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Quantum dynamics of a two-level emitter with a modulated transition frequency
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(Received 8 August 2014; published 20 October 2014)

The resonant quantum dynamics of an excited two-level emitter is investigated via classical modulation of its
transition frequency while simultaneously the radiator interacts with a broadband electromagnetic field reservoir.
The frequency of modulation is selected to be of the order of the bare-state spontaneous decay rate. In this way,
one can induce quantum interference effects, and consequently, quantum coherences among multiple decaying
transition pathways. Depending on the modulation depth and its absolute phase, both the spontaneous emission
and the frequency shift may be conveniently modified and controlled.
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I. INTRODUCTION

Spontaneous emission is a well established fundamental
phenomenon [1–4]. It occurs due to the interaction of excited
emitters with the vacuum modes of the environmental electro-
magnetic field reservoir. Useful applications of spontaneous
radiation control may arise, for instance, in higher-frequency
coherent light generation [5,6] or spontaneous parametric
down-conversion processes [7]. On the other side, spontaneous
emission often plays a negative role in quantum processing
of information [8]. Therefore, it is not surprising that a
significant amount of work is carried out regarding its control.
Particularly, earlier approaches to influence the spontaneous
emission were by using optical cavities [9–11]. A modern
and more advanced version of those ideas consists in us-
ing photonic crystals environments where photon forbidden
bands occur leading to spontaneous emission inhibition or
localization [12–14]. Infrequent application to a two-level
atom of microwave pulses [15] or sequence of pulses [16],
or rather intense low-frequency coherent fields [17] (see
also Ref. [18]) lead to spontaneous emission control as
well. Quenching of spontaneous emission occurs as well
via involving quantum interference effects between various
decaying pathways which are dependent on mutual orientation
of corresponding transition dipoles [4,19,20]. Furthermore,
the Lamb shift of laser-dressed atomic states and quantum
interferences due to energy shifts and their effect on sponta-
neous emission were investigated also in Refs. [21,22]. One
can also control the spontaneous emission by periodically
shifting the atomic transition frequency from the atom-cavity
resonance [23,24] or via coupling a single state to a continuum
of many states [25,26]. Remarkably, periodically perturbed
atomic transitions lead to a number of fascinating effects
such as induced transparency or extreme ultrashort pulses,
respectively [27].

Here, we demonstrate the suppression of spontaneous decay
of a two-level system (qubit) that is embedded in a broadband
electromagnetic field reservoir and is subjected to an intense,
time-dependent, frequency modulation driving force. The
suppression is a direct consequence of quantum interference
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effects induced by the modulation. A frequency shift to the
transition frequency is induced as well. Furthermore, the
absolute phase of the modulation can be a convenient tool to
control these processes. Coherent modulation of the transition
frequency leads to appearance of new decay channels that may
interfere destructively contributing to spontaneous emission
inhibition (see Fig. 1). This occurs when the frequency of
modulation is of the order of the bare-state qubit’s decay
rate or less. The spontaneous emission is described by an
exponential decaying law with a time-dependent decay rate
and exhibiting plateaus with a very slow decoherence rate.
The quantum decoherence due to spontaneous emission can
be further minimized via stronger frequency modulation
depths. Moreover, the induced time-dependent frequency shift
depends on external control parameters, such as the applied
intensity and the external field amplitude absolute phase,
and can be influenced accordingly. It vanishes, however,
at resonance and in the absence of quantum interference
effects due to frequency modulation processes. In a free-space
setup, the spontaneous emission inhibition is less probable
via transition frequency modulation of an excited two-level
emitter. This deviation from Ref. [17] arises because our
treatment is classical and especially limited to moderately
intense modulating fields.

Our system can be implemented, for example, via off-
resonant laser driving of a two-level emitter [17,23–28]. One
can apply a laser field with a high nonresonant frequency ω

′

and possessing a periodically modulated amplitude of the field
strength ε(t) = ε0 cos (ωt + φ) cos (ω

′
t) with ω � ω0 � ω

′

to a two-level atom of frequency ω0. Then a modulated
shift �ω0 of the transition frequency is achieved via the
quadratic Stark effect, i.e., �ω0 = b cos2 (ωt + φ), where
b is the modulation amplitude. Additional systems can be
molecules or quantum dots, even those possessing permanent
dipoles [29–34]. When pumped with an intense low-frequency
coherent field, the amplitude of the frequency modulation will
be proportional to the magnitude of the permanent dipole
multiplied by the external field strength. An alternative scheme
can be as well a two-level quantum dot embedded in a broad-
band microcavity and interacting with a surface acoustic wave
coherently modulating its transition frequency [35]. Super-
conducting qubits with periodically perturbed transition fre-
quencies and weakly coupled with a quantum LC circuit or a
nanomechanical resonator are suitable candidates as well [36].
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FIG. 1. (Color online) Schematic diagram of a two-level emitter
with modulated transition frequency (a) without and (b) with
showing the involved quantum coherences among specific transition
pathways. Due to modulation, multiple induced decaying channels
n = 0,±1,±2, . . ., interfere such that spontaneous emission is slowed
down. γ0 is the single-qubit spontaneous decay rate in the absence of
modulation.

The article is organized as follows. In Sec. II we describe
the analytical approach and the system of interest, while in
Sec. III we analyze the obtained results. The summary given
in Sec. IV is followed by two Appendixes.

II. APPROACH

The Hamiltonian H = H0 + HI describing the system
of interest can be represented via (see Refs. [23,24] for a
detailed derivation for the analogous case with usual vacuum
Appendix A)

H0 =
∑

k

�ωka
†
kak + �[ω0 + b cos (ωt + φ)]Sz,

HI = i
∑

k

(�gk · �d)(a†
kS

− − akS
+), (1)

where the first term H0, characterizes the free Hamiltonian
of the electromagnetic field (EMF) as well as of the qubit
subsystem with modulated transition frequency whereas the
second one, i.e., HI , accounts for the interaction of the two-
level qubit with the vacuum modes of the environmental elec-
tromagnetic field reservoir. Here, S+ = |e〉〈g|, S− = [S+]†

and Sz = (|e〉〈e| − |g〉〈g|)/2 are the well-known quasispin
operators obeying the commutation relations [S+,S−] = 2Sz

and [Sz,S
±] = ±S±. The creation a

†
k and annihilation ak elec-

tromagnetic field operators satisfy the commutation relations
[ak,a

†
k′] = δkk′ and [ak,ak′] = [a†

k,a
†
k′] = 0. Further, ω0 is the

qubit’s transition frequency |e〉 ↔ |g〉 (see Fig. 1) in the
absence of classical modulation, while b is the modulation
amplitude with frequency ω and phase φ. The two-level emitter
possessing the transition dipole moment d couples with the
vacuum modes via the coupling constant gk . In the following,
we perform a unitary transformation

U = exp

{
i

�

∫ t

0
dτH̄0(τ )

}
, (2)

with H̄0(τ ) = ∑
k �ω0a

†
kak + �[ω0 + b cos (ωτ + φ)]Sz and

arrive at the Hamiltonian

H̃ =
∑

k

�(ωk − ω0)a†
kak + i

∑
k

∞∑
m=−∞

(�gk · �d)Jm(χ )

× (a†
kS

−e−im(ωt+φ) − akS
+eim(ωt+φ)), (3)

where χ = b/ω while Jm(χ ) is the corresponding ordinary
Bessel function. Here, we used the expansion via the mth-order
Bessel function of the first kind, i.e., exp{±iχ sin (ωt + φ)} =∑∞

m=−∞ Jm(χ ) exp [±im(ωt + φ)] as well as the notation
S±e∓iχ sin φ ≡ S̃±, and dropped the tilde afterwards.

In the weak qubit-environment coupling limit, one can
obtain the master equation describing the quantum dynamics
of any atomic operator Q. For this, we use the standard
elimination procedure of the electromagnetic field operators
from the Heisenberg equation

d

dt
〈Q〉 = i

�
〈[H̃ ,Q]〉, (4)

where the notation 〈· · · 〉 indicates averaging over the initial
state of both the qubit and the surrounding electromagnetic
field bath [1–4]. As an environmental electromagnetic field
reservoir, we consider a broadband optical cavity possessing
the frequency ωc, qubit-cavity coupling being g, and a cavity
leaking constant denoted by κ (the free-space situation is
described in Appendix A). Thus, the Heisenberg equations
for the field operators are

d

dt
a†(t) = (iδc − κ)a† +

∞∑
n=−∞

gJn(χ )S+(t)ein(ωt+φ), (5)

with a(t) = [a†(t)]† and δc = ωc − ω0. Its formal solution
in the weak-coupling limit is a†(t) = a†

v(t) + a
†
s (t), where

a†
v(t) = a†(0)e−(κ−iδc)t while

a†
s (t) =

∞∑
n=−∞

gJn(χ )
∫ t

0
dt

′
e−(κ−iδc)(t−t

′
)

× S+(t
′
)ein(ωt

′+φ). (6)

In the Markov approximation we have S+(t
′
) ≈ S+(t). Then

the integral∫ t

0
dt

′
e(κ−iδc)t

′
einωt

′ = e(κ−i(δc−nω))t − 1

κ + i(nω − δc)
.

Inserting this expression in Eq. (6) and keeping only the
slower contributions, that is, we are interested in frequency
modulation regimes slower than the cavity decay rate, i.e.,
ω � κ , one arrives at

a†(t) = a†(0)e−(κ−iδc)t +
∞∑

n=−∞

gJn(χ )

κ + i(nω − δc)

× S+(t)ein(ωt+φ). (7)

Then, one can write down the master equation for an arbitrary
mean value of a qubit operator Q that can be obtained after
introducing Eq. (3) in the corresponding Heisenberg equation,
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i.e., Eq. (4)

〈Q̇〉 = −
∞∑

m=−∞
gJm(χ ){〈a†[S−,Q]〉e−im(ωt+φ)

+〈[Q,S+]a〉eim(ωt+φ)}, (8)

where an overdot denotes differentiation with respect to time.
Introducing Eq. (7) in the master equation (8) and taking into
account that 〈a†(0) · · · 〉 = 0 and 〈· · · a(0)〉 = 0 one obtains

〈Q̇〉 = i�(t)〈[Sz,Q]〉 − γ (t){〈S+[S−,Q]〉
+ 〈[Q,S+]S−〉}. (9)

The operator form of Eq. (9) looks standard, i.e., of Lind-
blad form [3,37], with, however, time-dependent coefficients,
namely,

�(t) =
∞∑

{m,n}=−∞
δ̄nJm(χ )Jn(χ ) cos [(n − m)(ωt + φ)],

(10)

γ (t) =
∞∑

{m,n}=−∞
γ̄nJm(χ )Jn(χ ) cos [(n − m)(ωt + φ)],

with

δ̄n = (nω − δc)g2

κ2 + (nω − δc)2
, and γ̄n = γ0κ

2

κ2 + (nω − δc)2
. (11)

Here, �(t) and γ (t) describe the time-dependent frequency
shift and spontaneous decay process, respectively, while γ0 =
g2/κ is the near-resonance single-qubit spontaneous decay
rate without frequency modulation, i.e., when χ = 0. In
the numerical simulations we truncate the summation range
(−∞,∞) to (−n̄,n̄). This is justified as γ̄n ∼ 1/[κ2 + (nω)2]
for near qubit-cavity resonance. Concretely, n̄ is chosen such
that the results converge, i.e., remain unchanged if one further
increases n̄. Note that this is not the case for vacuum free-space
setups (see Appendix A). Furthermore, to avoid unphysical
results [38], n̄ should be the same for both indices and, also,
Eq. (9) should be independent of the exchange of indices, i.e.,
m ↔ n.

The population quantum dynamics of an initially excited
two-state radiator can be easily obtained from Eq. (9), namely,

〈Sz(t)〉 = exp [−2�(t)] − 1/2, (12)

with a generalized spontaneous decay rate given by

�(t) =
∫ t

0
γ (τ )dτ.

One can see here that the qubit inversion obeys a modified
exponential decay law with a time-dependent decay rate. In
the absence of frequency modulation, i.e., χ = 0, one recovers
the standard exponential law near qubit-cavity resonance [4]

〈Sz(t)〉 = exp [−2γ0t] − 1/2. (13)

Thus, the periodical modulation of the qubit’s transition
frequency modifies the spontaneous decay.

In the following section, we shall describe the quantum
dynamics of an excited two-level emitter with modulated
transition frequency.

III. RESULTS AND DISCUSSION

We proceed to investigate the qubit’s dynamics based on
Eqs. (7) to (12). One can observe from Eq. (7) that the atomic
dipole may oscillate at frequencies ωn = ω0 + nω, where n is
an arbitrary integer number including zero. This means that
photons at these frequencies are generated that can lead to
interference effects. Indeed, inspecting Eq. (9), one can realize
that the two-level emitter with the frequency modulation is
reduced to an equivalent system containing multiple excited
dressed levels, ω0 ± |nω| {n = 0,1,2, . . . ,}, decaying to the
ground state (see Fig. 1). When the dressed-state splitting is
of the order of the cavity mediated radiator’s decay rate γ0

then quantum interferences occur among various transition
decay paths. For instance, in Fig. 1(a) the two decay channels
ω0 ± ω interfere leading to appearance of quantum coherences
schematically shown in Fig. 1(b). Technically, due to the
Bessel function property, J−n(x) = (−1)nJn(x), some of the
terms from expressions (10) cancel each other while others
add up. To illustrate this we chose the simplest case n̄ = 1 and
δc = 0, and then the expression for γ (t) takes the form

γ (t)/γ0 = J 2
0 (χ ) + κ2{J1(χ )J1(χ ) + J−1(χ )J−1(χ )

+ 2J−1(χ )J1(χ ) cos [2(ωt + φ)]}/(κ2 + ω2).

(14)

The first three terms from Eq. (14) describe the spontaneous
emission processes on the induced transitions |e,n = 0〉 → |g〉
and |e,n = ±1〉 → |g〉, respectively [see Fig. 1(a)]. The last
term in Eq. (14) takes into account the cross correlations among
the spontaneously decaying channels [see Fig. 1(b), where
n denotes a particular sublevel] |e,n = 1〉 → |g〉 and |e,n =
−1〉 → |g〉 or vice versa (and, hence, a prefactor of 2 there),
i.e., characterizes quantum decay interference effects [4].
On the other hand, the cross-decaying correlations among
the transition paths |e,n = 0〉 → |g〉 and |e,n = ±1〉 → |g〉
reciprocally cancel each other. Obviously, this illustration
scheme can be extended to n̄ > 1 [see Fig. 1(b) showing
the induced coherences for n̄ = 2]. These processes together
with frequency modulation dressing of the multiple decaying
rates will lead to a slowing down of the spontaneous emission
processes that are also absolute phase dependent. Notice that
for χ � 1 the nth-order Bessel function of the first kind can
be represented as [39]

Jn(χ ) ≈
√

2

πχ
cos (χ − πn/2 − π/4), when n < χ. (15)

The dependence Jn(χ ) ∝ 1/
√

χ will also explain the quench-
ing of the spontaneous decay processes for larger modulation
depths. This tendency persists even in the absence of quantum
coherences due to cross-damping effects. If n > χ � 1 the
spontaneous decay rate tends to even lower values due to the
prefactor 1/[κ2 + (nω)2].

Figure 2 shows the population kinetics of an excited
two-level emitter given by Eq. (12) for some parameters of
interest. Particularly, the short-dashed line depicts the typical
exponential spontaneous decay low in the absence of frequency
modulation which is characterized by Eq. (13). The solid and
long-dashed curves describe the spontaneous decay processes
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FIG. 2. (Color online) The time dependence of the mean value of
the inversion operator 〈Sz(t)〉 as a function of κt . Here the solid line
corresponds to χ = 50 and φ = 0, the long-dashed one to χ = 50
and φ = π/2 while the dotted curve to χ = 50 without taking into
account quantum coherences. The short-dashed line depicts the usual
spontaneous decay, i.e., when χ = 0. Other parameters are g = 0.3κ ,
ω = 0.12κ , δc = 0, and κ = 1.

when the transition frequency is modulated with a modulation
depth χ = 50 and a phase φ = 0 or φ = π/2, respectively. The
phase dependence is a clear evidence of quantum interference
effects. This occurs for stronger modulation depths χ and when
the frequency of modulation ω is comparable to or less than
the single-qubit decay rate γ0, and {ω,γ0} � κ . For the sake
of comparison, the dotted curve characterizes the spontaneous
emission behavior without taking into account the quantum
coherences due to cross-damping effects [see Fig. 1(a)], that
is, in Eq. (13) we have taken

γ̃ =
n̄∑

n=−n̄

γ̄nJ
2
n (χ ), [see Eq. (10)],

instead of γ0. Thus, concluding, the cross-damping effects
[i.e., the terms with n �= m in Eqs. (10) and (12); see, also,
Fig. 1(b)] contribute considerably to the final spontaneous
decay processes (compare the solid, dotted, and the long-
dashed curves in Fig. 2, respectively).

The population behaviors shown in Fig. 2 are in accordance
with the time dependence form of γ (t) given in Eq. (10). The
almost decoherence-free plateaus observed in Fig. 2 corre-
spond to lower values of γ (t) (see Fig. 3). The inhibition of
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FIG. 3. (Color online) The time dependence of the decay rate
γ (t) given in Eq. (10) versus κt . Here the solid line corresponds to
χ = 50 and φ = 0 whereas the long-dashed line one to χ = 50 and
φ = π/2. Other parameters are the same as in Fig. 2.
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FIG. 4. (Color online) The mean value of the inversion operator
〈Sz(t)〉 versus the modulation depth χ when κt = 30. Here the solid
line corresponds to φ = 0, while the long-dashed line one to φ = π/2.
Other parameters are the same as in Fig. 2.

the spontaneous decay can be further improved by increasing
the modulation depth χ . Therefore, in Fig. 4, we have fixed the
evolution time at κt = 30 and changed the modulation depth χ

accordingly. At lower modulation amplitudes, or in its absence,
the qubit is in the ground state at this evolution stage. As it
was already mentioned, stronger modulation depths contribute
to a further slowing of the quantum decoherence. The reason
is the interplay between interference effects among multiple
decay channels described above and the frequency modulation
dressing of the corresponding decay rates [see Eq. (15)]. Note,
however, that the opposite case, i.e., ω � κ , does not show any
time or phase dependence in the parameters entering in Eq. (9)
or Eq. (12) and, consequently, no quantum interference effects
among the different transition pathways occur. This situation
was nicely investigated in Refs. [23,24], respectively.

We shall further focus on discussions around the frequency
shift due to periodical modulation of the transition frequency.
Therefore, the frequency shift �(t), given in Eq. (10), is
plotted in Fig. 5 for particular parameters. Here, again, one can
observe phase-dependent behaviors due to induced quantum
coherences. Particularly, when n̄ = 1 and δc = 0, we have from
Eqs. (10) and (11)

�(t) = �̄J0(χ ){J1(χ ) − J−1(χ )} cos (ωt + φ), (16)

where �̄ = g2ω/(κ2 + ω2). One can observe here that the
frequency shift is due to cross correlations among the
transition channels |e,n = 0〉 → |g〉 and |e,n = ±1〉 → |g〉,
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Χ

FIG. 5. (Color online) The frequency shift � (in units of κ) as a
function of modulation depth χ when κt = 10. Here the solid line
corresponds to φ = 0, while the long-dashed line to φ = π/2. Other
parameters are the same as in Fig. 2.
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respectively, i.e., opposite to spontaneous emission contri-
butions where these processes cancel out. Evidently, these
discussions can be generalized for n̄ > 1. Notice that this
frequency shift vanishes in the absence of transition frequency
modulation at resonance, i.e., χ = 0, or when ω � κ at δc = 0.

For an experimental realization of the proposed scheme we
need moderate modulation depths. This can be achieved, for
instance, in molecular or quantum dot systems possessing a
permanent dipole dp as it was also mentioned in the article. For
dp � d and EL being the amplitude strength of the applied
low-frequency coherent field, one can obtain the necessary
modulation depth b ∝ (dpEL) that is smaller than the transition
frequency of the two-level qubit while χ � 1. In asymmetrical
quantum dot systems the permanent dipole is proportional to
the size of the quantum dot and this can be used in engineering
of the required model [30–33]. Certain molecules possess this
property also, i.e., dp � d [29,34].

Finally, while we have considered a broad-band cavity en-
vironmental reservoir, the multiple induced decay interference
approach developed may also be applied for quantized vacuum
modes of free-space in a related setup [17], for instance. There,
applying a quantized and sufficiently strong low-frequency
field beyond applicability here, to a two-level atom including
far-off resonant states in free space, one can induce quantum
interferences among few-photon induced transitions. Those
process’s scaling show an interplay between different relevant
detunings and applied intensity strengths such that one can
stop at a particular n̄- photon process [17] (see Appendix B).

IV. SUMMARY

Summarizing, we have demonstrated how quantum decay
interference phenomena induced among multiple decaying
channels occurring due to moderately intense transition
frequency modulation of a two-level emitter embedded in
a broadband electromagnetic field reservoir together with
frequency modulation dressing of the spontaneous decay rates
can suppress quantum dissipations due to spontaneous emis-
sion. Particularly, phase-dependent low decoherence plateaus
appear in such a process. Furthermore, a generalized cross-
correlated frequency shift to the two-level qubit’s transition
frequency is induced here as well.
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APPENDIX A: MASTER EQUATION WITH A
MODULATED TRANSITION IN FREE SPACE

In this Appendix, we shall focus on the spontaneous decay
of an excited two-level emitter with modulated transition

frequency via usual vacuum modes of the EMF reservoir. The
purpose is to show that an unshaped vacuum is not sufficient for
the spontaneous emission suppression investigated here. For
convenience we derive the modulation Hamiltonian entering
in Eq. (1). For this, one considers that a moderately strong
low-frequency coherent field is applied to a two-state atom
being initially in its excited state. The Hamiltonian of this
process is

H =
∑

k

�ωka
†
kak + �ω0Sz + �� cos (ωt)(S+ + S−)

+ i
∑

k

(�gk · �d)(a†
k − ak)(S+ + S−). (A1)

Here, ω0 is the transition frequency among the states |e〉 ↔
|g〉 while � is the corresponding Rabi frequency with ω

being the frequency of the external applied low-frequency
coherent field. The atom-vacuum coupling strength is �gk =√

2π�ωk/V �eλ, where V is quantized volume while �eλ is the
photon polarization vector with {λ = 1,2}.

We apply a unitary transformation to the Hamil-
tonian (A1), i.e., H ≡ U (t)HU−1(t), where U (t) =
exp [i �

ω
sin (ωt)(S+ + S−)]. This transformation is useful as it

allows to represent the Hamiltonian via the n-photon processes
involved, namely,

H = �ω0Sz

∞∑
n=0

Jn(ρ) cos (nωt)[1 + (−1)n(1 − δn,0)]

+ i

2
�ω0(S− − S+)

∞∑
n=1

Jn(ρ) sin (nωt)[1 − (−1)n]

+
∑

k

�ωka
†
kak + i

∑
k

(�gk · �d)(a†
k − ak)(S+ + S−),

(A2)

where ρ = 2�/ω. It is easy to observe that the even-photon
processes with n = 2,4, . . . , correspond to modulation of the
transition frequency, while the odd-photon processes, i.e., n =
1,3, . . . , lead to induced transitions among the involved energy
levels. For our purposes one requires ρ � 1 as well as ω � ω0.
Under these restrictions, i.e., taking into account that

Jn(ρ) ≈ ρn

{
2−n

�(1 + n)
− 2−2−nρ2

(1 + n)�(1 + n)
+ O[ρ]4

}
,

the working Hamiltonian is

H =
∑

k

�ωka
†
kak + �[ω0 + b cos (2ωt) + b′ cos (4ωt)]Sz

+ i
∑

k

(�gk · �d)(a†
k − ak)(S+ + S−). (A3)

Here, b = ω0ρ
2/4, b′ = ω0ρ

4/192, and ω0 ≡ ω0(1 − ρ2/4).
Thus, we have considered that the frequency modulation takes
place via two- and four-photon processes, simultaneously,
while higher-photon effects are negligible because one can
always select a system with ω0ρ

n/ω � ω0ρ
n−2/ω, and for

an even n with n > 4. Furthermore, the induced transitions
through odd-photon processes among the involved energy
levels do not occur because of the off-resonance, and therefore,
are ignored here [i.e., the second line of the Hamiltonian (A2)].

043838-5



MIHAI MACOVEI AND CHRISTOPH H. KEITEL PHYSICAL REVIEW A 90, 043838 (2014)

The master equation describing the spontaneous decay
of a two-level radiator with modulated transition frequency
in free-space according to the Hamiltonian (A3) and in the
Born-Markov, dipole, and rotating-wave approximations has
the form

d

dt
〈Q(t)〉 = −(γf (t) − i�f (t))〈S+[S−,Q]〉 + H.c.,

(A4)

where

γf (t) − i�f (t)

=
n0∑

n,n′=−n0

m0∑
m,m′=−m0

Jn(χ )Jn′(χ )Jm(χ ′)Jm′(χ ′)

× (γ0n′m′ − i�0n′m′)e−2iωt(n−n′)e−4iωt(m−m′),

with

�0n′m′ =
∑

k

(�gk · �d)2

�2
P

1

ωk − ω0 − 2n′ω − 4m′ω
,

γ0n′m′ = γ

(
1 + 2n′ω

ω0
+ 4m′ω

ω0

)3

,

and χ = b/(2ω), while χ ′ = b′/(4ω).

Here, P is the Cauchy principal value, while 2γ =
4d2ω3

0/(3�c3) is the free-space single-atom spontaneous decay
rate in the absence of frequency modulation [4].

In the following, we consider that χ � 1 while χ ′ � 1,
i.e., the frequency modulation via simultaneous four-photon
processes are negligible. This can be achieved in the weak
field regime, for example, when ρ = 2 × 10−1 and ω0/ω =
2 × 104, that is, one has χ = 102 while χ ′ ≈ 4.2 × 10−2. For
this reason we do not expect to obtain the quantum interference
effects without a cavity like in Ref. [17]. Thus, the motivation
to keep the modulation of the transition frequency due to a
simultaneous four-photon process in the Hamiltonian (A3) as
well as in the master equation (A4), i.e., the term proportional
to b′, was to show that spontaneous decay via the induced
absorption or emission of four photons is taking place also due
to transition frequency modulation via a two-photon process
described by b (for instance, when n0 = 2). This latter process
is more probable than the corresponding one due to b′.

Figure 6 shows the spontaneous decay law of an excited
atom in free space, i.e., 〈Sz(t)〉 = exp [−2�f (t)] − 1/2 where

a
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FIG. 6. (Color online) The free-space mean-value of the inver-
sion operator 〈Sz(t)〉 versus γ t . Here, ρ = 0.2, ω/γ = 1, φ = 0 while
ω0/ω = 2 × 104 and, hence, χ = 100. (a) n0 = 1; (b) n0 = 50. The
dashed line shows the usual free-space spontaneous decay law in the
absence of frequency modulation.

�f (t) = ∫ t

0 γf (τ )dτ with m = m′ = 0, when n0 = 1 and n0 =
50, respectively, and for some particular parameters of interest.
While the spontaneous decay is clearly slowed down for
n0 � χ > 1 one cannot predict what is the particular value of
n0 which would be realized in a real experiment. Furthermore,
larger values of n0 with a fixed χ = 100 do not lead to
spontaneous emission inhibition. Thus, it is unlikely that
the spontaneous emission will be inhibited in free space via
transition frequency modulation of an excited two-level emitter
unless and until we are not able to select a particular n0-photon
process.

APPENDIX B: SPONTANEOUS DECAY MODIFICATION
VIA APPLYING A STRONG QUANTIZED

LOW-FREQUENCY FIELD

In Ref. [17] a related mechanism was discussed where an
effective two-level system was driven with a quantum field
with frequency ω of the order of the linewidth of the considered
transition. Since in reality the low-frequency field will also
couple off-resonantly to all transitions in the atom, one can
justify a Hamilton operator with extra interference terms as
indicated in detail in the Ref. [17] with the consequence
of possible spontaneous emission elimination. The physics
behind atom pumping with a classical low-frequency field in
the weak field approximation or a quantized low-frequency
field consists in the fact that in the first case only modulation
of the transition frequency occurs which does not affect the
spontaneous emission in free space, while in the second
case additional transitions are induced that may interfere
leading to modification of the spontaneous decay. Particularly,
in Ref. [17] a quantized low-frequency strong field was
interacting with a two-level atom being initially in its excited
state |2〉. To adequately describe the system the far-off resonant
coupling to the other states was included as well.

In what follows, we recall in a somewhat different sim-
plified way how the additional terms due to off-resonant
coupling may appear in the interaction Hamiltonian. If as an
example one considers a two-level atom with one extra far
off-resonant state |3〉 and with its energy levels from down to
up denoted as |1〉,|2〉, and |3〉, respectively, then the quantized
low-frequency applied field will induce additional transitions
via the path |2〉 → |3〉 → |1〉. To involve the corresponding
terms one needs to go beyond the weak low-frequency field
approximation applied in the main part of this work. The
interaction Hamiltonian responsible for these terms is

HI ≈ −2i(c + c†)
∑

k

(�gk · �d31) α32(a†
kS

− − akS
+). (B1)

Here αij ∝ dijEL are the corresponding coefficients due to
strong external pumping and obtained after elimination of
the far-laying excited level |3〉, while c†(c) is the photon
creation (annihilation) operator for the external low-frequency
quantized intense field. One can show (see the last entry
of Ref. [17]) that the Hamiltonian (B1) does not affect the
transition |2〉 → |1〉 when it is dipole allowed. Therefore,
the spontaneous emission modification scheme described in
this part applies to dipole-forbidden atomic transitions. Since
in a three-level atomic system one transition should be
dipole-forbidden it results that the decay on |2〉 → |1〉 atomic

043838-6



QUANTUM DYNAMICS OF A TWO-LEVEL EMITTER WITH . . . PHYSICAL REVIEW A 90, 043838 (2014)

transition may indeed be dipole-forbidden. The excited state
population will be described by the following equation:

d

dt
〈S22〉 = −γb〈S22〉 − γa〈S22(ce−iωt + c†eiωt )2〉. (B2)

Here, γb is the two-photon spontaneous decay rate on transition
|2〉 → |1〉, while γa is the corresponding decay involving
additional upper states. One can observe that the strong
quantized field indeed modifies the upper state population.
Notice that a strong classical low-frequency laser field will
only modulate the frequency on a dipole-allowed transition,
and correspondingly, the spontaneous emission will not be
modified in free space (see also Appendix A). For dipole-
forbidden |1〉 ↔ |2〉 transitions the off-resonant coupling to
another state |3〉 will also modulate the transition frequency
as well as induce transitions to the ground state |1〉 based on a
Hamiltonian of the next form

HI ≈ −i
∑

k

(�gk · �d31) α32(a†
kS

− − akS
+) cos(ωt). (B3)

The spontaneous decay rate on the |2〉 → |1〉 atomic transition
may be γb + α2

32γ31. Therefore, the classical off-resonant

coupling to another state may not change significantly the
decay rate because α32 < 1.

In a two-level atomic system with two extra far off-resonant
states, the spontaneous emission can be modified due to an
applied strong quantized low-frequency field even on a dipole-
allowed |2〉 ↔ |1〉 transition in accordance with the results
given in Ref. [17]. For instance, one of the terms in the total
Hamiltonian describing the decay via the path |2〉 → |4〉 →
|3〉 → |1〉 after the elimination of the additional higher energy
levels is

HI ≈ i(c + c†)2
∑

k

(�gk · �d31) α24α43(a†
kS

− − akS
+). (B4)

Such terms are responsible for the spontaneous decay mod-
ification in free space through a quantized and strong low
frequency applied field. On the other side, in an idealized
situation of ignoring the presence of any other far-off resonant
states in the atomic system and when neglecting strong
field terms of the low-frequency field, the presence of such
interference terms could not be reproduced via a classical
pumping field.
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