than
that obtained from the SPFWM process, so the measurement
would be performed more easily.

Similar to the biphotonic correlation function, we
calculate 〈E(−)

s (rs ,ts)E(−)
as (ras,tas)E(+)

as (ras,tas)E(+)
s (rs ,ts)〉,

〈E(−)
s (rs ,ts)E(+)

s (rs ,ts)〉, and 〈E(−)
as (ras,tas)E(+)

as (ras,tas)〉 with
injection as follows:

〈E(−)
s (rs ,ts)E

(−)
as (ras,tas)E

(+)
as (ras,tas)E

(+)
s (rs ,ts)〉 = 〈0,α|E(−)

s (rs ,ts)E
(−)
as (ras,tas)E

(+)
as (ras,tas)E

(+)
s (rs ,ts)|α,0〉

= E2
asE

2
s |cosh(κL) sinh(κL)|2(R2

as + R2
s |α|2)C1 + RsE

2
s |sinh(κL)|2(|α|2 + 1)C2RasE

2
as|sinh(κL)|2C3, (10a)

〈E(−)
s (rs ,ts)E

(+)
s (rs ,ts)〉 = RsE

2
s [|cosh(κL)|2|α|2 + |sinh(κL)|2]C2, (10b)

〈E(−)
as (ras,tas)E

(+)
as (ras,tas)〉 = RasE

2
as(|α|2 + 1)|sinh(κL)|2C3. (10c)

Thus, the intensity correlation function can be obtained as

g(2) = |cosh(κL)|2
[|cosh(κL)|2|α|2 + |sinh(κL)|2]

C1

C2C3
+ |sinh(κL)|2

[|cosh(κL)|2|α|2 + |sinh(κL)|2]
, (11)

where 〈â†
as(0)âas(0)〉 = |α|2, which refers to the injection

intensity of FWM and SWM signals. The expressions for Ci

(i = 1, 2, 3) have been given in Eq. (7). We can find that the
correlation function is spatially periodic due to C1, and the
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FIG. 5. (Color online) (a) Theoretical Talbot imaging carpets versus �2, x, and z obtained by scanning both detectors simultaneously
through z = 0–50 cm along the z direction and through x = 0–0.6 mm along the transverse x directions in the OPA process while keeping
�1 = 0 and �3 = 1.5 MHz : (a1–a3) Talbot imaging carpets with |�2| = 0, 2, 4 MHz, respectively; (a4) second-order correlation degree
versus x at a Talbot length distance (z = 11.5 cm): |�2| = 4 MHz (top curve), |�2| = 2MHz (middle curve), and |�2| = 0 MHz (bottom
curve). (b) Theoretical Talbot imaging carpets versus �3, x, and z obtained by scanning both detectors simultaneously through z = 0–50 cm
along the z direction and through x = 0–0.6 mm along the transverse x directions in the OPA process while keeping �1 = �2 = 0 : (b1–b3)
Talbot imaging carpets with |�3| = 0, 2, 4 MHz, respectively; (b4) second-order correlation degree versus x at a Talbot length distance
(z = 11.5 cm): |�3| = 4 MHz (top curve), |�3| = 2 MHz (middle curve), and |�3| = 0 MHz (bottom curve). The other parameters are chosen:
G1 = 20 MHz, G2 = G′

2 = 45 MHz, G3 = G′
3 = 25 MHz, �10 = 0.2�20, �30 = �40 = 0.1�20, �20 = �21 = 2π × 6 MHz, ax = 150 μm, and

λ1 = 780.240 nm.

periodic structure can be revived at the second-order Talbot
length. Moreover, the second-order correlation and contrast
decrease when there is injection in the Stokes spot. This is
because the injection will enhance the number of the entangled
photon pairs at the cost of the spatial correlation. When there
is no injection [i.e., 〈â†

as(0)âas(0)〉 = 0], the results return to
the case for the biphotonic correlation in Eq. (9).

Now, let us show the EIG structure and investigate how
to control it in the OPA process. From the above analysis, we
know the dressing effect of the E3 field should be considered in
the OPA process. Therefore the doubly-dressed-state analysis

will be used. We may consider the coupled atom-field system,
which consists of states |2〉, |3〉, |4〉, the standing wave, and
the E3 field, by two steps. First, the interaction of the standing
wave and atom with states |2〉 and |3〉 creates primary dressed
states |±〉 as shown in Fig. 4(a1). Next, consider secondary
dressed states created by the E3 field. When the E3 field is
tuned close to the dressed states |+〉 (or |−〉) as shown in
Fig. 4(a2) [or Fig. 4(a4)], we can consider that the E3 field
only couples the dressed state |+〉 (or |−〉) to state |4〉 and
leaves the other dressed state |−〉 (or |+〉) unperturbed. Then
the eigenfrequencies for three dressed states can be given by

λG2t (x)+G3± =
�2 +

√
�2

2 + 4|G2t (x)|2
2

+
�3+ ±

√
�2

3+ + 4|G3|2
2

, and λG2t (x)− =
�2 −

√
�2

2 + 4|G2t (x)|2
2

, (12a)
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or

λG2t (x)+ =
�2 +

√
�2

2 + 4|G2t (x)|2
2

and λG2t (x)−G3± =
�2 −

√
�2

2 + 4|G2t (x)|2
2

+
�3− ±

√
�2

3− + 4|G3|2
2

, (12b)

where �3+ = �3 − [�2 +
√

�2
2 + 4|G2t (x)|2]/2 and �3− =

�3 − [�2 −
√

�2
2 + 4|G2t (x)|2]/2, respectively. According

to Eq. (12), we show the dressed-state levels in Figs. 4(a3)
and 4(a5), which correspond to the cases in Figs. 4(a2)
and 4(a4), respectively. Therefore we can control the structure
of the EIG by the E3 beam besides the E2 and E′

2 beams
in the OPA process. To demonstrate the χ (3) EIG structure,
we show the intensity distribution of the anti-Stokes signal in
Figs. 4(b1)–4(b4), where �1 = 0 is set. When the E3 and E′

3
beams are turned off, the normalized intensity distribution of
the anti-Stokes signal versus x and �2 is shown in Fig. 4(b1),
where the spatially periodic suppression of the intensity can
be observed. The results are the same as the case for the
biphotonic process. The spatially periodic suppression results
from the dressing of the standing wave. At the antinodes, the
intensity of the anti-Stokes signal will be suppressed, and the
intensity will not be affected by the standing wave at the nodes.
The period of the intensity suppression reflects in the period
of the EIG. When the E3 and E′

3 beams are open and �3 = 0
is set, the corresponding intensity of the anti-Stokes signal
is shown in Fig. 4(b2), where the dressing effect of the E3

field is included. We can see the intensity of the anti-Stokes
signal in Fig. 4(b2) is greatly suppressed compared with that
in Fig. 4(b1). The suppression proves that the nonlinear optical
susceptibility χ (3) can be altered by the E3 field. We also show
the normalized intensity distribution of the anti-Stokes signal
versus x and �3 in Figs. 4(b3) and 4(b4), where the results
are obtained with E2 and E′

2 turned off and on, respectively.
In Fig. 4(b3), the intensity of the anti-Stokes signal can be
suppressed at �3 = 0, because of the dressed splitting of
the energy level induced by the E3 field. If the E2 and E′

2
beams are turned on, the dressing effect from the standing
wave is reflected in the spatially periodical anti-Stokes
signal.

Subsequently, we show the Talbot images by using the
spatially correlated twin beams. According to Eq. (11), we
show the numerically simulated second-order correlation
pattern in Fig. 5 by scanning both detectors simultaneously
in the same manner along the z direction and the transverse
x directions. The longitudinal and transverse scanning range
are z = 0–50 cm and x = 0–0.6 mm, respectively. We find the
image of the periodic structure is repeated at integer multiples
of the second-order Talbot length zsT in Figs. 5(a1)–5(a3),
where �1 = 0 MHz and �3 = 1.5 MHz. It is also observed
that the contrast of the image changes with �2. The variance
with �2 is similar to that in Fig. 3(b). However, the spatial
correlation and correlation contrast in Fig. 5(a4) are smaller
than that in Fig. 3(b6) because of the injection of the FWM
and SWM signals. Moreover, we study the influence of the
detuning of �3 to the Talbot imaging and show the second-
order correlation function at different �3 in Figs. 5(b1)–5(b3),

where |�3| = 0,2,4 MHz, respectively, while �1 = �2 = 0
is the same. We can find the contrast of the image is nearly
zero when |�3| = 0. This is in accordance with the EIG
structure with �3 = 0 as shown in Fig. 4(b2), where the
two-photon resonance condition (�1 + �2 = 0) at the nodes
of the standing wave breaks down due to the dressed splitting
induced by the E3 field. Therefore the correlation at the
nodes will greatly decrease. When the E3 field is tuned away
from the resonance, the dressing effect gradually decreases,
and then the correlation will increase at the nodes. At the
antinodes, the correlation is not affected because the detuning
�3 is much smaller than the Rabi frequency of the standing
wave.

V. CONCLUSION

In summary, we theoretically study SOTE by the FWM
process in the cold atomic medium. The nonlinear optical
susceptibility χ (3) grating induced by a standing wave can be
periodically modulated by the dressing effect. The generated
signals are weak without the injection in the SPFWM process,
and we can use the biphotonic correlation to achieve the
Talbot effect. When the phase-conjugate FWM and SWM
signals are injected into the SPFWM process, the generated
signals are spatially correlated twin beams with stronger
intensities, so we can also use them to achieve the Talbot
effect. We demonstrate that the nonmaterial grating can be
imaged nonlocally, and the image contrast can be controlled
simply by adjusting the frequency detuning of the optical fields
participating in the process. Moreover, the SOTE achieved
by the spatially correlated twin beams may provide an
easier scheme to perform the second-order Talbot imaging.
Therefore the results may find potential applications in image
processing, optical metrology, and spectrometry. Additionally,
the entangled photon pairs generated from the SPFWM process
have narrow bandwidth, so the SOTE achieved by it may
have application in long-distance communications and image
transmitting.
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