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One-way quantum computing uses single-qubit projective measurements performed on a cluster state (a highly
entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential
scalability; the cluster state may be produced at the beginning of the computation and operated on over time.
Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation.
This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of
CV cluster states have made great strides on the path to scalability, utilizing either time or frequency multiplexing
in optical parametric oscillators (OPO), both above and below threshold. The techniques relied on a combination
of entangling operators and beam-splitter transformations. Here we show that an analogous transformation exists
for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local
oscillators, the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes
in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency
comb, which can also scale the amount of quantum noise reduction to potentially larger than in other systems.
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I. INTRODUCTION

Quantum computation (QC) promises to solve factoring [1],
database searches [2], and myriad optimization problems with
dramatically greater efficiency than is possible in the classical
computation model. The traditional approach to quantum com-
putation is based on unitary quantum logic gates that control
the interactions between well-defined quantum states (aka
qubits). This approach is inherently difficult to scale because
of challenges controlling decoherence. One-way quantum
computing [3] with continuous variables (CV) is potentially
scalable due to the advantages provided by deterministic
entanglement generation [4]. A fault tolerance threshold for
CV one-way QC has also recently been discovered [5].

Recent experiments exhibited the simplicity of one-way
QC in the discrete variable regime by demonstrating Grover’s
algorithm with a four-qubit cluster state [6] and by providing
the first implementation of topological error correction with
an eight-photon cluster state [7]. However, these discrete
implementations are more difficult to scale due to the prob-
abilistic generation of entanglement necessary to form the
cluster state. Recent demonstrations of CV cluster states [8]
have shown promise as the most scalable implementation
of quantum resources for one-way QC yet realized, with
deterministic generation of entanglement that far outstrips the
levels achieved by other systems.

Experimental demonstrations of CV cluster states have
included 10 000 time-multiplexed modes sequentially entan-
gled (though only a few of these modes existed at any
given time) [9] and an experimental implementation of a
cluster state in a frequency comb with more than 60 modes
entangled and available simultaneously [10]. A cluster state
with 16 simultaneous bright modes was also generated in
multimode OPOs above threshold using pulsed light sources
and filtered local oscillators (LOs) to measure entanglement
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among different portions of signal and idler pulses [11].
The elegance of these schemes, involving only beam splitter
interactions and simple bipartite entanglement measurements,
will likely see broad application in quantum optics and
quantum information systems in the very near future.

The first theoretical proposal for multiparty CV entangle-
ment in a compact single-OPO form utilized nonlinear crystals
with concurrent nonlinearities [12], followed by experimental
evidence that concurrent nonlinearities that could support such
multipartite entanglement can be engineered [13], and finally,
the use of concurrences to generate clusters [14]. However,
concurrent interactions in frequency and polarization are a
means to an end, and several other methods have also been
proposed, including nonlinear interactions that are concurrent
in time or space [15]. The main requirement is that the
Bloch-Messiah reduction be applicable to the system [16]; that
is the combined nonlinear optics and linear optics systems can
be described by linear Bogoliubov tranforms. The reduction
states that any combination of multimode nonlinear inter-
actions and interferometric interactions can be decomposed
into an arrangement of single-mode nonlinearities and linear
optical elements, and it has been previously shown that this
transform applies to CV cluster states derived from 2nd-order
nonlinearities [17,18]. In this manuscript, we outline the
generation of multipartite entanglement and CV cluster states
utilizing concurrent nonlinear interactions spread across the
spatial domain. We detail an experimental scheme using
concurrent phase insensitive amplifiers based on four-wave
mixing (FWM) in alkali metal vapors in which this method can
be applied. Each concurrent amplifier operates on independent
spatial modes. By choosing the LOs to measure specific
entangled spatial modes, a spatial frequency comb can be
generated from the amplified spatial modes, which can be
mixed via a linear transformation to generate a cluster state.

A fault tolerance threshold for CV QC in cluster states has
also recently been derived in terms of quantum correlations
below the shot noise [5]. The FWM geometry has been shown
to reach 9 dB of quantum noise reduction, and a cluster
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state with this level of squeezing would represent a promising
step on the path to fault tolerant CV QC. The absence of an
optical cavity in the FWM process allows for a compact and
stable experiment that requires no phase locks, cavity length
locks, or interferometric control, thereby enabling a potentially
practical approach to quantum computation over cluster-state
resources.

II. OPTICAL SPATIAL MODE COMB

The “optical spatial mode comb” is analagous to the
optical frequency comb. The requirements for generation of
a comb involve an amplifier operating on a large continuum
of modes followed by application of a filter to discretize the
continuum (roughly speaking, and keeping in mind that a
single frequency with infinitesimal bandwidth corresponds to
a discrete monochromatic mode of the electric field, a single
“discrete” axial mode in an optical cavity may consist of
multiple monochromatic modes). In the case of a multimode
OPO (either pulsed or cw), the resonant modes of an optical
cavity that overlap with the phase-matching bandwidth of
a nonlinear medium are enough to define a comb. In the
more familiar case involving lasers, the pulse bandwidth
may overlap the gain bandwidth and the axial modes of the
optical cavity simultaneously as one means of making a comb.
Naturally, optical cavities are narrow band spatial filters, with
often only a few modes overlapping with the gain bandwidth
(e.g., a TEM0,0 mode resonant inside a laser cavity). However,
it is possible to use optical cavities to discretize continuous
spatial frequencies into up to three simultaneously concurrent
nonlinear interactions over spatial modes [15]. Without the
discretizing filter, many nonlinear media emit into multiple
spatial modes simultaneously. Perhaps the most important
aspect is that the LO used for detection must match the desired
modes, whether they be in the form of a comb or not. Here, we
discuss using the input of a nonlinear amplifier to shape the
LOs in such a way that an analogy to a frequency comb can
be detected.

Consider a bare nonlinear medium, such as a BBO crystal,
which emits photons into multiple spatial modes simultane-
ously. A biphoton spatial mode may be denoted by a pair
of k vectors, frequencies, polarizations, etc. In the limit of
large gain, quantum correlations may be detected in any of the
spatial modes as long as a LO matching them can be generated.
The quickest route to generating the proper LO is to seed the
same nonlinear process with a coherent field, treating it as an
amplifier, to obtain a bright field whose phase front, frequency,
polarization, etc., match the signal field [19] (see Fig. 1). Thus,
the problem of measuring entanglement over the spatial mode
comb is essentially a problem of producing the proper LOs.
Here we assume that the amplifier is phase-insensitive; the
requirement for generating LOs is that the pump and probe
phases be set for amplification.

A large assumption implicit in Fig. 1 is that an input field
can be expressed in terms of an eigenfunction expansion of the
amplifier modes. For instance, it would be difficult to input a
probe field that has the same wavefront as an arbitrary Schmidt
spatial mode [20], but if the probe field can be expressed as
an eigenfunction expansion of the amplifier modes, then the
generated LO will interfere with a summation of amplifier

FIG. 1. (Color online) A nonlinear amplifier with multimode
vacuum output. Left: the amplifier generates a LO based on an
amplified probe. Right: the amplifier mode corresponding the chosen
LO. The LO will interfere with this vacuum mode during detection.

vacuum spatial modes. That is, if

âLO = �n
i=1αiâi ,

where i corresponds to the ith spatial mode, then the overlap
of the LO with some spatial distribution of output amplifier
modes will be nonzero. This can be empirically verified by
ensuring a large nonlinear gain in the probe field and is
essentially determined by phase matching conditions. This
summation of spatial modes may be considered orthogonal
to a large number of other summations of spatial modes by
showing that the separate sums do not overlap in their image
planes. One may produce multiple LOs as

âLO1 âLO2 = (
�n

i=1αiâi

)(
�m

j=1βj âj

)
. (1)

Assuming that each mode is independently amplified by the
nonlinear medium, the interaction Hamiltonian for a single-
amplifier mode is (assuming χ (2) media)

H = i�χ (2)as,ks
ai,ki

a
†
p,kp

+ H.c., (2)

where each k corresponds to the k vector for a given optical
frequency (signal, s, or idler, i). We may consider that a
single-amplifier mode consists of a set of three k vectors that
satisfies the phase-matching condition ks + ki − kp = 0 (in
the limit of exact phase matching). Many amplifier modes
may be concurrently phase matched, such that one has a set
of independent interaction Hamiltonians (assuming equal gain
for each mode):

H = i�χ (2)
∑

ai,ki
aj,kj

a
†
p,kp

+ H.c. (3)

Solving the equations of motion yields a set of biparite
entangled modes (for i �= j ) whose entanglement witnesses
are the bipartite EPR operators [21]:

X̂i(t) − X̂j (t) = [X̂i(0) − X̂j (0)]e−κt , (4)

P̂i(t) + P̂j (t) = [P̂i(0) + P̂j (0)]e−κt , (5)

where the pump field operater ap has been approximated as
a classical number and subsumed in κ . We note that the form
of Eqs. (3)–(5) implies that the amplifier modes denoted by
ki , kj are coincident with the squeezed eigenmodes of the
system [22]. That is, the interaction Hamiltonian has been
written with a squeezing parameter matrix, H = i�κC · A +
H.c., where A is a field-mode operator vector and C is an
interaction matrix that defines a graph of mode pairs (for the
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FIG. 2. Bipartite graphs for eight entangled modes. Each node
represents a k vector for either the signal or idler, while each
edge represents an entangling interaction. One of the entanglement
witnesses is noted.

case of four modes for brevity):

C = i�κ

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (6)

The corresponding graph states for eight modes are given
in Fig. 2. Note that while each k-vector pair represents an
individual mode of the amplifier, the concept of the mode
is immaterial until measured with a LO. One may produce
two LOs, k+ = k1s + k2s + k3s + k4s , k− = k1i + k2i + k3i +
k4i per Eq. (1) to detect the modes in Fig. 2 with two homodyne
detectors (one corresponding to each LO), which effectively
transforms the graphs to a single bipartite graph. The converse
is also true: one may produce arbitrary spatial mode combs
by selecting appropriate LOs within the amplifier’s phase-
matching bandwidth in order to detect individual k vectors or
combinations of k vectors analogous to those in Fig. 2.

III. DUAL-RAIL CLUSTER STATES
WITH SPATIAL NODES

It was previously shown that EPR states [eigenstates of
the operators in Eqs. (4) and (5)], which are cluster states
of the type in Fig. 2, can be concatenated into a dual-rail
cluster state or quantum wire [9,10,18]. While the proposal
and implementations have been in compact, single OPOs,
it is illuminating to draw a more explicit equivalent picture
via Bloch-Messiah reduction. Unfolding the dual-pumped,
single-OPO cavity in Ref. [10] into a series of OPOs, one can
show that identical two-mode squeezers interfered on a train of
beam splitters leads to a dual-rail cluster state (after applying
a −π/2 phase shift to every odd mode or a redefinition of the
quadrature operators), as shown in Fig. 3.

This picture is analogous to that drawn over the frequency
comb in optical cavities. The differences are in the degree of
freedom used to represent the nodes on each graph. In the axial-
mode case, each node is an axial mode of an optical cavity,
separated by a free spectral range, where two or more pump
fields serve to overlap optical frequencies with an additional
degree of freedom (such as polarization) in order to allow for
interference of distinct modes later (the axial mode pairs that
comprise the EPR states would otherwise not interfere with one
another due to their frequency separation). In the spatial-mode
case, the k vector serves as a stand-in for the cavity axial
modes. Since the superpositions of spatial modes are separable
after diffraction limited propagation, an additional degree of
freedom is not needed in order to interfere distinct modes

FIG. 3. (Color online) An unfolded OPO with multiple concur-
rent nonlinearities can be treated as a system of cascaded OPOs
with single nonlinearites (top). In this picture, each OPO emits into
distinct spatial modes. The interference of each half an EPR state
on balanced beam splitters yields the dual-rail cluster state (bottom),
with weighted edges − 1

2 (blue lines) and 1
2 (orange lines).

at beam splitters and subsequently homodyne detectors. The
entanglement witnesses that need to be measured to verify the
bipartite correlations, between the first two modes for instance,
necessary to form a cluster state are [9]

[(
X

(2)
1 + X

(3)
1

) − (
X

(4)
2 − X

(5)
2

)]
e−κt , (7)

[(
P

(2)
1 + P

(3)
1

) − (
P

(4)
2 − P

(5)
2

)]
e−κt . (8)

The subscripts in Eqs. (7) and (8) denote the frequency in
Fig. 3, while the superscripts denote the k vector.

IV. EXPERIMENTAL IMPLEMENTATION

Here we outline a multispatial mode amplifier configuration
that yields a dual-rail cluster state over the optical spatial mode
comb. The scheme uses a well known nonlinear amplifier:
FWM in alkali vapor based on a double � system near the
D1 [23,24] or D2 [25] transition. The amplifier is based on
a third-order nonlinearity, which is isotropic in homogeneous
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FIG. 4. (Color online) A cylindrical alkali vapor cell with pump
beam propagating through the center and bipartite emission into two
fields symmetric about the pump field. The circle denotes a line on
which all signal k vectors experience the same gain if the pump field
creates a cylindrically symmetric gain region. A Gaussian-shaped
pump would result in such a gain region.

vapor. A finite interaction length quasi-phase-matches a set of
k vectors that fall within an angular acceptance bandwidth [19].
The inverse transverse gain region sets the size of a “spatial
mode” in the far field [26], otherwise known as a coherence
area [27]. These coherence areas can be considered indepen-
dent spatial modes in the sense that they do not interfere in
their image planes and can be detected with separate homodyne
detectors as discussed in Sec. II. The amplifier can be made
analogous to our hypothetical amplifier with equal gain for all
modes by considering one set of modes along a circle within
the angular acceptance bandwidth (the gain is cylindrically
symmetric about the gain region, given the gain region’s own
cylindrical symmetry; see Fig. 4).

The Hamiltonian for the fields along the constant gain circle
is given by

H = i�χ (3)�ai,ki
aj,kj

a
†
p1,kp1

a
†
p2,kp2

+ H.c. (9)

The process is a third-order nonlinearity supported by the
double � system shown in Fig. 5. The two pump fields can
be taken as classical numbers, which reduces the system to an
effective second-order interaction with EPR eigenstates as in
Eqs. (4) and (5).

Using a spatial light modulator (see Fig. 5), multiple probe
fields can be shaped from a single beam in the form of an
image input to the amplifier. Probe fields on one half of the
output circle produce conjugate fields on the opposite half
of the circle, as shown in the bottom half of Fig. 5. If the
squeezing parameters are equal between each mode pair, and
if each “dot” in Fig. 5 does not interfere with any other “dot”
in its image plane, then the entanglement witnesses Eqs. (7)
and (8) apply directly, where each “dot” is a single mode at
one of two frequencies.

The caveat in Fig. 5 is that certain practical parameters
of the experiment must be taken into account. Only a finite
number of independent modes will fit within the constant-gain
region (primarily dictated by the pump focus). For instance, it
has been shown that about 200 modes can fit within the gain
bandwidth for typical pump and probe beam sizes of 1000
μm and 500 μm, respectively, with detunings of 1 GHz and
3036 MHz, and a relative incidence angle of 3 mrad [19]. The
modes were counted by observing the transverse conjugate
beam size within the far field as a function of probe focus for
a constant pump focus. A separate experiment measured the
approximate size and physical arrangement of coherence areas

FIG. 5. (Color online) Experimental setup for a multimode am-
plifier based on FWM. The probe field is derived from the pump
field at an acousto-optic modulator (AOM) before being shaped
by the spatial light modulator (SLM) into a series of “dots.” The
energy-level diagram shows a double � system in Rb vapor at the D1

line (795 nm). Bottom: output modes for the probe (red) and conjugate
(blue) fields for two pump positions within the vapor cell for a given
input probe image. The black and green arrows connecting closed
and open circles, respectively, denote nonlinear interactions between
mode pairs that are correlated in an image reflected symmetrically
about the pump axis. Each line carries equal weight if the input probe
image is coincident with a semicircular gain region symmetric about
the pump axis in the far field. In that case, the graph states shown in
the lower portion correspond to the output EPR states for each mode
pair.

within an image produced by the FWM medium as a function
of pump and probe overlap [28]. These empirical observations
show that it is possible to amplify and separate a large number
of coherence areas within a single FWM process.

In order to scale the number of modes indefinitely, multiple
pumps and multiple probes can be used, as shown in Fig. 6.
This can be accomplished by either splitting pump and probe
fields and using multiple spaces in the same vapor cell or by
cascading multiple vapor cells. The latter option has an added
advantage in that it will allow for cascaded gain regions, which
can lead to increased squeezing [29]. Its similarity with Fig. 3 is
also apparent. The former has the advantage that phase control
is much simpler, as the pump and probe fields may be split
as close to the cell as possible, ensuring that the optical paths
are as close to one another as possible. Each beam in Fig. 6
may be taken to represent LOs for either a single or multiple
k vectors (such as those produced with images as shown in
Fig. 5). The fields can be interfered with one another if the
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FIG. 6. (Color online) Top: cascaded 4WM setup. Each vapor
cell uses an identical pump and probe to amplify a set of LOs.
Phase control must be maintained among every beam, and the vapor
cells must have identical gain profiles. Bottom: a single vapor cell is
spatially multiplexed. Each spatial region uses an identical pump and
probe.

gain regions are identical. It has been shown empirically that
the interference of whole images with their local oscillators
yields high visibility even for complicated arrangements in
which the LOs are amplified and attenuated in multiple optical
paths [30,31], rather similar to the arrangement proposed in
Fig. 7.

Finally, modes with like frequency must be interfered on
beam splitters in order to concatenate their graphs. The LOs
must undergo the same process in order to ensure good mode
matching to the vacuum fields during the detection process;
thus, both the vacuum and the LOs must be interfered on beam
splitters amongst themselves. Then, the LOs and vacuums are
finally mixed during the detection stage.

FIG. 7. (Color online) Schematic interference of four LO combs
with vacuum modes. Each LO pair, denoted by the orange and red
lines, interferes with its corresponding frequency from the other
pump. The vacuum modes (dotted lines) from two separate pumps
interfere with each other in the same manner on the same beam
splitters, spatially separated from the LOs so as not to interfere with
them. Thus, the first set of four beam splitters may be condensed to
two in the experimental setup. In the second set of beam splitters
the LOs interfere with the corresponding vacuum modes. Each line
terminates at a set of balanced detectors. The same beam splitter can
again be used for an entire spatial comb, provided that each coherence
area can be sent to separate photodiodes after (16 photodiodes would
be needed in this example).

A practical question arises from these requirements. It is
natural to consider the question of how many beam splitters
would be required to interfere all coherence areas with each
other. If the number of beam splitters is approximately
equivalent to the number of modes, then the scheme is
perhaps less practical than other schemes, which may use a
single-beam splitter multiplexed in time or optical frequency.
Fortunately, we may likewise multiplex beam splitters spatially
by treating each spatial mode comb as an image. Entire images,
which contain multiple coherence areas, can then be interfered
with one another. This concept was verified empirically in
Refs. [30,31], while the frequency-independent separability of
coherence areas was empirically studied in Ref. [28]. Thus,
a single-beam splitter is needed in order to concatenate two
spatial mode combs and a second beam splitter is needed
for the homodyne detection step. A single-beam splitter
can be used to concatenate multiple spatial mode combs
by further multiplexing a single-beam splitter spatially. The
limit to the number of modes that can be interfered on a
single-beam splitter is essentially dictated by the number
of spatial modes that can be imaged independently in each
port.

Figure 7 shows a schematic setup of the complete system.
Two pump fields generate four LO combs using an input image
on two probe fields, where both input sets are derived from the
same initial field (generally, N pump fields with N probes may
produce 2N LOs with a number of coherence areas, where
the N input sets are all derived from the same initial field).
Because the frequency combs can be treated as individual
images, they can interfere with one another on the same beam
splitter with high visibility. That is, the “dots” in Fig. 5 can be
treated as a single image and interfere with one another both
during the concatenation step and at the homodyne detector
where the LOs and vacuum fields interfere. Afterwards, the
coherence areas are finally separated and sent to individual
photodiodes for balanced detection. In the limit of perfect
LO-signal overlap, the entanglement witnesses can be used
to verify the final state as the dual rail cluster state shown in
Fig. 3 [32].

A. Multimode homodyne detection

The LOs undergo the same interferences and traverse
the same optical paths as the two mode squeezed vacuum
signals, meaning their wavefronts will interfere well with
the signals. However, each independent vacuum mode is
actually an expansion of amplifier modes. If all modes can be
detected, then measuring the bipartite EPR operators should
show squeezing between mode pairs. In the limit that the
LOs are perfectly matched to the signals, the noise on the
position difference operator (chosen for brevity, but other
entanglement witnesses follow similarly) approaches that
of two individual entangled modes (normalized to the shot
noise):

	x2
− = 1 + 2η[G − 1 −

√
G(G − 1)], (10)

where η is the detector efficiency and G is the nonlinear gain.
However, if the LOs are misaligned from the

correct vacuum modes, the detected correlations are
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reduced:

	x2
− = P0

Ptot
[1 + 2ηd (G − 1 −

√
G(G − 1)]

+
N∑

i=1

Pi

Ptot
[1 + 2ηi(G − 1 −

√
G(G − 1)]

+
N∑

i=1

(Ptot − P0 − Pi)

Ptot
[1 + 2ηi(G − 1)], (11)

where Ptot is the total power contained in the LO, P0 is the
portion of the LO that wholly overlaps with the corresponding
spatial modes in the vacuum field, ηd is the detector efficiency,
and Pi is the portion of the LO power that overlaps partially
with the ith vacuum spatial mode, where the overlap is
determined by an effective reduced detector efficiency ηi <

ηd . A typical number for ηd is 95%–96% in off-the-shelf
components (for which the FWM system based on Rb is
capable of 9 dB of quantum noise reduction), while custom
photodiode coatings can achieve efficiencies of greater than
99%. Also, note the constraint on the total power:

N∑
i=1

Pi = Ptot − P0, (12)

which implies that
∑N

i=1 Pi → 0 as P0 → Ptot. The third
term in Eq. (11) is due to the excess noise contained within
uncorrelated vacuum spatial modes that are accidentally
detected in each LO. Note that the nonlinear interaction
spontaneously amplifies all vacuum amplifier modes, and the
LOs are used to pick out each mode in a comb. If the LOs pick
out neighboring modes, they will measure anticorrelations.
This is a disadvantage relative to an OPO, whose misaligned
LO measurement would yield only the first two terms in
Eq. (11) because the optical cavity effectively filters out all
of the vacuum modes that do not overlap with the LO. All
of the entanglement witnesses required to measure the cluster
state will suffer from this excess noise, meaning that the purity
of the cluster state will be degraded by LO misalignment.
Very good alignment of the LOs with their signal modes will
minimize this effect, as it requires P0 = Ptot.

B. Practical considerations

Another consideration is the initial state purity before
homodyne detection. As cluster states are resources for one-
way quantum computers, which run quantum algorithms that

formally start from initialized pure states, quantum computing
with statistical mixtures is not necessarily defined. Therefore,
it is important to consider whether a system that produces en-
tanglement resources is also capable of producing pure states.
We note that the FWM process is under certain conditions
a quantum-noise-limited amplifier [31]. This means that the
noise added to a pure input state is the minimum amount
required by quantum mechanics under these conditions, and
the two-mode output is in a pure two-mode squeezed state.
This is true if all other classical noise sources on the input
can be minimized, meaning the probe is in a coherent state.
This can be achieved by minimizing classical laser noise at the
working analyzer frequency.

Finally, a physical system that can produce cluster states
would not be useful for universal quantum computing without
supporting a non-Gaussian operation [4]. A cubic phase gate
is one operation that would fulfill this requirement [33]. We
note that a large amount of quantum noise reduction is needed
to achieve high cubic phase gate fidelity. The FWM system
is potentially capable of the levels of squeezing needed for a
successful application, but we relegate further discussion of
non-Gaussian operations to a future study.

V. CONCLUSION

In this manuscript we have drawn an analogy between
the optical spatial mode comb and the optical frequency
comb over which dual-rail cluster states can be generated.
We presented an example of an experimental system in which
these cluster states can be generated and detected using images
to synthesize appropriate LOs. The experimental system
considered suffers a potential disadvantage with respect to
the single-OPO implementations, in that excess noise is
introduced for any LO misalignment. However, the system
offers the potential advantages of simple phase control, ease
of alignment, and scalability via the use of multiple gain
regions.

ACKNOWLEDGMENTS

We thank Olivier Pfister and Pavel Lougovski for use-
ful discussions. This work was performed at Oak Ridge
National Laboratory, operated by UT-Battelle for the US
Department of energy under Contract No. DE-AC05-
00OR22725. J.J. acknowledges support from the NSFC
under Grants No. 11374104 and No. 10974057, the SRFDP
(Grant No. 20130076110011), the Shu Guang project (Grant
No. 11SG26), the Program for Eastern Scholar, and the NCET
Program(Grant No. NCET-10-0383).

[1] P. W. Shor, Proceedings of the 35th Annual Symposium on
Foundations of Computer Science (IEEE Computer Society
Press, Washington, DC, 1994), pp. 124–134.

[2] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[3] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188

(2001).
[4] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[5] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).

[6] P. Walther et al., Nature 434, 169 (2005).
[7] X.-C. Yao et al., Nature 482, 489 (2012).
[8] J. Zhang and S. L. Braunstein, Phys. Rev. A 73, 032318 (2006).
[9] S. Yokoyama et al., Nature Photonics 7, 982 (2013).

[10] M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett. 112,
120505 (2014).

[11] J. Roslund, R. M. de Arajo, S. Jiang, C. Fabre, and N. Treps,
Nature Photonics 8, 109 (2013).

043841-6

http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature03347
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1038/nature10770
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1038/nphoton.2013.340
http://dx.doi.org/10.1038/nphoton.2013.340
http://dx.doi.org/10.1038/nphoton.2013.340
http://dx.doi.org/10.1038/nphoton.2013.340


CONTINUOUS-VARIABLE CLUSTER-STATE GENERATION . . . PHYSICAL REVIEW A 90, 043841 (2014)

[12] O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, Phys.
Rev. A 70, 020302 (2004).

[13] R. C. Pooser and O. Pfister, Opt. Lett. 30, 2635 (2005).
[14] M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and

O. Pfister, Phys. Rev. Lett. 107, 030505 (2011).
[15] B. Chalopin, F. Scazza, C. Fabre, and N. Treps, Phys. Rev. A

81, 061804(R) (2010).
[16] S. L. Braunstein, Phys. Rev. A 71, 055801 (2005).
[17] P. van Loock, C. Weedbrook, and M. Gu, Phys. Rev. A 76,

032321 (2007); N. C. Menicucci, S. T. Flammia, H. Zaidi, and
O. Pfister, ibid. 76, 010302 (2007); N. C. Menicucci, X. A. Ma,
and T. C. Ralph, Phys. Rev. Lett. 104, 250503 (2010)

[18] N. C. Menicucci, Phys. Rev. A 83, 062314 (2011).
[19] V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, Science

321, 544 (2008).
[20] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903

(2004).
[21] M. D. Reid, Phys. Rev. A 40, 913 (1989).
[22] R. S. Bennink and R. W. Boyd, Phys. Rev. A 66, 053815

(2002).
[23] C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt.

Lett. 32, 178 (2007); C. Liu, J. Jing, Z. Zhou, R. C. Pooser,
F. Hudelist, L. Zhou, and W. Zhang, ibid. 36, 2979 (2011).

[24] M. Guo, H. Zhou, D. Wang, J. Gao, J. Zhang, and S. Zhu, Phys.
Rev. A 89, 033813 (2014).

[25] R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D.
Lett, Opt. Exp. 17, 16722 (2009).

[26] E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, Phys. Rev.
A 69, 023802 (2004).

[27] O. Jedrkiewicz, Y. Jiang, E. Brambilla, A. Gatti, M. Bache,
L. A. Lugiato, and P. DiTrapani, Phys. Rev. Lett. 93, 243601
(2004).

[28] B. J. Lawrie and R. C. Pooser, Opt. Express 21, 7549
(2013).

[29] Z. Qin, L. Cao, H. Wang, A. M. Marino, W. Zhang, and J. Jing,
Phys. Rev. Lett. 113, 023602 (2014).

[30] A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, Nature
457, 859 (2009).

[31] R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D.
Lett, Phys. Rev. Lett. 103, 010501 (2009).

[32] P. van Loock and A. Furusawa, Phys. Rev. A 67, 052315 (2003);
N. C. Menicucci, S. T. Flammia, and P. van Loock, ibid. 83,
042335 (2011); M. Gu, C. Weedbrook, N. C. Menicucci, T. C.
Ralph, and P. van Loock, ibid. 79, 062318 (2009).

[33] Daniel Gottesman, Alexei Kitaev, and John Preskill, Phys. Rev.
A 64, 012310 (2001)

043841-7

http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1103/PhysRevA.70.020302
http://dx.doi.org/10.1364/OL.30.002635
http://dx.doi.org/10.1364/OL.30.002635
http://dx.doi.org/10.1364/OL.30.002635
http://dx.doi.org/10.1364/OL.30.002635
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevA.81.061804
http://dx.doi.org/10.1103/PhysRevA.81.061804
http://dx.doi.org/10.1103/PhysRevA.81.061804
http://dx.doi.org/10.1103/PhysRevA.81.061804
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.71.055801
http://dx.doi.org/10.1103/PhysRevA.76.032321
http://dx.doi.org/10.1103/PhysRevA.76.032321
http://dx.doi.org/10.1103/PhysRevA.76.032321
http://dx.doi.org/10.1103/PhysRevA.76.032321
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevA.76.010302
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevLett.104.250503
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1103/PhysRevA.83.062314
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1126/science.1158275
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevLett.92.127903
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRevA.66.053815
http://dx.doi.org/10.1103/PhysRevA.66.053815
http://dx.doi.org/10.1103/PhysRevA.66.053815
http://dx.doi.org/10.1103/PhysRevA.66.053815
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1364/OL.32.000178
http://dx.doi.org/10.1364/OL.36.002979
http://dx.doi.org/10.1364/OL.36.002979
http://dx.doi.org/10.1364/OL.36.002979
http://dx.doi.org/10.1364/OL.36.002979
http://dx.doi.org/10.1103/PhysRevA.89.033813
http://dx.doi.org/10.1103/PhysRevA.89.033813
http://dx.doi.org/10.1103/PhysRevA.89.033813
http://dx.doi.org/10.1103/PhysRevA.89.033813
http://dx.doi.org/10.1364/OE.17.016722
http://dx.doi.org/10.1364/OE.17.016722
http://dx.doi.org/10.1364/OE.17.016722
http://dx.doi.org/10.1364/OE.17.016722
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1103/PhysRevLett.93.243601
http://dx.doi.org/10.1364/OE.21.007549
http://dx.doi.org/10.1364/OE.21.007549
http://dx.doi.org/10.1364/OE.21.007549
http://dx.doi.org/10.1364/OE.21.007549
http://dx.doi.org/10.1103/PhysRevLett.113.023602
http://dx.doi.org/10.1103/PhysRevLett.113.023602
http://dx.doi.org/10.1103/PhysRevLett.113.023602
http://dx.doi.org/10.1103/PhysRevLett.113.023602
http://dx.doi.org/10.1038/nature07751
http://dx.doi.org/10.1038/nature07751
http://dx.doi.org/10.1038/nature07751
http://dx.doi.org/10.1038/nature07751
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.83.042335
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310



