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Cavity-output-field control via interference effects
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We show how interference effects are responsible for manipulating the output electromagnetic field of an
optical microresonator in the good-cavity limit. The system of interest consists of a moderately strongly pumped
two-level emitter embedded in the optical cavity. When an additional weaker laser of the same frequency is
pumping the combined system through one of the resonator’s mirrors then the output-cavity-electromagnetic
field can be almost completely suppressed or enhanced. This is due to the interference among the scattered light
by the strongly pumped atom into the cavity mode and the incident weaker laser field. The result applies to
photonic crystal environments as well.
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I. INTRODUCTION

Present and future quantum technologies require various
tools allowing for complete or partial control of the quantum-
mechanical interaction between light and matter. Therefore,
quite a significant amount of papers is dedicated to this
issue. Particularly, light interference is an widely investigated
topic and, no doubt, its importance for various applications
is enormous [1–5]. Due to quantum interference effects, for
instance, elimination of spectral lines or complete cancellation
of the spontaneous decay can occur. Spatial interference shows
interesting features as well [2,4,5]. Furthermore, suppres-
sion of the resonance fluorescence in a lossless cavity was
demonstrated in Ref. [6], whereas cavity-field-assisted atomic
relaxation and suppression of resonance fluorescence at high
intensities were shown in Ref. [7]. Inhibition of fluorescence
in a squeezed vacuum was demonstrated in Ref. [8], whereas
suppression of Bragg scattering by collective interference
of spatially ordered atoms within a high-Q cavity mode
was demonstrated, respectively, in Ref. [9]. On the other
hand, cavity-enhanced single-atom spontaneous emission was
observed in Ref. [10], whereas suppression of spontaneous
decay at optical frequencies was shown in Ref. [11]. The
control of the spontaneous decay as well as of the resonance
fluorescence is of particular interest for quantum computation
processes [12] where, in addition, highly correlated photons
are required [13]. Combining few coherent driving sources
one can achieve a further degree of control of the atom’s
quantum dynamics. Actually, the bichromatic driving of single
atoms was intensively investigated recently emphasizing in-
teresting interference phenomena. In particular, the resonance
fluorescence of a two-level atom in a strong bichromatic field
was analyzed in Ref. [14], and the response of a two-level
system to two strong fields was experimentally studied in
Ref. [15], correspondingly. The decay of a bichromatically
driven atom in a cavity was investigated in Ref. [16]. Broad-
band high-resolution x-ray frequency combs were obtained
via bichromatically pumping of three-level �-type atoms [17].
Moreover, bichromatic driving of a solid-state cavity quantum
electrodynamics system was investigated in Ref. [18]. Finally,
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a photonic crystal’s influence on quantum dynamics of pumped
few-level qubits was investigated in detail as well [19–21].

The above-mentioned papers may be of particular relevance
in a quantum network [22,23], for instance. Related systems
have already been proven to act as an optical diode [24,25]—an
important ingredient in a quantum network. Since a precise
control over system’s properties is highly required in such a
network, here, we investigate the feasibility of controlling the
cavity-output-electromagnetic field in a system consisting of
a moderately strongly pumped two-level emitter. If a second
coherent driving is applied through one of the mirrors and per-
pendicular to the first laser beam, then the output-cavity field
can be almost completely inhibited in the good-cavity limit.
Notice that the lasers are in resonance with the cavity mode
frequency. We have found that the interference between the
second weaker light beam and the light scattered by the
two-level emitter into the cavity mode due to stronger pumping
is responsible for the suppression effect. The destructive
interference can be turned into a constructive one (or vice
versa) via varying the phase difference of the applied lasers.
Furthermore, the inhibition requires the laser frequency to
be out of atomic frequency resonance, whereas for photonic
crystals’ surroundings it can be even on resonance.

The article is organized as follows. In Sec. II we describe
the analytical approach and the system of interest, whereas in
Sec. III we analyze the obtained results. A summary is given
in Sec. IV.

II. QUANTUM DYNAMICS OF A PUMPED TWO-LEVEL
ATOM INSIDE A DRIVEN MICROCAVITY

The Hamiltonian describing a two-level atomic system
having the transition frequency ω0 and interacting with a
strong coherent source of frequency ω1 while embedded in
a pumped microcavity of frequency ωc in a frame rotating at
ω = ω1 = ω2 (see Fig. 1), is as follows:

H = � �Sz + � δa†a + �g(a†S− + aS+)

+��(S+eiφ1 + S−e−iφ1 ) + �ε(a†eiφ2 + ae−iφ2 ), (1)

where � = ω0 − ω and δ = ωc − ω. In the Hamiltonian (1)
the components, in order of appearance, describe the atomic
and the cavity free energies, the interaction of the two-level
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FIG. 1. (Color online) The schematic of the model: A two-level
emitter possessing the transition frequency ω0 embedded in a single-
mode (ωc) microcavity is pumped with an intense laser field of
frequency ω1. A second coherent source of frequency ω2 is driving
the entire system through one of the mirrors. γ is the single-atom
spontaneous decay rate, whereas κ describes the cavity photon leaking
rate, respectively.

emitter with the microcavity mode, the atom’s interaction
with the first laser field with � being the corresponding Rabi
frequency, and the interaction of the second driving field with
the cavity mode with ε being proportional to the input laser
field strength amplitude, respectively. The atomic bare-state
operators S+ = |e〉〈g| and S− = [S+]† obey the commutation
relations for SU(2) algebra, i.e., [S+,S−] = 2Sz and [Sz,S

±] =
±S±. Here, Sz = (|e〉〈e| − |g〉〈g|)/2 is the bare-state inversion
operator. |e〉 and |g〉 are the excited and ground states,
respectively, of the atom, whereas a† and a are the creation and
the annihilation operators of the electromagnetic field (EMF)
in the resonator and satisfy the standard bosonic commutation
relations, namely, [a,a†] = 1 and [a,a] = [a†,a†] = 0 [26,27].
{φ1,φ2} are the corresponding phases of the coherent driving
sources.

We will describe our system using the laser-qubit semiclas-
sical dressed-state formalism defined as [4]

|+〉 = sin θ |g〉 + cos θ |e〉,
(2)

|−〉 = cos θ |g〉 − sin θ |e〉,

with tan 2θ = 2�/�. Applying this transformation to (1) one
arrives then at the following dressed-state Hamiltonian:

H = H0 + �g(cos2 θR− − sin2 θR+)a†e−iφ

+�g(cos2 θR+ − sin2 θR−)aeiφ, (3)

with

H0 = ��̄Rz + � δa†a + �ε(a† + a) + �Rz(g
∗
0a

† + g0a). (4)

Here, �̄ =
√

�2 + (�/2)2 whereas g0 = (g/2) sin 2θeiφ,

g∗
0 = (g/2) sin 2θe−iφ , and φ = φ2 − φ1. We also employed

S± = S̃±e∓iφ1 and a† = ã†e−iφ2 with a = [a†]† in the Hamil-
tonian (1) and dropped the tilde afterwards. The new qua-
sispin operators, i.e., R+ = |+〉〈−|, R− = [R+]†, and Rz =
|+〉〈+| − |−〉〈−| are operating in the dressed-state picture.
They obey the following commutation relations: [R+,R−] =
Rz and [Rz,R

±] = ±2R±.
Considering that δ � �̄ the last two terms in Eq. (3) can be

ignored under the secular approximation. Therefore, the master
equation describing the laser-dressed two-level atom inside a
leaking pumped resonator and damped via the vacuum modes

of the surrounding EMF reservoir is as follows:

d

dt
ρ(t) + i

�
[H0,ρ]=−κ[a†,aρ] − 0[Rz,Rzρ]

−+[R+,R−ρ] − −[R−,R+ρ] + H.c.

(5)

Here,

0 = (γ0 sin2 2θ + γd cos2 2θ )/4,

+ = γ+ cos4 θ + (γd/4) sin2 2θ,

− = γ− sin4 θ + (γd/4) sin2 2θ.

γ0 = π
∑

k g2
k δ(ωk − ω) and γ± = π

∑
k g2

k δ(ωk − ω ∓ 2�̄),
respectively, are the single-atom spontaneous decay rates
being dependent on the density of modes gk at the dressed-
state frequencies {ω,ω ± 2�̄}, whereas γd signifies the pure
dephasing rate. In free space one has that γ0 = γ± ≡ γ .
Note that the master Eq. (5) was obtained either under the
intense-field condition or under the far-off-detuned field, i.e.,
it is valid when �̄ ≡

√
�2 + (�/2)2 � {δ,g,ε,0,±}.

The equations of motion for the variables of interest can
be easily obtained from the master Eq. (5). Therefore, the
quantum dynamics is described by the following system of
linear differential equations:

d

dt
〈a†a〉 = ig0〈Rza〉 + iε〈a〉 − ig∗

0〈Rza
†〉

−iε〈a†〉 − 2κ〈a†a〉,
d

dt
〈Rza〉 = −(κ + iδ + 2+ + 2−)〈Rza〉

−2(+ − −)〈a〉 − iε〈Rz〉 − ig∗
0 ,

d

dt
〈Rza

†〉 = −(κ − iδ + 2+ + 2−)〈Rza
†〉

−2(+ − −)〈a†〉 + iε〈Rz〉 + ig0, (6)

d

dt
〈a〉 = −(κ + iδ)〈a〉 − ig∗

0〈Rz〉 − iε,

d

dt
〈a†〉 = −(κ − iδ)〈a†〉 + ig0〈Rz〉 + iε,

d

dt
〈Rz〉 = −2(− + +)〈Rz〉 + 2(− − +).

In the system of Eqs. (7), we have used the trivial condition
R2

z = 1, which is the case for a single-qubit system.
In the following section, we will discuss our results, i.e.,

the possibility of inhibiting the cavity-output field in the steady
state via interference effects.

III. OUTPUT-CAVITY-FIELD CONTROL

One of the solutions of system (7) in the steady state
represents the mean-photon number in the microcavity mode,
namely,

〈a†a〉s = Aε2 + Bε + C. (7)
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For δ = 0 and γ0 = γ± ≡ γ , the coefficients A, B, and C are
given by the following expressions:

A = 1

κ2
,

B = − 2gγ �� cos φ

κ2[γ�2 + 2(γ + γd )�2]
,

C = g2�2

κ2[γ�2 + 2(γ + γd )�2]

× γ (κ + 2γ )�2 + 2κ(γ + γd )�2

(κ + 2γ )�2 + 4(κ + γ + γd )�2
. (8)

Because of the quadratic dependence on ε, the minimum value
of the mean-photon number is as follows:

〈a†a〉min
s = C − B2

4A
. (9)

The above value is achieved at

εmin = −B/(2A).

Based on Eqs. (8) and (9) it follows that εmin is independent of

{κ,δ} and its value does not exceed g
√

2
4 (1 + γd/γ )−1/2. The

cavity-output field, i.e., the number of photons escaping the
cavity per second, can be evaluated via κ〈a†a〉s . Particularly,
in Fig. 2 the minimum value of the steady-state mean-photon
number is 〈a†a〉min

s ≈ 0.06 and is achieved when (ε/γ )min ≈
0.54. An explanation of the steady-state behaviors shown in
Fig. 2 can be found if one represents the mean-photon number
given by (7) as follows:

〈a†a〉s = ε

κ2
{ε + |g0|〈Rz〉s cos φ} + |g0|

κ(κ + 2+ + 2−)

×{|g0| + ε〈Rz〉s cos φ − 2(+ − −)

×(|g0|〈Rz〉s + ε cos φ)/κ}, (10)

where

〈Rz〉s = −(+ − −)/(+ + −).

From the above expression (10), one can see that for δ = 0
the mean-photon number due to weaker external pumping of
the cavity mode is proportional to ε2, whereas that due to
stronger driving of the two-level qubit is proportional to |g0|2,

FIG. 2. (Color online) The steady-state dependence of the micro-
cavity mean-photon number 〈a†a〉s versus the variables ε/γ and δ/γ .
Other parameters are as follows: γd/γ = 0.01, κ/γ = 0.1, g/γ =
2, �/� = 3, and φ = 0.

respectively. There is also a cross contribution proportional to
ε|g0| cos φ. All these terms demonstrate interference effects
among the contributions due to two pumping lasers and, hence,
the minima’s nature in Fig. 2. In particular, for + � − one
has from Eq. (10) that

〈a†a〉s ≈ ε2

κ2
+ |g0|2

κ2
− 2ε|g0|

κ2
cos φ, (11)

whereas for − � + we have

〈a†a〉s ≈ ε2

κ2
+ |g0|2

κ2
+ 2ε|g0|

κ2
cos φ, (12)

respectively. Thus, indeed, the output field suppression (or
enhancement) occurs because of the interference effect taking
place among the fraction of light |g0|2/κ2 scattered by the
atom into the cavity mode due to stronger pumping by the
first laser beam and the photon field of the second weaker
laser field characterized by ε2/κ2, respectively (see also,
Fig. 1). Furthermore, the nature of destructive or constructive
interference can be understood as follows: In the dressed-state
picture both lasers are simultaneously in resonance with
the dressed-state transitions |+〉 ↔ |+〉 and |−〉 ↔ |−〉 and,
hence, different signs in front of the last term in Eqs. (11)
and (12). Actually, if + � − the atom is located on the lower
dressed state |−〉, whereas it resides on the higher dressed state
|+〉 when − � +. However, the destructive interference can
be turned into a constructive one (or vice versa) via varying the
phase difference φ [see Eqs. (11) and (12)]. This allows a better
control of the output-cavity field. Notice that on resonance, i.e.,
� = 0, the inhibition effects are absent when γ+ = γ− because
+ = − resulting in 〈Rz〉s = 0 [see Eq. (10)]. Also, one can
obtain small values for 〈a†a〉s if κ > γ . However, in this case
we are in the bad-cavity limit and, therefore, lower values for
the mean-photon number or even zero are expected [13,26,28].
Thus, contrarily, the cavity-output-field suppression reported
here occurs in the good-cavity limit, i.e., when γ > κ and
g > {κ,γ }.

Apart from the dependence of the expression (10) on the
parameters {ε,κ,φ,|g0|}, it also depends on the generalized
dressed-state decay rates ±. These decay rates can be
modified either by varying the detuning � in free space
with γ+ = γ− or via modification of the density of modes
at the dressed-state frequencies ω ± 2�̄ and, consequently,
γ+ �= γ−, which is a typical situation in photonic crystal
environments [19–21], for instance. In particular, one can
also have a situation when γ+ � γ− or γ− � γ+. Figure 3
shows the mean-photon numbers obtained with the help of the
expression (10) when the two-level emitter is located inside a
microscopic cavity engineered in a photonic crystal material.
In this case, the output-cavity field can be suppressed even
on atom-laser frequency resonance, i.e., when � = 0 (see the
dotted curve) because γ+ �= γ− and the population will be
distributed unequally among the dressed states, whereas

〈Rz〉s = γ− − γ+
γ− + γ+ + 2γd

�= 0, if � = 0.

Negative values for the dressed-state inversion with φ = 0 lead
to cavity-output-field suppression [see Fig. 3 and Eq. (11)].
For the sake of comparison, the solid curve stands for ordinary
vacuum-cavity environments. Thus, finalizing, we have shown
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FIG. 3. The steady-state dependences of the mean-photon num-
ber 〈a†a〉s as a function of ε/γ∗. The solid line is for γ∗ ≡
γ+ = γ−, whereas the long-dashed curve stands for γ∗ = γ− and
γ+ → 0. Furthermore, the short-dashed line is for γ∗ = γ+ and
γ− → 0, whereas the dotted curve corresponds to � = δ = 0. Other
parameters are the same as in Fig. 2 with �/� = 1 and δ/γ∗ = 0.

here how the output-cavity field can be minimized due to
interference effects.

IV. SUMMARY

Summarizing, we have demonstrated the feasibility of
cavity-output-field control via interference effects. The system
of interest is formed from a strongly pumped two-level atom
placed in an optical microresonator. A second weak laser being
in resonance with the cavity mode frequency is probing the
whole system through one of the cavity’s mirrors. Conse-
quently, interference effects occur among the light scattered in
the cavity mode by the strongly pumped atom and the incident
weaker laser field leading to output-cavity-field inhibition or
enhancement. Furthermore, the destructive interference can be
turned into a constructive one (or vice versa) via varying the
phase difference of the applied lasers providing in this way a
better control over the output electromagnetic field. The idea
works for photonic crystal environments as well.
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