PHYSICAL REVIEW A 90, 043840 (2014)
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Quantum optomechanics offers the potential to investigate quantum effects in macroscopic quantum systems
in extremely well-controlled experiments. In this paper we discuss one such situation, the dynamic stabilization
of a mechanical system such as an inverted pendulum. The specific example that we study is a “membrane-
in-the-middle” mechanical oscillator coupled to a cavity field via a quadratic optomechanical interaction, with
cavity damping the dominant source of dissipation. We show that the mechanical oscillator can be dynamically
stabilized by a temporal modulation of the radiation pressure force. We investigate the system both in the classical
and quantum regimes highlighting similarities and differences.
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I. INTRODUCTION

Dynamic stabilization is the process in which an object,
unstable with its static potential, is trapped harmonically due
to the influence of a high-frequency oscillating force [1].
Dynamic stabilization was first introduced by Kapitza for an
inverted classical pendulum stabilized by rapidly oscillating
external modulations [2]. Specifically, Kapitza’s inverted
pendulum was stabilized by an oscillating pivot in the vertical
direction. It can be described by Newton’s equation of motion,

.. . 2 AQ?
0 =sinf | wy — e cos(21) |, (D)

where 6 is the polar angle from the vertical line and A and
Q are the amplitude and frequency of the vibration of the
pivot, respectively. The proper frequency of the pendulum is
wy = /g /L, where g is the gravitational acceleration and £ is
the length of the pendulum.

The physics underlying Kapitza’s pendulum is that large
and rapid oscillations of the pivot compared to the proper
frequency of the pendulum allow the force acting on the
pendulum to alternate between an attractive force and a
repulsive force in time, resulting in a net stabilizing force
for appropriate conditions [3].

Dynamic stabilization of a quantum system driven by a
rapidly oscillating perturbation has been extensively studied
in several papers [4—6]. It has been proposed for the control
of a quantum system in the context of atom optics, for
example, in novel optical trapping [7] and in the stabilization
of a Bose-Einstein condensate (BEC) [8—11]. Such stabilizing
mechanisms have also found applications in trapping ions in
electromagnetic fields [12,13], focusing of charged particles
in a synchrotron [3,14], stabilizing spin-1 BEC [15], and the
control of the superfluid-Mott insulator phase transition [16].

Cavity optomechanics, a research area exploring mechan-
ical degrees of freedom coupled to electromagnetic fields
inside optical or microwave cavities, involves a variety of
experimental setups in which the mass of a mechanical
oscillator ranges from several attograms to kilograms [17-23].
Recent experimental progress has demonstrated cooling a
macroscopic mechanical oscillator to its motional ground
state [24-27], allowing to explore the quantum nature of
massive objects [28,29]. Cavity optomechanics thus paves the
way to investigate dynamic stabilization of a mechanical object
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in either classical or quantum regime as well as at the boundary
of the classical and quantum regimes.

In this paper, we consider an optomechanical system in
which a mechanical oscillator is coupled to a cavity field via
a quadratic optomechanical interaction. This situation can be
realized, e.g., in an ensemble of ultracold atoms trapped at the
extrema of an optical lattice in a high-finesse cavity [30],a BEC
trapped in such a cavity [31], and the so-called membrane-in-
the-middle geometry [32,33]; see Fig. 1. We have shown in a
previous paper [34] that a mechanical oscillator can be unstable
if it is coupled to a cavity field via a quadratic optomechanical
interaction with a negative coupling coefficient. Starting from
this unstable configuration, we propose a stabilizing scheme
in which the radiation pressure force associated with the
cavity field is modulated and explore features of dynamic
stabilization of the mechanical motion in both classical and
quantum regimes. In particular, we derive a time-averaged
potential and demonstrate that the mechanical oscillator can be
stabilized within a certain parameter regime. We also show the
classical and quantum dynamics of the mechanical oscillator
under the effects of the oscillating radiation pressure force as
well as dissipation.

Section II introduces our model system and the unstable
configuration. A scheme for dynamic stabilization of the clas-
sical system based on a time-averaged potential is proposed in
Sec. I1I, and Sec. IV provides simulations of the scheme using
the full time-dependent potential for the mechanics. A master

FIG. 1. (Color online) Membrane-in-the-middle geometry. Two
cavity fields tunnel through a membrane located at the center of a
fixed cavity and interact with the membrane in opposite directions,
resulting in a quadratic optomechanical interaction.
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equation governing the quantum dynamics of the mechanical
oscillator is obtained in Sec. V. Section VI describes numerical
simulations to elucidate the features of quantum dynamic
stabilization in comparison to the classical case. Summary
and outlook are presented in Sec. VII.

II. CLASSICAL DYNAMICS

We consider an optomechanical system in which a mechan-
ical mode of effective mass m and frequency w,, is coupled
to a single cavity field mode of frequency w, via a quadratic
optomechanical interaction. The Hamiltonian describing that
system is

H = Ho + Hm + Hom + HIOSSa (2)
where

H, = hw.a'a + ih(ne ™'a’ — H.c.) (3)

describes the cavity field driven by an external field of
frequency w; with a rate 5, and 4 denotes the bosonic
annihilation operator for the cavity field, with [4,a1] = 1. The
mechanical Hamiltonian is

AD

Hy = 3+ Un(®). @)
where X and p are the position and momentum operators for

the mechanics with the commutation relation [£, p] = ik, and

wl%l A2
Un(®) = 5 ®)

is the potential for the free mechanical oscillator. The quadratic
optomechanical interaction Hamiltonian is

Hon = hgy'dlas?, (6)

where g(()z)
It is assumed throughout this paper that g(()z) is negative-valued
as is appropriate to trapping around a maximum of the cavity
intensity [34]. Finally, H).s represents the interaction of
the optomechanical system with its reservoir and accounts
for cavity and mechanical dissipation with rates x and y,
respectively.

The classical equations of motion are found by replacing
operators by their c-number equivalent in the Heisenberg-
Langevin equations derived from the Hamiltonian Eq. (2),
neglecting noise sources for now. In a frame rotating at the laser
frequency wy, this yields the following classical equations for
the position x, momentum p, and the dimensionless intracavity
field amplitude a,

is the quadratic optomechanical coupling constant.

i=2 )
m
p= —mwix - 2hg((,2)|a|2x —-vp, ®)
) K
a= |: A lg(()z) 2 2:|a+n, 9)

where A, = w; — w, is the pump detuning from the cavity
resonance, k is the phenomenological decay rate of the cavity
field, and y is the mechanical damping rate.
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In the physically relevant regime « >> w,,, the cavity field
adiabatically follows the mechanical mode, and

2 Pyk /(hwy)
[Ac — ¢Px2]) + k274
where Py = hwy |n|?/(2«) is the continuous wave input power

of the cavity. Substituting this expression into Eq. (8) then
gives

2
la|” ~

(10)

. 4g Pox Joor,
p=—mwx — 0 o —x—yp. (1D
[A — 80 X ] +7

In the absence of mechanical dissipation, y = 0, the above
equations of motion for the mechanical system can be put in

the canonical form X = p/m,p = ——93’1‘, with Hamiltonian
»?
Hy = — + Us(x) (12)
2m

and static mechanical potential

4P A — gt x?
— Up(x) — —Carctan | <80 | (13
oL, K/2

This highlights the key lesson that adiabatic elimination of
the cavity field involves concomitant replacement of the free
mechanical potential U,,(x) by the static mechanical potential
U, (x) in the dynamics of the mechanical mode.

Importantly, transient cases may also be treated in the
appropriate regime. For example, an input power Pp,(¢)
modulated at frequency 2 gives rise to a time-dependent
potential U (x,t), generalizing the static mechanical potential,
provided that k¥ >> €2, so that damping of the cavity intensity
toward steady state happens on a much faster time scale than
the applied modulation. Under these conditions, [H,, + H,;]
may be replaced by the reduced mechanical Hamiltonian,

Us(x)

»?
H, = |:—+U(x7l)], (14)
2m

following adiabatic elimination of the cavity field. We shall
use this in the next section and also in the quantum theory.

The static potential Uy(x) exhibits a single minimum at
x = 01if Py is less than the critical power,

Al fon /w ’

whereas a symmetric double-well potential centered on x = 0
results if the power is greater than P.; see Fig. 2. In that
case the repulsive radiation pressure acting on the oscillator
centered at x = 0 is greater than the mechanical restoring
force. For small displacement from the origin x = 0, U,(x) can
be approximated as an inverted oscillator of frequency [34]

, | 4P/or g(()z)/(

, 16
(,()m m Ag +K2/4 ( )

wy) =

rendering the origin unstable. This is the situation that we
consider in the following.

In Fig. 2 and in all following figures we measure the
position, momentum, and energy of the mechanical mode
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FIG. 2. (Color online) Static mechanical potential for an input
power greater than the critical power P,. The parameters are « /w,, =
200, A /@y = 0, gPx2/w, = —0.01, Py/(Eow.) = 1260. For our
parameters, the critical pumping power is P./(Eow.) = 1250 and
the effective mechanical frequency is wy/w,, = 0.09. Here and in all
following figures we measure the position, momentum, and energy
of the mechanical mode in units of the natural length xy = «/A/mw,,,
momentum py = «/mhw,,, and energy Ey = hw,,, respectively.

in units of the natural length xy = +/h/mw,, momentum
Po = «/mhaw,, and energy Eg = hw,,, respectively.

III. DYNAMIC STABILIZATION

In this section we investigate a scheme to stabilize a
mechanical oscillator at the unstable center illustrated in Fig. 2.
Recalling that Kapitza’s pendulum can be stabilized by a
rapidly oscillating force, here we propose rapidly modulating
the input power P;,(¢) below and above the critical power: The
potential at the center then concomitantly oscillates between a
maximum and minimum and the force acting around the center
oscillates between repulsive and attractive.

We consider specifically a modulation of the form

Ppn(t) = Py — Asin(2t), A < Py, an

where 2 and A are the frequency and amplitude of the
modulation, respectively. Throughout this paper we choose
Py > P, so that the mean input power generates a symmetric
double-well potential with unstable center for the mechanics
in the absence of the modulation. The amplitude of the
modulation is chosen positive with the constraint A < Py so
that the continuous wave input power remains nonnegative for
all times.

The input power Eq. (17) yields a time-dependent potential,

Ux,t) = Ug(x) 4+ u(x,t)

mao?, 2 4Py |:AC — g(()z)xz]

—— arctan
2 wy, K/2

4A Ao — g(()z)x2 .
+ —arctan | —————— | sin(2¢),  (18)
wr K/2

where the second line corresponds to the static portion U, (x)
of the potential, which alone produces an unstable centered
mechanical mode, and the third line gives its oscillating portion
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FIG. 3. (Color online) Time-dependent potential for the mechan-
ics at + =0,7/Q (blue solid line), t = 7 /(22) (green dashed
line), and ¢ =37 /(2Q2) (red dotted line). Here, Py/(E¢w.) =
1260, A/ Py = 1, Q/w,, = 1.8 and the other parameters are the same
as those described in the legend of Fig. 2.

u(x,t). Figure 3 shows the static potential U(x) (solid blue
line) along with the time-dependent potential at the times at
which it reaches the maximum and minimum powers P, =
Py + A (red dotted line) and P, = Py — A (green dashed line).
Note that the net force at the center x = 0 is attractive for the
mechanical potential corresponding to the minimum power
and repulsive for the maximum power. The alternating sign of
the net force acting at the center is what raises the possibility
of dynamic stabilization of the mechanical motion.

To develop a physical understanding of how the mechanical
mode can be stabilized, we derive a time-averaged mechanical
potential and identify the parameter regime for the modulation
to realize dynamic stabilization of the mechanical motion.

The potential Eq. (18) yields for the mechanical mode the
Newton’s equation of motion

dUy(x)  du(x,t)
dx ax

Here the static force Fy(x), which has only spatial dependence,
is

mix = Fy(x) + f(x,t) =

19)

4g8” Pok Jw,
F,(x) = —ma),ix — 0 DI R
[Ac — &0 xz] +7

and the radiation pressure force f(x,?) due to the modulation
of the input power is

(4g(()2)A/c /a)L)x
2 2«
[Ac = 5] + 5
and is separable into spatial and temporal parts.
Following the treatment in Refs. [1,2] we write the

mechanical coordinate as a sum of slow and fast varying
variables,

(20)

flx,t) = sin(Q1) = A(x) sin(2r) (21)

x=x+¢, (22)

where it is assumed that |X| > |¢|, and the bar denotes a
time-average over one oscillation cycle with a period of T =
27 /2. Here, X is a slowly varying variable with respect to
T and describes the macromotion of the mechanics, and ¢ is
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the rapidly oscillating variable with zero mean that describes
the micromotion of the mechanics. Substituting Eq. (22) into
Eq. (19) and expanding the right-hand side of Eq. (19) for the
rapidly oscillating component ¢ to first order, we obtain

dF; af

I x:f-i-f()f,t)—i-{a E (23)

X=X

m¥ +mé = Fy(¥)+ ¢

We separate the fast varying portion of this equation as
m¢ ~ f(E.0). 24)

Substituting the approximate solution ¢ () ~ — ﬁ f(t)of this
equation into Eq. (23) and taking the time average over the
period T yields the equation of motion for the slowly varying

variable
; ! af (x,1')
¥ = F. (%) — dr' f(x,i)y——=
mi=ES) =T f,_T AR T
dU (x)
dx (25)

For simplicity in notation we hereafter replace x with x in this
section with the clear understanding that in the time-averaged
theory x refers to the slow portion of the mechanical motion.
The time-averaged potential governing the macromotion of the
mechanics is then given by

ma),zn)62 4P |:AC — g(()z)x2:|

Ux) = — — arctan
K/2

2 wyr

2
A? 28k Jw

" < 2) go@)/ | O

m2 (Ac—go x?) +%5

where the first two terms on the right-hand side coincide with
the static potential U,(x) and the last term arises from the
second term on the right-hand side of Eq. (25) and accounts
for the effects of the modulation on the macromotion.

The factor A?/(m$?*) multiplying the last term in Eq. (26)
implies that a large amplitude of the modulation A can lead
to an enhanced effect on the macromotion, while a high
frequency 2 tends to diminish the effect of the modulation
on the macromotion. For this reason one might be tempted to
decrease the modulation frequency to enhance the effect of the
modulation. However, in the derivation of the time-averaged
potential we assume that the macromotion is much slower
than the micromotion. The essence of this assumption is
basically the same as the adiabatic elimination of a fast
variable in quantum optics [35]. This assumption allows one to
adiabatically eliminate the rapidly varying variable ¢ on a time
scale of T = 27/, resulting in the time-averaged potential
U(x) governing only the macromotion of the mechanics.
Therefore, the modulation frequency 2 must exceed wy, the
effective frequency of the mechanical motion at the center. If
this is not the case the micromotion cannot be separated from
the macromotion, and hence the description of the mechanical
motion in terms of the time-averaged potential breaks down.
Thus, A% /(m$2?*) must be large enough that the modulation has
significant contributions on the macromotion of the mechanics
even in the high-frequency regime.

Figure 4 shows the static potential (solid blue line) as well
as the time-averaged potentials for three different values of
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FIG. 4. (Color online) Time-averaged potential for several values
of the modulation amplitude A with a fixed modulation frequency
Q/wy, =18, A/Py =0.20 (green dashed line), A/Py = 0.26 (or-
ange dot-dashed line), A/Py =1 (red dotted line), along with the
static potential (blue solid line). Other parameters are as described in
the legend of Fig 3.

the modulation amplitude A with fixed modulation frequency
Q. It illustrates that for a small modulation amplitude,
the time-averaged potential remains a double-well potential
of reduced depth, which retains a local maximum at the
center (green dashed line). For large enough modulation
amplitude, however, the time-averaged potential develops a
local minimum at the center (orange dot-dashed and red dotted
lines), indicative dynamic stabilization of the mechanical os-
cillator, the frequency of the time-averaged stabilized potential
increasing with A.
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FIG. 5. (Color online) Stability domain of an optomechanical
oscillator located at the center, for an input power modulated
according to Eq. (17), for the parameters described in the legend
of Fig. 3. The oscillator is dynamically stable in the region above
the dashed blue line (blue-colored region). The black dots denote the
points used in the simulations described in the legends of Figs. 7-10,
and label these points in the figures. In all cases Q/w,, = 1.8, and
(A/Py) = (a) 0, (b) 0.10, (c) 0.20, (d) 0.26, and (e) 1.
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The dynamic stability at the equilibrium position x = 0 can
be evaluated using the curvature of the potential

D— d*U(x)

— 27)
dx? |._,

where U (x) is the time-averaged potential. Positive D ensures
that small mechanical oscillations around x = 0 are confined
to the trap leading to stability. In contrast, negative D indicates
that the time-averaged potential acquires a local maximum at
x = 0, rendering the mechanical mode unstable. Based on this
criterion, Fig. 5 shows the boundary between the unstable and
stable regimes (blue dashed line) in the (2/w,,, A/ Py) plane.
The mechanical mode at the center is unstable in the regime
below the boundary (unshaded region) and becomes stable in
the regime above the boundary (blue-colored region).

IV. CLASSICAL SIMULATIONS

This section presents selected simulations of the classical
dynamics of the system for the driving frequency Q2 /w,, = 1.8
(R2/wo = 20), for which the adiabaticity condition 2 >> wy is
fulfilled and (A/ Py) = (a) 0, (b) 0.10, (c) 0.20, (d) 0.26, and
(e) 1; see Fig. 5. For the parameters of that figure time-averaged
potential develops a minimum at x = 0 for (A/Py) > 0.20,
so that cases (a)—(c) are expected to be classically unstable,
whereas cases (d) and (e) are stable according to the time-
averaged potential. However, by construction that potential
captures only the low-frequency mechanical macromotion
resulting from the modulation, but not the high-frequency
micromotion. To explore the full classical dynamics we now
include the time-dependent potential U (x,#) with and without
mechanical dissipation and compare with expectations for
dynamic stabilization based on the time-averaged potential.

We start from Newton’s equation of motion for the mechan-
ics including both the time-dependent forcing, dissipation, and
associated thermal noise,

2 48(()2) Pin(t)K/wL

mi = —mw,x —

x—yp+§,  (28)
2 2 P
[Ac — g5 + 5
where Pp,(7) is given by Eq. (17), the classical thermal
fluctuations possess a two-time correlation function [36],

(EWEE)) = 2mykpTs(t — 1), (29)

where kp is the Boltzmann constant, and 7 is the temperature
of the heat bath of the mechanical oscillator. We note that here
x is the full mechanical coordinate as opposed to the time-
averaged value x. In order to explore the full range of dynamics
of the mechanical oscillator, we consider an ensemble of
initial conditions for the position and momentum chosen from
Gaussian probability distributions with standard deviations
oy = x0/~/2 and o, = po/ V2, respectively. The joint proba-
bility density for the initial positions and momenta is given by

1

P(x,pt =0)= ——e /% P05, (30)
7T X0 Po
and the associated energy distribution reads
P(E/Eo) = 2 2E/Eo, (31)

with mean energy E = E(/2, as shown in Fig. 6.
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FIG. 6. (Color online) Initial energy distribution of the mechan-
ical oscillator (blue solid line) with the mean energy of E = E;/2
(gray dashed line).

A. Undamped case

We first consider the situation where the mechanical
oscillator has a sufficiently high quality factor Q,, = w,/y
that dissipation can be neglected over time scales of interest.
This situation allows the effects of the modulation of the
radiation pressure force on the classical mechanical oscillator
to be highlighted. For a given set of parameters, we generated
1000 trajectories from a random sample of initial positions
and momenta generated from the Gaussian probability density
Eq. (30). We display them in the same color-coded two-
dimensional plot in such a way that the darker a region,
the more trajectories cross that region: The resulting plots
may then be viewed as spatial probability densities (with
appropriate normalization).

Figures 7(a)-7(e) summarize results of such simulations
for the parameters marked by black dots in Fig. 5 and labeled
(a)—(e) in the corresponding figure caption. Figure 7(a) shows
the dynamics of the mechanics in the static double-well
potential, indicating that the mechanics is neither localized at
the center nor bounded in one of the local potential wells. This
arises since the initial mean energy E;/2 of the mechanics
is higher than the depth of the static double-well potential.
The relatively high probability density at the center arises due
to the fact that there is a local potential maximum there and
the trajectories therefore tend to slow down and linger in the
vicinity of the center.

As indicated in Fig. 5, dynamic stabilization arises for
modulation amplitudes (A/Py) > 0.20. This is borne out, to
an extent limited by the impact of micromotion as discussed
below, by a comparison of Figs. 7(b), 7(c) and 7(d), 7(e).
In the first two cases, the modulation amplitude is not large
enough to trap the mechanics close to the center. Instead,
the trajectories explore the spatial extent of the double-well
potential spanning the energy range from the potential
minimum up to an additional energy of E(/2. In contrast, in
Figs. 7(d) and 7(e), which are for (A/Py) > 0.20, one can
discern the onset of the predicted dynamic stabilization of the
probability around the center.

Importantly, however, micromotion makes the sharp
unstable-to-stable transition predicted by the static potential
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FIG. 7. (Color online) Trajectories of the classical mechanical
oscillator with initial conditions generated at random from the
Gaussian distribution function Eq. (30) with o, :xo/ﬁ, 0, =
po/~/2, and Q/w, = 1.8. The curves follow the labeling of
Fig. 5 with values of (A/Py) given by (a) 0, (b) 0.10,
(c) 0.20, (d) 0.26, and (e) 1. Here, y/w, = 1075, T =0,k /w,, =
200, A /wy = 0, gPx2/w, = —0.01, Py/(Eqw;) = 1260.

much less evident. The transition to stability is now much
more progressive, with the trapping becoming gradually more
pronounced as the modulation amplitude is increased past
(A/Py) = 0.20. Still with this important caveat these results
validate the concept of dynamic stabilization of an optome-
chanical oscillator in the absence of mechanical dissipation.

B. Damped case

To explore the effects of mechanical dissipation, Fig. 8
repeats the same simulations as in Fig. 7 but now including
damping of the mechanical oscillator via coupling to
a reservoir at zero temperature. For the simulations in
Figs. 8(a)-8(c) the modulation amplitude (A/Py) < 0.20, and
each trajectory ultimately gets trapped in one or the other
of the wells of the time-averaged double-well potential, plus
some high-frequency micromotion. The amplitude of the mi-
cromotion is quite large due to the fact that the amplitude of the
time-dependent radiation pressure force appearing in Eq. (21),

4g(()2)A/c/a)L
[Ac — g(()z)xz]2 +K2/4

depends on the mechanical displacement x. It is small near
the center but can become significant around the minima of
the double-well potential.

Turning next to the cases with (A/Py) > 0.20 shown in
Figs. 8(d) and 8(e), the trajectories damp into the center
consistent with the idea of dynamic stabilization. These
results show that the concept of dynamic stabilization survives

Ax) = X, (32)
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FIG. 8. (Color online) Trajectories of the classical mechanical
oscillator in the presence of a viscous damping force for a reservoir at
zero temperature. Here, y /w,, = 2 x 1072, T = 0. Other parameters
as described in the legend of Fig. 7.

the inclusion of mechanical dissipation, the stable-unstable
transition following closely the predictions based on the
time-averaged potential.

V. QUANTUM DYNAMICS

To properly account for fluctuations and noise in the
quantum regime, we find it convenient to work in the
Schrodinger picture, where the combined field-mechanics
system is described by the master equation

pt) = —;—i[H,m)] + (Lo + L)1), (33)

where H = H, + H,, + H,,, [see Egs. (3)-(6)], and L,, and
L, are standard Lindblad forms that describe the dissipation
of the mechanics and the cavity field due to the coupling to
their respective reservoirs, which are assumed for simplicity
to be at zero temperature 7 = 0.

For fast dissipation of the optical field, x > w,,, we assume
that decoherence prohibits the build up of quantum correlation
between the two subsystems, so that the total density operator
can be factorized as

p(t) X P (1) @ po(t). (34

By taking partial traces over the mechanics and the optical
field, it is then possible to get reduced master equations for the
two subsystems:

. i i
P = = [H + hgg (@10} 2% pu] + Lopw. (35

. i st
po=—7[H, + e ata(3%),00) + Lopo.  (36)
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Note that because of the approximate absence of correlations
between the two subsystems, it is only the mean photon
number that appears in the master equation for the reduced
density operator of the mechanics, and likewise only the
expectation value (£?) that appears in the master equation for
the field mode. This indicates that the frequency of the field
mode is shifted by the optomechanical interaction from w, to
w: + géz) (£2), in keeping with expectations from the classical
analysis.

The next step is to adiabatically eliminate the optical
field. While we make use of a master equation approach for
numerical convenience, it is particularly instructive to derive
the approximate quantum reduced mechanical potential using
a Wigner representation. This is outlined in Appendix, which
shows that the adiabatic elimination of the cavity field in
the regime where k > w,, allows to replace [H,, + H,,] =

[H, + hg((a'a)£2]in Eq. (35) with the reduced Hamiltonian

ﬁZ
H, = [— + U()G,t)j| . (37)
2m

To gain some insight into how this replacement manifests itself
in the quantum theory it is useful to consider the quantum
averaged reduced potential (U(%,t)), with U(%,t) given by
Eq. (18) with x — %. Then, consistent with the fact that only
(%2) appears in the master equation (36) for the field mode,
we factorize products M = #)",n=0,1,2,..., yielding
the result (U(%,t)) = U(y/(£2),t). Given that we consider
a potential that is symmetric around the origin, and taking
(%) = 0 for a symmetric initial condition, then Ax = /(%2),
and the quantum averaged reduced potential U(Ax,t) is
the same as the classical one with the classical mechanical
displacement replaced by the root-mean-square displacement.
In this way the properties of the classical reduced potential
also manifest themselves in the quantum theory, meaning that
quantum dynamic stabilization is also a possibility.

Bringing the above results together yields the effective
master equation for the mechanics

. i [ p? R
om=—=|—+UE),0m | + L om- (38)
2m

R

Then expanding the density matrix for the mechanics in the
position representation as

pult) = / dx / dx pue X D] (39)

and substituting into the master equation (38) yields the
equation of motion

9 ,
Epm(x,x ,1)
_ {% (aa_; _ gz) _ %[U(x,t) )
L (et an)a e (L LY
- v, _x/)z} P 1). (40)
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In future work we plan to go beyond the approximations
underlying this equation, namely the decorrelation approxima-
tion Eq. (34) and the adiabatic approximation resulting in the
reduced Hamiltonian Eq. (37), but for this proof-of-principle
study, Eq. (40) is the basis of our study of quantum dynamic
stabilization.

VI. QUANTUM SIMULATIONS

We used a finite difference method to solve the second-order
partial differential equation, Eq. (40), on a finite spatial grid,
making sure that the density matrix is negligible at the edges
of the grid and allowing the norm of the density matrix to be
conserved to a high degree of accuracy. For all the following
simulations it is assumed that the mechanical oscillator is
initially prepared in the quantum mechanical ground state
of the bare harmonic trapping potential with frequency w,,
and average energy E(/2, thus allowing comparison with the
classical simulations.

A. Undamped case

As in the classical case we first consider the case where
the mechanical damping rate is small enough compared to the
mechanical frequency that it may be neglected over the time
scale of our simulations, and the evolution of the system is
Hamiltonian. Figure 9 shows plots of the spatial probability
density

P(x,t) = pp(x,x,t), 41

0 20 40 60 80 100
wmt

FIG. 9. (Color online) Time evolution of the spatial probability
distribution of the quantum mechanical oscillator initially prepared in
the ground state of the bare harmonic trapping potential of frequency
w,,. Here, the parameters employed and plot labels are identical to
those described in the legend of Fig. 7.
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that are in one-to-one correspondence with the classical results
shown in Fig. 7. Recalling that for the chosen parameters
classical dynamic stabilization arises for modulation ampli-
tudes (A/ Pp) > 0.20, classical stabilization is expected in the
plots in Figs. 9(d) and 9(e).

Figure 9(a) shows the quantum dynamics for the case of the
static double-well potential. The main distinctions with respect
to the classical result of Fig. 7(a) are the pronounced quantum
interferences. Such “quantum carpet” patterns, characteristic
of quantum interferences of mechanical wave packets in bound
potentials [37], are a distinct and expected feature in all of the
above cases in comparison to the classical case. For modulation
amplitudes (A/ Py) < 0.20, Figs. 9(b) and 9(c), the probability
density is spatially extended and, similarly to the classical case,
bounded by the potential barriers given by the time-averaged
double-well potential evaluated at the average energy Ey/2
of the initial condition. Furthermore, similar to the classical
case, the micromotion is largest at the boundary of the spatial
probability distribution of the mechanics since the amplitude
of the time-dependent radiation pressure force A(x) in Eq. (32)
is the largest at that point.

For modulation amplitudes above the threshold for dynamic
stabilization, Figs. 9(d) and 9(e), the spatial width of P(x,?)
decreases. As in the classical case, the micromotion softens
the transition to strong dynamic stabilization about x = 0.
Except for the quantum interferences characteristic of wave
packet dynamics in a potential well, the quantum and classical
cases yield therefore quite similar probability densities. As
such our results validate the concept of dynamic stabilization
of a quantum optomechanical oscillator in the absence of
damping.

B. Damped case

The contrast between the classical and quantum cases
is more pronounced in the presence of damping, as shown
in Fig. 10, which is in one-to-one correspondence with the
classical results in Fig. 8. For the case of a static mechanical
potential with no applied modulation, see Fig. 10(a), P(x,t)
is asymptotically split with dual peaks at the local minima
of the underlying double-well potential, in agreement with
expectations from the classical theory. This splitting persists
for lower values of the modulation amplitude, see Fig. 10(b).
In Sec. IV, Figs. 8(c) and 8(d) illustrated that in the case
of the classical oscillator damped by a reservoir at zero
temperature, a sharp transition occurs from the unstable to
stable regime at (A/Py) = 0.20. In contrast, the transition to
dynamic stabilization is much more gradual in the quantum
theory, as illustrated by Figs. 10(c) and 10(d), which straddle
the threshold with little change in features. This is a purely
quantum effect: while a damped classical oscillator at zero
temperature does not experience any noise, the corresponding
quantum oscillator experiences quantum noise, which blurs the
classical stability transition. Dynamic stabilization still occurs
for sufficiently large modulation amplitudes, as illustrated
in Fig. 10(e) for (A/Py) = 1. Once again we see that
for sufficiently large modulation amplitudes the probability
densities showing dynamic stabilization from the quantum
and classical theories are quite similar, modulo the expected
quantum interferences.
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FIG. 10. (Color online) Time evolution of the spatial probability
distribution of the damped quantum mechanical oscillator initially
prepared in the ground state of the harmonic potential of frequency
w,,. Here, the parameters employed and plot labels are identical to
those described in the legend of Fig. 8.

C. Phase-space distributions

Further information and insight regarding dynamic stabi-
lization in the classical and quantum domains can be obtained
from the corresponding phase-space distributions. For the
classical case this is constructed by plotting the ensemble of
trajectories in the (p,x) plane and interpreting the density of
trajectories as the probability density. For example, Fig. 11(a)
shows the classical phase-space distribution corresponding to
the results in Fig. 7(a) for a time w,,t = 100. For the quantum
case the phase-space distribution is obtained from the Wigner
quasiprobability distribution,

1 [ 2ipy
W(x,p,t) = —nh/ (X + Y1pu(Olx — y)e 2PIhdy  (42)
—00

and Fig. 11(c) shows the quantum phase-space distribution
corresponding to the results in Fig. 9(a) for a time w,,t = 100.
The quantum Wigner distribution displays negative regions,
seen as white, these being signatures of nonclassicality. We
point to these regions as they appear in our numerics but
do not want to overemphasize their significance given the
approximations underlying Eq. (40). Rather our goal is to
demonstrate that dynamic stabilization is also possible in the
quantum domain.

In Fig. 11 the upper row shows the classical phase-
space distributions for (a) A/Py =0, the case of a static
mechanical potential, (b) A/Py = 0.20, and (¢) A/ Py =1,
for a time w,t = 100, all other parameters being the same
as before. The lower row of plots labeled Figs. 11(d)-11(f)
are the corresponding quantum phase-space distributions.
Comparing upper and lower rows, we see that the classical and
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FIG. 11. Phase-space distributions of the classical oscillator (upper row) and corresponding Wigner quasiprobability distributions of the
quantum oscillator (bottom tow) at time w,,t = 100 in the absence of dissipation. Here, y /w,, = 107%, Q/w,, = 1.8, and (a, d) A/ Py =0,

(b,e) A/ Py =020, (c,f) A/ Py = 1,k /w,, =200, A./w, =0, gPx}

Jwn, = —0.01, Py/(Eowr) = 1260. The regions lighter than neutral gray

(see scales on the side of the plots) correspond to negative values of the Wigner function.

quantum plots share broad structural features while displaying
marked differences in detail. For example, Fig. 11(a) for
the static mechanical potential shows the classic figure-eight
phase-space portrait characteristic of a double-well, while
Fig. 11(d) reflects similar structure plus oscillatory structures
and negative regions that are uniquely quantum. The same

(a) (b)

5

5

P/po(dfs 25

comments apply to Figs. 11(b) and 11(e) for A/ Py = 0.20,
which is below the threshold for dynamic stabilization. For
the results shown in Figs. 11(c) and 11(f) for A/ Py =1, we
see that fluctuations in the displacement x around the origin are
reduced with respect to the other examples, which is consistent
with the fact that dynamic stabilization is expected in this case.

20
10
0
-10
-20
-25 0 25 -

-0.05

(©)

5

o

-5

=

)5
x /o

FIG. 12. Phase-space distributions of the classical oscillator (upper row) and corresponding Wigner quasiprobability distributions of the
quantum oscillator (lower row) at time w,,¢ = 300. Both classical and quantum oscillators are damped via a reservoir at zero temperature with
y /w, = 2 x 1072, Other parameters are as described in the legend of Fig. 11.
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Note that although the fluctuations in the displacement are
reduced there remain large positive and negative variations in
the momentum p. This may be traced to the micromotion,
which, although it has small spatial extent, reflected by the
reduced displacement fluctuations in Figs. 11(c) and 11(f),
can nonetheless be associated with a large time-oscillating
momentum due to its high frequency. As for the orientation of
the phase-space distributions in Figs. 11(b) and 11(e), or 11(c)
and 11(f), this depends on the specific choice of dimensionless
interaction time w,,t since the micromotion is synced with the
applied modulation.

The impact of quantum noise on the behavior of the
quantum oscillator is explored in Fig. 12, which is for the
same parameters as used in Fig. 11 but including damping
at T = 0 and for a time w,,t = 300. In all cases the spatial
extent of the classical phase-space distributions are much
narrower than their quantum counterparts, which reflects the
absence of noise in the classical case alluded to earlier. In
Figs. 12(a) and 12(d) for the static mechanical potential the
phase-space distributions show equal peaks around the minima
of the double-well potential, whereas dynamic stabilization
is clearly evident in Figs. 12(c) and 12(f). Furthermore, the
regions indicative of nonclassicality are no longer present in
the presence of damping for these examples.

VII. SUMMARY AND OUTLOOK

We have investigated the concept of dynamic stabilization
of a mechanical oscillator based on an optomechanical
variation of the Kapitza pendulum problem that involves the
modulation of the radiation pressure force. A time-averaged
potential was derived that describes the dynamics of the
mechanics in situations where the optical field can be adiabat-
ically eliminated. Predictions of the time-averaged potential
description with numerical simulations of the mechanics were
compared that include the effects of micromotion as well,
both in the classical and the quantum regimes. We found that
especially in those situations where the mechanical damping
can be ignored, micromotion plays an important role and
significantly softens the transition from the unstable to dynam-
ically stabilized regimes. Mechanical damping significantly
reduces the impact of micromotion, though, especially in the
classical regime. In particular, at zero temperature and in
the absence of thermal noise the dynamics of the classical
optomechanical oscillator closely follows the predictions of
the time-averaged potential stability analysis. This is not the
case for a quantum mechanical oscillator, where even at zero
temperature quantum noise significantly softens the threshold
between stable and unstable regimes.

Our analysis of the quantum regime relied on the fac-
torization of the density operator for the mechanics and
the optical field, eliminating the possibility of bipartite
entanglement between the two systems and the possibility
of considering the potential impact of quantum correlations
on dynamic stabilization. We expect that these issues will
be most relevant in situations where the decoherence of
both subsystems occurs on comparable time scales. While
it seems unrealistic to realize such a situation in the optical
regime of quantum optomechanics, the situation might prove
more favorable with microwave fields, where high Q factors

PHYSICAL REVIEW A 90, 043840 (2014)

and long photon lifetimes, of the order of a fraction of
a second, have been previously realized. Future work will
expand on our analysis of dynamic stabilization to focus on
these issues, including the role of quantum noise, includ-
ing shot noise and radiation pressure noise, and bipartite
entanglement.
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APPENDIX: ADIABATIC ELIMINATION OF THE CAVITY
FIELD IN THE QUANTUM REGIME

This appendix presents details of the derivation of the
reduced mechanical potential in the quantum regime. We
follow the approach in Refs. [38—40] to adiabatically elim-
inate the cavity field so that the mechanics experiences the
reduced potential in the quantum regime. The dynamics
of the optomechanical system is described by the master
equation (33). Introducing the Wigner distribution for the
mechanics,

dod
W(x p) = /:/ o MT e ip(E—x)+io(p— P)p} (A1)

the master equation (33), is transformed into

A

T X 5 5 .
W = —%[HD,W] + LW+ {——5 + —(mw2x)} W

dx op
d AN\ ..
—ig? (24 ie— — = )ataw
ap 4 ap?
' . ) hZ 82 N A
+lg(2) <X2 — lhx$ — Zﬁ) WaTCl + »me» (A2)

where Tr,{-} denotes partial trace over the mechanics, so
that W (x, p) is a density operator for the cavity field and a
c-number quasiprobability distribution for the mechanics, and
L,»W describes mechanical dissipation.

Taking a partial trace over the Hilbert space for the cavity
field, the time evolution of the Wigner function for the
mechanics is then given by

(2hg(2>x1) + Ly W, (A3)

where W,, is obtained by taking the partial trace of W over the
cavity field, W,, = Tr,{W}and I = Tr,{a’aW}. Note that this
equation is not closed due to the presence of I on its right-hand
side.

In order to construct a closed equation of motion for the
mechanics Wigner function we now adiabatically eliminate
the cavity field. In terms of the normalized time T = w,,t, di-
mensionless mechanical position and momentum, ¥ = x /x,
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B = p/po, the equations of motion for I and o = Tr,{aW}
are

AR F A 05+ sl
e—=—I+-a"——at+e{—— —x
ot p p oz’ T a5
9 2,2 ~m
e (280 050 ) e, (A4)
op W W
9 Ac _ @ 22 1
2% _ So B0t o+ Tw,
ot K 2 K

2).2 . 2 A
9 9 i

+ B0 o <—x + i—)a fea, (A5
p [0

where € = w,,/k is a small parameter in the adiabatic regime,
J =Tr,{afaatawy, and K = Tr,{a'aaw}. Expanding all
quantities I,J,K, and « in powers of €, for example
I=>),_,€",, one can in principle solve the differential
equations to arbitrary order. However, for x > w,, and thus €
approaches to zero, it is sufficient to restrict the description to
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order €Y. This zeroth order solution is found to be

Wy
o= — (2) (A6)
—i(Ac— 2) +u/2’
* ook 2
g Izl (A7)
K (A — gPx2) + 274

Substituting Eq. (A7) into Eq. (A3), yields for the mechanics
Wigner distribution the closed equation of motion

. 0 0
Wm<x,p>={——£+ U<x>+£} e (A8)
0x ap
where
4P A, — gx>
Ui(x)=U,(x) — —arctan| ———— |, (A9)
wy, /2

coincides with the classical reduced mechanical potential
Eq. (13). This justifies also using the quantum version of this
potential in the quantum description of Secs. V and VI. Note
that as in the classical case the elimination of the cavity field
still holds provided the modulation frequency of the input
power is much smaller than the cavity decay rate, k > Q.
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