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Faraday rotation and polarization-modulated intense femtosecond laser pulses
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In this paper we investigate the propagation of an intense linearly polarized laser through an ionizing gaseous
medium in the presence of an axial strong magnetic field, addressing the modulation of laser polarization. Our
simulation indicates that the laser polarization can be dramatically modulated and shows complicated temporal
patterns (Lissajous curves). This striking phenomenon can be attributed to the collective movement of ionized
electrons, in contrast to the traditional Faraday rotation in which the rotation angle of the laser polarization
derived from the linear response of the medium is time independent. We take the weighted average of the rotation
angle over the whole pulse duration and find that it explicitly relies on strong magnetic strength as well as the
incident laser intensity. Our finding has implications in strong magnetic diagnosis, laser intensity calibration, and
the generation of polarization-modulated light sources.
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I. INTRODUCTION

As a linearly polarized light propagates in a transparent
medium for a distance with the assistance of an axial external
magnetic field, its plane of polarization undergoes a rotation,
known as Faraday rotation (FR) [1] or magneto-optical effect.
The rotation angle can be evaluated by a simple formula θ =
V BL, where V is a frequency-dependent material parameter
called the Verdet constant, L stands for the propagation
distance, and B represents the magnetic strength.

Since its discovery and due to its unique form of relating the
magnetic field to a rotation angle, FR had been regarded as the
preferred method for diagnosing the strength of the magnetic
field in many areas such as the galactic and interstellar
magnetic fields [2], the megagauss or kilotesla magnetic fields
in laser-produced plasmas (LPPs) [3–5], the magnetic-field
structures in a laser-wakefield accelerator [6], and the real-time
observation of laser-driven electron acceleration [7]. In the
practical application fields, Faraday rotation also exhibits wide
prospects such as optical isolators [8,9], magnetic-field sensors
[10], current sensors [11,12], detection of biomagnetic fields
[13], quantum memory [14], and many others [15–20].

A common interpretation for FR is that the incoming plane-
polarized light splits into two opposite circularly polarized
modes moving with different phase speeds. After propagating
for a certain distance, a phase delay between the two modes
indicates that the consequent light has a rotation with respect
to the incoming one. As a matter of fact, the aforementioned
FR originates in the linear responses of the transparent
medium to the incident light, which corresponds closely to
the collection of motions of bound electrons in the influence
of an external axial magnetic field. Microscopically, the
dynamics of an intra-atomic electron is modeled by a linearly
harmonic potential. By collecting all the contributions from the
intra-atomic electrons, one can obtain the linear polarization
of the medium and calculate the difference between the linear
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refractive indices corresponding to the two opposite circularly
polarized components, respectively, which determines their
different phase speeds.

As the incident laser intensity increases, however, some
nonlinear effects (say, Kerr effects and Raman effects, etc)
become significant and should be taken into consideration,
which ruins the simple linear relationship θ = V BL derived
from the effective linear harmonic potential. In particular,
as the laser intensity exceeds the ionization threshold and
enters the tunneling regime, a considerable proportion of
neutral atoms are ionized and a large number of laser-produced
electrons contribute to the response of the medium. More
importantly, the intense laser field leads to the time-varying
densities of neutral atoms and plasmas, which means the
time-varying refractive indices, and the external magnetic field
changes the trajectories of ionized electrons. According to
the classical electromagnetic theory, the electric field along
the direction perpendicular to the incident polarized plane is
excited by the electric current resulting from the electrons’
motions [21]. It can be predicated that, for a sufficiently
strong external magnetic field, there are no longer fixed phase
delays between the two orthogonal components of the final
electric field and the polarization of the final laser light would
be twisted greatly with a certain chirality depending on the
direction of the magnetic field.

The aim of the present research is twofold. On the one
hand, in the presence of an axial strong magnetic field, we
seek a parameter describing the polarizations of an intense
laser penetrating into an ionizing gaseous medium. A potential
application of our research is the interaction of an intense laser
pulse with a dense plasma, which involves the self-generated
magnetic field induced by the ∇ne × ∇Te mechanism [4,22],
where ne and Te are the density and temperature distribution
of the plasma, respectively. The generated magnetic field may
exert an influence on the polarizations of incident laser pulse
and consequently in turn affect the dynamics of the dense
plasma. The generation and movement of ionized electrons
are very sensitive to the intensity of the incident laser field.
However, the measurement of the laser intensity has remained
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challenging for a long time and many schemes have been
proposed both theoretically [23–25] and experimentally (see
[26–28], and references therein). Our research may provide a
probable scheme of diagnosing an ultrastrong magnetic field
and calibrating the incident laser intensity. On the other hand,
we present a method of generating the polarization-modulated
intense laser pulse that can be utilized in the manipulation
and control of chiral materials. Currently, an experimental
scheme is proposed by using all-optically-induced transient
metamaterials [29]. In their proposed scheme, the polarization
of the trailing part is changed from linear to elliptical
by manipulating the polarization of THz waveforms with
subcycle switch-on times, in which the light absorption in
the semiconductor causes the spatial density distribution of an
electron-hole plasma and thus a refractive-index distribution
in the slab.

To simplify the calculation and to reveal the mechanism for
the twisted polarization of the laser pulse, our work remains
confined to the atomic medium. This paper is organized as
follows. Section II is devoted to the theoretical derivation
of the propagation equation of an intense laser pulse in the
presence of an axial intense magnetic field based on the
Maxwell equations. In Secs. II A and II B we discuss separately
the responses of the neutral atoms and LPPs to the laser
field and present the propagation equation in Sec. II C. In
Sec. III we perform numerical calculations for the propagation
equation for several different incident laser intensities and
magnetic strengths. A calibrating parameter that relates to the
incident laser intensity and magnetic strengths is introduced
in Sec. III B. In order to explore the mechanism underlying
the rotation of laser polarization, we investigate the energy
transfer and loss of the incident laser field in Sec. III C. Our
results are summarized in Sec. IV.

II. THEORETICAL MODEL

Throughout this paper, the international system of units is
adopted unless otherwise noted. The propagation of an intense
laser pulse in an optical medium is completely modeled by
the Maxwell equations. In order to describe the evolution
of laser pulse along the z axis, we restrict our work to
the comoving frame τ = t − z/c and ξ = z, where t and τ

are the time variables of the laser pulse in the laboratory
frame and comoving frame, respectively, ξ is the propagation
variable, and c is the speed of light in a vacuum. Under the
influence of a strong laser field, the medium can be ionized
by tunneling mechanism. Using the slowly varying envelope
approximation, the three-dimensional propagation of a strong
femtosecond laser in a comoving frame is (see the Appendix)

−2

c

∂2E(ξ,r⊥,τ )

∂ξ∂τ
+ ∇2

⊥E(ξ,r⊥,τ )

= μ0
∂2Pneu(ξ,r⊥,τ )

∂τ 2
+ μ0

∂2Pion(ξ,r⊥,τ )

∂τ 2
, (1)

where ∇⊥ is the Laplace operator in the transverse plane
and μ0 is the magnetic permeability. The second term on
the left-hand side of Eq. (1) stands for laser diffraction in
the transverse plane. In the first term on the right-hand side
(RHS), Pneu represents the contribution of a neutral medium,

which involves the dynamics of bound electrons under the
influence of Coulomb attraction from nuclear cores and the
external laser field. In the formalism of quantum mechanics, it
is described by the transitions among energy levels, including
the stimulated Raman scattering and stimulated Brillouin
scattering. The second term Pion on the RHS is the contribution
to the polarization from the LPP, which accounts for absorption
due to optical-field ionization and plasma oscillations. For the
sake of brevity, we denote the group of variables (ξ,r⊥,τ )
of macroscopic quantities, such as the electric field E and
polarization P, by τ with no ambiguity.

A. Neutral atoms

For the convenience of introducing external magnetic fields,
we start with the microscopic definition of polarization instead
of the refractive index of the gaseous medium. According
to classical electrodynamics, the corresponding macroscopic
polarization of the neutral medium is characterized by the
average deviations of the positive and negative charges,

Pneu(τ ) = eNa(τ )s(τ ), (2)

where e = −|e| is the charge carried by an electron, Na(τ ) is
the instantaneous neutral density, and s(τ ) is the displacement
of intra-atomic electrons relative to their parent core.

From the classical point of view, the atomic electron in
the ground state vibrates periodically around the nucleus in
the absence of an external field, which is described by the
Newtonian equation s̈ = −∇V (s), where s is the relative
position to the ionic core and the double dots mean the
second derivative with respect to time. The potential V (s)
characterizes the interaction between the atomic electrons and
the nuclear core. In this work we choose the harmonic potential
V (s) = 1

2meω
2
0s

2 and omit the nonlinear effects of the gaseous
medium on the influence of the intense laser field, which does
not alter the conclusions obtained in this paper. Here me is
the electron mass, ω0 is the characteristic frequency of the
intra-atomic electron, and s represents the deviation from the
equilibrium position.

For a femtosecond infrared laser pulse, the distance traveled
by an electron is far less than the wavelength of the laser pulse,
which means that the electric dipole approximation (EDA)
always holds. In the presence of a constant strong magnetic
field B = B0eξ in the direction of the laser’s propagation, the
motion equation of a bound electron reads

me

d2s(τ )

dτ 2
+ meω

2
0s(τ ) = e

[
E(τ ) + ds(τ )

dτ
× eξB0

]
, (3)

where the frequency ω0 = Ip/� to meet the harmonic motion
of an electron orbiting around the ion, Ip is the ionization
potential of an applied atom, and � is the reduced Planck
constant. In the last term on the RHS, eξ is the unit vector in
the direction of the laser’s propagation. Because of the vector
product of velocity ds/dt and magnetic field B in the last term
on the RHS, Eq. (3) is a coupled differential equation. It is
not easy to solve this equation analytically in the time domain.
In order to avoid the introduction of an imaginary unit i, we
solve it through direct numerical integration and calculate the
macroscopic polarization from the neutral medium.
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After obtaining the value of s(τ ) from Eq. (3), we can
calculate the second derivative of Eq. (2) as

∂2Pneu(τ )

∂τ 2
= e

∂2

∂τ 2
[Na(τ )s(τ )], (4)

which is just the first term on the RHS of Eq. (1). Unlike
the traditional model interpreting the Faraday rotation, this
term accounts for the changes of neutral atoms with time. The
varying neutral density Na(τ ) along the time τ is given below.

B. Plasma effects

For the femtosecond LPP, the EDA is still supposed to be
valid. Because the electrons produced at different instances
have different displacement relative to their parent ions, we
need to treat their trajectories separately. The contributions
from the electrons released at τ0 to the polarization of the
gaseous medium at τ are [30,31]

dPion(τ ) = erτ0 (τ )dNe(τ0), (5)

where rτ0 (τ ) is the relative position vector of electrons to the
parent ion. The electron density Ne(τ ) is determined by the
rate equation dNe(τ )/dτ = W (E)[N0 − Ne(τ )], where N0 is
the initial density of the gaseous medium. The ionization rate
W (E) depends on the ionization mechanisms parametrized by
the electric strength E0 through γK = ωL

√
2Ip/E0 (in atomic

units), where ωL is the central angular frequency of the laser
field, such as multiphoton ionization, tunneling ionization (TI),
and over-barrier ionization (OBI).

Therefore, the total polarization at τ from the laser-ionized
electrons can be obtained by integrating Eq. (5) over all the
ionization instances (−∞,τ ],

Pion(τ ) =
∫ τ

−∞
erτ ′ (τ )

∂Ne(τ ′)
∂τ ′ dτ ′,

which involves all the contributions of the LPP and indicates
the nonlocal characteristics of the electric field in the time
domain.

The induced current J(τ ) = ∂Pion(τ )/∂τ is given by

J(τ ) = erτ (τ )
∂Ne(τ )

∂τ
+

∫ τ

−∞
e
∂rτ ′(τ )

∂τ

∂Ne(τ ′)
∂τ ′ dτ ′, (6)

where rτ (τ ) = Ip/eE(τ )e is the initial ionization position
depending on the instantaneous electric strength. For a
two-dimensionally polarized electric field, E(τ ) = Ex(τ )ex +
Ey(τ )ey , e = E(τ )/E is the unit vector in the direction of the
electric field, where E = |E(τ )|, and ex and ey are the unit
vectors along the preselected axes perpendicular to the laser’s
propagation. The first term on the RHS of Eq. (6) derives from
the changes of the electron density relating to the ionization
position.

In order to accomplish the derivation of Eq. (1), we calculate
the second derivative of polarization with respect to τ as

∂2Pion(τ )

∂τ 2
= e

∂

∂τ

[
rτ (τ )

∂Ne(τ )

∂τ

]
+ e

drτ (τ )

dτ

∂Ne(τ )

∂τ

+
∫ τ

−∞
e
d2rτ ′ (τ )

dτ 2

∂Ne(τ ′)
∂τ ′ dτ ′. (7)

Here drτ (τ )/dτ is the initial velocity of electrons when
they are released. For a one-dimensional motion of electrons
along the polarization of the laser field, the initial velocities
are always supposed to be zero. When one considers a
two-dimensional model transverse to the laser’s propagation,
however, the initial transversal velocities are supposed to
satisfy a Maxwellian distribution. The factor d2rτ ′ (τ )/dτ 2

means the acceleration of electrons at τ under the influence of
external fields.

The collisions of an electron with other electrons or atoms
can be neglected due to the dilute gaseous medium. The
dynamics of an electron that is created at τ0 can be described
by the Lorentz equation under the influence of a strong laser
electric field E(τ ) and a strong magnetic field B = B0ez, which
reads

me

dvτ0 (τ )

dt
= e[E(τ ) + vτ0 (τ ) × ezB0], (8)

where the subscript τ0 means the ionization instant. Here we
omit the impact of the parent ion on an electron because the
electron’s trajectories are bent greatly by the external intense
magnetic field and the Coulomb attraction from the parent ion
can be neglected.

In order to obtain the analytical solution to Eq. (8), one can
also write it in matrix form as

dVτ0 (τ )

dτ
= �Vτ0 (τ ) + F(τ ), (9)

where � = [ 0 �c

−�c 0 ] is a 2 × 2 matrix and �c = eB0/me

is the electron cyclotron frequency (Larmor frequency) in
the magnetic field B0. The velocity matrix is represented by
Vτ0 (τ ) = [vx

τ0
(τ )vy

τ0 (τ )]T , where the superscripts x and y of

v
x(y)
τ0 (τ ) mean the x and y components of the velocity vector

of electrons released at τ0, respectively, and the superscript
T represents the matrix transposition. The inhomogeneous
term on the RHS of Eq. (9) is F(τ ) = e

m
[Ex(τ )Ey(τ )]T , which

causes the accelerations of the ionized electrons.
Obviously, the matrix equation (9) is a kind of first-

order ordinary differential equation, which can be solved
analytically. Using the established procedure, one obtains its
solution in terms of the integral form as

Vτ0 (τ ) = exp[�(τ − τ0)]Vτ0 (τ0)

+
∫ τ

τ0

exp[�(τ − τ ′′)]F(τ ′′)dτ ′′. (10)

Since the exponential part of exp[�(τ − τ0)] is a 2 × 2 matrix,
Eq. (10) should be simplified in order to carry out our
numerical calculations below.

In view of the expression of �, we introduce an antisym-
metry matrix I = [ 0 1

−1 0], which means � = I�c. It is easy
to verify that I has the properties

I2 = −I, I3 = −I, I4 = I,

where I denotes the 2 × 2 identity matrix. These properties
mean that the introduced matrix I behaves like the imaginary
unit i. Therefore, using the properties of i, we can express the

043834-3



C. X. YU AND J. LIU PHYSICAL REVIEW A 90, 043834 (2014)

exponential matrix exp[�(τ − τ0)] as

M(τ,τ0) =
[

cos[�c(τ − τ0)] sin[�c(τ − τ0)]
− sin[�c(τ − τ0)] cos[�c(τ − τ0)]

]
.

It is easy to verify that it has the properties

M(τ0,τ ) = [M(τ,τ0)]T ,

M(τ2,τ1)M(τ1,τ0) = M(τ2,τ0).

Evidently, the matrix M(τ,τ0) acts like a rotation matrix, which
rotates counterclockwise the velocity vector Vτ0 (τ ) by an angle
of θ = �c(τ − τ0) within an interval 	τ = τ − τ0 because of
the negative value of the electron charge e. Then one can
rewrite Eq. (10) as

Vτ0 (τ ) = M(τ,τ0)Vτ0 (τ0) +
∫ τ

τ0

M(τ,τ ′)F(τ ′)dτ ′. (11)

This illustrates that the Lorentz force from the magnetic field
changes the electron trajectories with a frequency �c, which

generates the electron’s velocity along the y axis. According to
the classical Ampère-Maxwell equation [21], ∂E/∂t ≈ Js/ε0,
the electric field in the direction of the y axis is excited, Js

is the electric current source caused by the plasma’s motion
in the driving laser field, ε0 is the dielectric constant, and
the generated magnetic field is neglected in the nonrelativistic
regime.

C. Propagation equation

Finally, by substituting Eqs. (4) and (7) into Eq. (1) and
using Eq. (8), we obtain the propagation equation of the
laser pulse through a gaseous medium. In this paper it is not
convenient to study the evolution of polarization of the incident
laser pulse in the frequency domain. In order to avoid the
introduction of the imaginary unit i from the time derivatives
and to analyze the conversion of the electric field from the
x component to the y component in the time domain, we
integrate the two sides over time (−∞,τ ] and achieve the final
equation in integro-differential form [30,31]

∂E
∂ξ

= c

2
∇2

⊥

∫ τ

−∞
dτ ′E(τ ′) − μ0ec

2

∂

∂τ
[Na(τ )s(τ )] − μ0Ipc

2

[
1

E(τ )

∂Ne(τ )

∂τ
e
]

− eμ0c

2

∫ τ

−∞
dτ ′ ∂Ne(τ ′)

∂τ ′ Vτ ′(τ ′)

− 1

2c

∫ τ

−∞
dτ ′ω2

p(τ ′)E(τ ′) − e2μ0c

2me

B0

∫ τ

−∞
dτ ′

[∫ τ ′

−∞

∂Ne(τ ′′)
∂τ ′′ IVτ ′′ (τ ′)dτ ′′

]
, (12)

where ωp(τ ) =
√

Ne(τ )e2/meε0 is the time-dependent plasma
frequency due to the time-dependent electron density Ne(τ )
and μ0ε0 = 1/c2 is used. The initial velocity of electrons
Vτ ′(τ ′) = drτ (τ )/dτ is to be determined below and the
velocity vector (matrix) Vτ ′(τ ) is given by Eq. (11). In Eq. (12)
the first term on the RHS is responsible for the transverse
diffraction of the laser pulse and the second term shows that
the laser pulse experiences a dispersion and absorption due to
acceleration of the bound electrons in neutral atoms. The third
term represents the laser loss due to the optical-field ionization
of the gaseous medium. The last term on the first line on the
RHS accounts for the production rates of electrons with a
certain initial velocity perpendicular to the laser’s polarization.
Actually, this term contributes little to the process of the laser
energy conversion because of the relatively small velocities in
the tunneling regime and it can be dropped. The first term in the
second line shows that the ionized electrons gain their kinetic
energies from the laser field and excite the plasma oscillations
with the time-varying frequency ωp(τ ). The last term in the
second line describes the bending of the electrons’ velocity
by the external strong magnetic field, which converts the laser
energy from the x component to the y component, i.e., the
excitation of the electric field along the y axis.

III. SIMULATIONS AND DISCUSSION

A. Numerical scheme

Calculations of the coupled integro-differential equation
(12) in matrix form are numerically performed by means
of the fourth-order Runge-Kutta approach for a laser pulse
propagating in optical field-ionizing gaseous media. Since the
refraction term has little influence on the evolution of the

laser’s polarization, we drop the first term on the RHS in order
to reduce the consumption of machine time. Then the (3 +
1)-dimensional geometries reduce to a (1 + 1)-dimensional
version. The first derivative of [Na(τ )s(τ )] in the second term
on the RHS is carried out utilizing the finite-difference method,
which uses the five-point formula and has the accuracy of
O(	τ 4) with the step size 	τ [32]. Since we only consider
the atomic ionization through a photoionization mechanism,
the electron densities can be expressed as an analytical form
and the first derivative of the electron density can also be given
explicitly. Furthermore, the integration computation appearing
on the RHS is performed using the cumulative trapezoidal
numerical formalism.

The gases are prepared by helium atoms with a gas pressure
p = 150 Torr and a room temperature T = 300 K, which
allows us to approximate them as an ideal gas. According
to the state equation of an ideal gas, we calculate the initial
density N0 ≈ 4.8 × 1018 cm−3 for the present parameters.

An incident laser pulse linearly polarized along the x axis
with a central wavelength λL = 800 nm is focused on the
gaseous medium, which is expressed as

Ein(τ ) = exE0f (τ ) cos(ωLτ + φ0),

where ex is the unit vector along the x axis, the angular
frequency ωL = 2πc/λL, and the initial phase is set to be
φ0 = 0 without loss of generality. The electric strength E0

is an adjustable parameter relating to the laser intensity
I0 = ε0cE

2
0/2. The envelop function f (τ ) is supposed as a

Gaussian shape, f (τ ) = e−τ 2/τ 2
f , and τf characterizes the pulse

length (the full width at half maximum of the intensity is then
τFWHM = √

2 ln 2τf ).
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For the numerical calculation of Eq. (3), we adopt the
predictor-corrector scheme with the initial position s0 and
initial velocity v0 that satisfy the energy-conservation condi-
tions (ECCs) mev

2
0/2 + meω

2
0s

2
0/2 = Ip, where s0 = |s0| and

v0 = |v0|. The two-dimensional initial positions sx0 and sy0

uniformly distributed between −
√

2Ip/meω
2
0 ∼

√
2Ip/meω

2
0

are achieved using the built-in random generator by Intel
Visual Fortran (IVF), in which s2

0 = s2
x0 + s2

y0 � 2Ip/meω
2
0

holds. Then the two-dimensional initial velocities vx0 and vy0

are obtained using the same procedure according to the ECCs.
Under the radiation of an intense laser pulse of the

peak intensity I0 ∼ 1015 W/cm2, the helium gas experiences
mainly the optical field ionization (TI or OBI depending on the
Keldysh parameter γK ), the evolution of the free-electron den-
sity is described by Ne(τ ) = N0{1 − exp[− ∫ τ

−∞ W (E)dτ ′]},
and the neutral density is Na(τ ) = N0 − Ne(τ ). Along with
the values of the ionization rate W (E) versus the electric field
E obtained from Ref. [33], we obtain the ionization rate for an
arbitrary electric field E(τ ) by an interpolating fitting method,
such as Lagrange interpolation.

To calculate the velocity of a laser-produced electron
Vτ0 (τ0) from Eq. (11), we need to assign its initial velocity
Vτ0 (τ ). In the adiabatic approximation, the initial velocities
have a Gaussian-like distribution perpendicular to the instan-
taneous laser field and the longitudinal components along the
instantaneous laser field are sufficiently small [34]. Therefore,
the initial velocity of a tunneled electron is chosen to be
Vτ0 (τ0) ≈ (0,V⊥) and the transverse velocity V⊥ satisfies the

distribution f (V⊥) = e−V 2
⊥
√

2Ip/|E(τ0)| (in atomic units) [35].
When the instantaneous laser field polarizes at an angle θ to
the x axis, as shown in Fig. 1, to ensure the zero longitudinal
velocity V‖ ∼ 0 and V⊥ ∼ |Vτ0 (τ0)|, there must be

Vx cos θ + Vy sin θ = 0, (13a)

(Vx sin θ )2 + (Vy cos θ )2 = (V⊥ sin φξ )2, (13b)

FIG. 1. (Color online) Diagram of the laser field and the initial
velocity of an ionized electron. The laser field E(τ ) lies in the xy

plane at an angle θ to the x axis and the initial velocity V⊥ lies in
the plane perpendicular to the polarization of the electric field at a
random angle φξ to the ξ axis.

where φξ is the angle between the propagation direction eξ , Vx

and Vy are the x and y components of the transversal velocity
V⊥, respectively, and the angle θ is determined by computing
tan θ = Ey(τ0)/Ex(τ0). From Eqs. (13a) and (13b) we obtain

Vx = ± V⊥ sin φξ sin θ√
sin4 θ + cos4 θ

, Vy = ∓ V⊥ sin φξ cos θ√
sin4 θ + cos4 θ

.

Here the value of V⊥ obeys the Gaussian distribution f (V⊥)
and the angle φξ is distributed uniformly between 0 and
2π . Their values are both obtained using the built-in random
generator by IVF.

B. Results and discussion

In our calculations, the computational time duration ranges
from −10 to 20 fs considering the spreading of the laser
pulse in the time domain. The number of grid points for τ

is 1024, which corresponds to the grid spacing 	τ ≈ 0.03 fs.
The incident laser intensity is I0 = 2.0 × 1015 W/cm2 with
the width τf = 5.0 fs and the external magnetic field is
B0 = 1500 T. We propagate the laser pulse for a distance of
ξ = 1.0 cm with the fixed step size of 	ξ = 0.1 μm.

Figure 2 presents the profiles of the electric pulse propagat-
ing in the dilute helium medium for a distance of ξ = 1 cm.
From Fig. 2(a) the electric field polarized along the y axis
(marked by the green lines with stars) is generated and there
is a time delay τdelay between the leading peaks of the x and y

−10 −5 0 5 10 15 20−1

−0.5
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1
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N
or

m
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Incident Electric Fieldtdelay

(a)

(b)

FIG. 2. (Color online) Profile of the output electric field at a
distance of ξ = 1 cm: (a) the relative delay of the x and y components
of the output electric field in the time domain and (b) the synthesized
laser pulse (the zero plane is colored light green to intuitionally
show the rotation of the laser polarization). Here the incident laser
intensity is I0 = 2 × 1015 W/cm2 and the external magnetic strength
B0 = 1500 T.
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components of the output electric field (OEF). For the purpose
of facilitating a comparison, the incident laser pulse is also
plotted using the red solid line. Evidently, from Fig. 2(a), the
x component of the OEF denoted by the blue solid line with
circles shifts its peaks and decays greatly, thus spreading as a
long tail at the back edge of the pulse. The prior way causing
the laser loss is the optical-field ionization, which occurs near
the peaks of the laser. This is confirmed by the fact that the first
two cycles of the incident laser satisfying γK � 1 are nearly
unchanged during its propagation and the y component of the
OEF (the green solid line with stars) is not created within the
first two cycles.

In the third cycle, the peak strength of the driving laser
reaches the TI threshold that satisfies the Keldysh criterion
γK � 1 and the ionized electrons are produced dramatically
due to the sufficiently strong electric field. With the assistance
of an external magnetic field, the motion of the electrons is
bent greatly according to Eq. (11), which excites the electric
field along the y axis. It is noteworthy that the major part of the
y component of the OEF appears between 5 and 10 fs. This
is because the ionized electrons produced near the leading
peaks gain their maximal velocity from the back edge of
the incident laser pulse and the relative delay appears as a
result. The simulations show that the most contributions to
the excitation of the y component are made by the LPP in
the dilute gaseous medium and the effects created by the
neutral atoms are minimal. This also indicates that, for an
intense light propagating through a dilute gaseous medium,
the practical form of the atomic potential plays little or no role
in the excitation of the laser field polarizing along the y axis.

In Fig. 2(b) we present the synthesized laser pulse from
the x and y components of the OEF, which demonstrates
intuitively the rotation of the laser’s polarization through a
light-green zero plane. During τ ∈ [−10,0] fs, the synthesized
laser pulse basically polarizes along the x axis. While starting
from 0 fs, i.e., at the front edge of the leading peak of
the driving laser pulse, the polarization of the OEF rotates
counterclockwise in the xy plane viewed from the front. In the
trail of the OEF, it behaves like an elliptically polarized light.

In order to estimate the level of rotation of the laser
polarization, we draw the Lissajous diagram for the OEF in
polar coordinates, as illustrated in Fig. 3, where the radius
represents the amplitude of the electric field. We can clearly see
that the polarization mainly concentrates on the first and third
quadrants. Therefore, seeking a parameter is useful to describe
the relationships among the average deflection, the incident
laser intensity and the strength of the external magnetic field.
By weighting the angle θ (τ ) using the amplitude of the
instantaneous electric field E(τ ) =

√
E2

x(τ ) + E2
y(τ ), we can

introduce a parameter 〈θ〉, termed the average rotation angle
(ARA), at a distance ξ as

〈θ〉 =
∫ +∞
−∞ E(τ )θ (τ )dτ∫ +∞

−∞ |E(τ )|dτ
, (14)

where the rotation angle θ (τ ) is evaluated as the arc tangent of
the ratio Ey(τ )/Ex(τ ). In Fig. 3, the ARA 〈θ〉 ≈ 16.89◦ for the
aforementioned parameters corresponds to the slope k of the
blue dashed line with respect to the x axis through k = tan〈θ〉.
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FIG. 3. (Color online) Lissajous diagram for the output laser
pulse. The averaged rotation angle is calculated as 〈θ〉 ≈ 16.89◦

and δθ ≈ 12◦ for the parameters I0 = 2.0 × 1015 W/cm2 and B0 =
1500 T. The slope of the green dashed line is given by k = tan〈θ〉.

Different from the Faraday effects of a weak light that
occurs in a transparent solid medium, such as fused silica,
the polarization of an intense laser pulse propagating through
a dilute gaseous medium for some distance undergoes a
considerable variation within its pulse duration, as shown
in Fig. 3. In this case, the rotation of the polarization plane
of the laser pulse is evidently time dependent and we call it
the instantaneous Faraday rotation (IFR). By definition, the
Lissajous diagram records the polarization and magnitude of
the laser field by eliminating the time at a fixed distance.
Therefore, the angle 〈θ〉 measures the deflection of the laser
pulse under the influence of an external intense magnetic field.
According to the analysis of the origin of Ey(τ ) from Fig. 2, the
ARA actually reflects the weighted average momentum and
position distributions of ionized electrons by the ionization
rates. Since the front edge of the laser pulse accounts for
a considerable proportion in calculating the average rotation
angle, as indicated in Fig. 2, the value of 〈θ〉 is not as large as
it appears.

From Fig. 3 we can also find an interesting phenomenon that
the adjacent electric peaks in the first quadrant are separated
by nearly equal angles that are denoted by δθ . Moreover, we
also notice from Fig. 2 that the relative time delays between
the adjacent peaks are almost the same, where the electric
field Ex,Ey > 0 corresponds to the first quadrant in Fig. 3.
These facts allow us to introduce another parameter, i.e., the
average rotating speed (ARS) ω ≈ δθ/δτ , where δτ stands for
the relative time delay between the adjacent electric peaks for
positive Ex and Ey and the mark f represents the effective
fitted slope of the time-dependent curve f (τ ). The term
“effective” means that we only consider the cases with nonzero
rotation angles and the larger electric peaks, as presented in
Fig. 4. The black closed squares represent the electric peaks in
the first quadrant in Fig. 3 and the blue pentagrams denote their
rotation angles relative to the polarization plane of the incident
laser pulse. It is clear that the significant rotation begins at
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FIG. 4. (Color online) Electric peaks in the first quadrant and
the corresponding rotation angle at the distance ξ = 1 cm for the
parameters I0 = 2.0 × 1015 W/cm2 and B0 = 1500 T. The slope of
the green dashed line is given by ω = 6.1283 deg/fs.

about τ = −3 fs, where the electric field Ey begins to appear,
which can also be seen in Fig. 2(a). The effective rotation lasts
until about τ = 8 fs. By fitting and linear interpolation, we
obtain the rotation speed ω as the slope of the green dashed
line. The parameter ω demonstrates the ARS of the subsequent
laser polarization, which depends on the amplitude of the
external magnetic field through the collective movement of
ionized electrons.

In order to trace out the evolution of the polarization of
a laser field during its propagation in the dilute gaseous
medium, we examine the ARA and the corresponding electron
densities in the ionized channels in the wake of the elliptically
polarized pulse for each propagation step. In Fig. 5 we plot
the numerical results as functions of propagation distance,
where the parameters of the laser field are the same as
above and the magnetic strengths are chosen as 1200, 1500,
and 1800 T, respectively, for comparison. Evidently, the
densities of ionized electrons are almost the same for different
magnetic fields, which means that the external magnetic
field does not cause the extra energy loss of the laser
field; this will be discussed below. During the laser pulse
propagation for the distance of ξ � 0.2 cm, the ARA increases
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FIG. 5. (Color online) Evolution of the average rotation angle
and the distribution of ionized electron density during the laser’s
propagation. It is clear that the densities of ionized electrons almost
overlap for three different magnetic strengths. Here the incident laser
intensity is I0 = 2.0 × 1015 W/cm2.
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FIG. 6. (Color online) Rotating speeds of the laser polarized
plane as functions of the distance ξ . Here the parameters are chosen as
the incident laser intensity I0 = 2.0 × 1015 W/cm2 and the magnetic
strength B0 = 1200, 1500, and 1800 T.

relatively rapidly because the strength of laser field is so
strong that a large number of electrons are produced and
participate in the creation of the electric field along the y axis.
As the laser pulse continues propagating for a larger distance,
the growth rates of the ARA become lower and lower due to
the decay of the strength of the laser field and the consequent
decrease of the electron densities. The results from three differ-
ent magnetic strengths demonstrate that the stronger magnetic
field is beneficial for the conversions between the two orthog-
onal polarizations of the laser pulse, which manifest as the
higher average rotation angles (the black dotted line in Fig. 5).

In Fig. 6 we calculate the ARS for the polarization of the rear
edge of the laser pulse during its propagation in the gaseous
medium, where the same parameters are used as those in
Fig. 5. As analyzed above, the IFR mainly originates from the
collective movements of the ionized electrons, which indicates
that the strong magnetic field can only exert a significant
impact on the gaseous medium at the wake of the laser pulse.
In fact, the parameter ω reflects the influence of the magnetic
field on the propagating laser pulse. It is clear from Fig. 6
that the stronger magnetic field leads to the higher rotating
speed (the light green solid line with diamonds), which can be
justified by the cyclotron motion of an ionized electron under
the influence of the magnetic field with the cyclotron frequency
�c = |e|B0/me. It can be predicted that the maximum of the
ARS does not exceed �c. Therefore, the ARA 〈θ〉 and the
rotating speed of laser polarization ω characterize the IRF of
the incident laser pulse for two different aspects: The ARA
emphasizes the pulse as a whole and the ARS mainly focuses
on the fraction of the pulse with effective rotation.

In terms of probable experimental measurements, the
ARA is more practical than the ARS. In order to explore
the dependence of the ARA on the incident laser intensity
and the external magnetic strength, we vary the peak laser
intensity from 1.6 × 1015 and 2.2 × 1015 W/cm2 by a spacing
of 1014 W/cm2 and the magnetic field B0 from 100 to
2000 T by a spacing of 100 T, where the laser intensity I0 =
2.0 × 1015 W/cm2. The simulation results for the propagation
distance of ξ = 1 cm are shown in Fig. 7 for the ARA of the
OEF as functions of the magnetic magnitudes. We notice that
the ARA exhibits a good linear dependence with respect to
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FIG. 7. (Color online) Average rotation angles as functions of
different external strong magnetic fields for several incident laser
intensities at the distance ξ = 1 cm. The inset shows the dependence
of slope R on the incident laser intensity I0, which also demonstrates
good linearity.

the axial strong magnetic field. Therefore, we conclude that
〈θ〉 = RB0 with an I0-dependent coefficient R = αI0, where
R stands for the slope of the curve describing the ARA as a
function of the magnetic strengths and α is the slope of the
blue line in the inset of Fig. 7. According to Fig. 5, for a fixed
incident laser intensity and magnetic strength, the ARA is not
a simple linear function of propagation distance. Therefore,
the coefficient α is actually ξ dependent. Finally, we achieve
an important expression

〈θ〉 = α(ξ )I0B0. (15)

In order to determine the coefficient α(ξ ) based on the afore-
mentioned temporal profiles of the incident laser pulse, we cal-
culate its values for several distances of ξ = 0.1,0.2, . . . ,1.0
cm, respectively. Adopting a proper polynomial interpolation,
we obtain its expression in the form of α(ξ ) = ∑n

i=0 ciξ
i ,

where n is the order of interpolation polynomials and ci is the
fitting coefficient, as given in Table I. For comparison, we also
present the results from the spline interpolation; all of them
are shown in Fig. 8.

It should be noted, however, that Eq. (15) has its scope.
From Fig. 7, as the incident laser intensity reaches I0 = 2.2 ×
1015 W/cm2 and the magnetic strength exceeds about 1600 T,
the growth trend of the ARA slows down. This is because the
stronger laser field causes the saturation of atomic ionizations
and the two orthogonally polarized components of the laser
field compete fiercely under the influence of a higher magnetic
field through the cyclotron movements of ionized electrons.
Consequently, the ARA eventually reaches its limits regardless
of how strong the laser intensity and the magnetic field are.
Moreover, for a higher magnetic field (such as B0 = 2000 T),

TABLE I. Fitting coefficients of polynomial interpolations and
orders n = 3 and 5, respectively.

�
��n

ci

c0 c1 c2 c3 c4 c5

3 0.0019 0.0238 −0.0295 0.0125
5 0.0010 0.0366 −0.0855 0.1158 −0.0842 0.0249
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FIG. 8. (Color online) Values of α as functions of propagation
distance ξ . The blue closed circles represent the sampling values
calculated from the numerical simulations of the laser pulse.

the validity of Eq. (15) is ensured by adopting a lower incident
laser intensity.

The approximated linearity of the rotating angles of laser
peaks with time allows us to introduce the ARS, which is an
important parameter to characterize the modulation of the laser
polarizations. As discussed and analyzed above, the rotation
of the laser pulse is mainly caused by the collective motion
of ionized electrons under the laser field and the external
magnetic field for a tenuous gaseous medium. Therefore, the
starting point of the rotation is sensitive to the incident laser
intensity. In our calculations, the approximated linearity of
rotation angle with time is still observed for several different
laser intensities and magnetic strengths. In order to explore
the dependence of the ARS on the incident laser intensity and
magnetic strength, we calculate and fit the ARS according to
the scheme plotted in Fig. 4. As shown in Fig. 9, the results at
the distance of ξ = 1 cm also exhibit excellent linear relations
of the ARS with the magnetic strength for lower incident laser
intensities. In the inset of Fig. 9, the corresponding slopes
Cω̄ (red asterisks) depending on the incident laser intensity
are presented, where the blue line represents the spline fitting.
Similarly, for higher laser intensities and stronger magnetic
fields, the linear relations are also broken.
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FIG. 9. (Color online) Dependence of the rotating speeds of the
laser polarized plane on the incident laser intensity and magnetic
strength at the distance ξ = 1 cm. The inset shows the slopes Cω̄

depending on the incident laser intensity I0. The spline fitting is
represented by the blue line.
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C. Energy conversion

As is well known, there is no exception that the underlying
mechanism of all types of microscopic processes exhibits
essentially the energy transfers and conversions. Based on
the above analysis, the creation of the electric field along
the y axis originates from the motion of ionized electrons
along the y axis according to Maxwell’s equations, in which
the ionized electrons gain sufficient energy from the incident
laser field. During the energy transfers and conversions,
a great deal of energy is carried by ionized electrons in
the form of their kinetic energy, which causes the heating
of the partially ionized gaseous medium and the rapid loss
of the laser field. Since the transverse refractions have been
omitted during the laser’s propagation, the statements of
laser energy are represented by the energy density without
confusion. Then the residual energies carried by the laser
pulse are calculated as P (ξ ) = ∫ +∞

−∞ |E(ξ,τ )|2dτ/P0, where

P0 = ∫ +∞
−∞ E2

in(τ )dτ represents the incident laser energy with
the strength of an incident laser field Ein(τ ).

According to classical electrodynamics, the force of the
magnetic field always keeps perpendicular to the direction
of the velocity and does not change the kinetic energy of
the ionized electron. Therefore, the magnetic field causes
the loss of laser energy and only transfers the laser energy
between the two orthogonally polarized components, which
will be discussed in the following section. To investigate the
processes of energy transfer, we identify the laser energy
by three destinations: the energy carried by the electric field
polarized along the x and y axes, respectively, and the laser
loss that causes the ionization of electrons, the heating of the
gaseous medium, the generation of high-order harmonics, etc.
For this purpose, we define the energy densities normalized to
the incident laser pulse as

Px(ξ ) = 1

P0

∫ +∞

−∞
E2

x(ξ,τ )dτ , (16a)

Py(ξ ) = 1

P0

∫ +∞

−∞
E2

y(ξ,τ )dτ , (16b)

Ploss(ξ ) = 1 − Px(ξ ) − Py(ξ ), (16c)

where Ex(ξ,τ ) and Ey(ξ,τ ) are the x and y components of
the laser field at the distance ξ , respectively. Equation (16c)
is defined by the energy-conservation law. The evolutions of
different partitions of the laser energy are presented in Fig. 10.

As an incident laser pulse focuses on the gaseous medium,
the atoms absorb sufficient energy to release their bound
electrons by tunneling mechanisms and cause the loss of the
driving laser pulse near the peaks. Then the ionized electrons
are quiveringly driven by the laser field and external magnetic
field. Some of their kinetic energy is converted into the electric
field in the direction of their velocities according to Ampère’s
law, including in particular the one along the y axis, which
causes the decline of the energy density of Ex (the red solid
line) and the growth of the energy density of Ey (the blue
dashed line), as shown in Fig. 10. The rest of the kinetic energy
of ionized electrons and the ionization loss comprises of the
laser loss (the black dash-dotted line).

To explore the dependence of energy partitions on the
incident laser intensity and magnetic strength, we calculate
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FIG. 10. (Color online) Evolution of different partitions of the
laser energy during its propagation. The red solid line represents the
evolution of the energy density of the x component of laser field and
the blue dashed line represents that of the y component of the laser
field. The parameters are I0 = 2.0 × 1015 W/cm2 and B0 = 1500 T.

Eqs. (16a)–(16c) for different incident laser intensities and ex-
ternal magnetic strengths. In Fig. 11 we present the simulation
results for a distance of ξ = 1 cm and the parameters used are
given in the caption. The top panel shows the dependence of
the energy conversion of Ex on the laser intensities and the
magnetic strengths and the middle and bottom panels show
Py and Ploss, respectively. We find that, for a stronger incident
laser intensity or a stronger magnetic field, more energy of
incident laser field is converted into the y components from x

components. However, the laser loss by atomic ionization or
heating of the medium is almost independent of the magnetic
field and it only grows with increasing incident laser intensity,
as shown in Fig. 11(c).

IV. CONCLUSION

Summarizing our theoretical results, we investigated an
intense laser pulse propagating through a dilute gaseous
medium under the influence of an external strong magnetic
field. First, we derived the propagation equations satisfied

1.8
2

2.2

0.5
0.6
0.7
0.8

L
as

er
In

te
ns

it
y

(1
01

5
W

/
cm

2
)

1.8
2

2.2

0.1
0.2
0.3

Magnetic Field (100 T)
2 4 6 8 10 12 14 16 18 201.6

1.8
2

2.2

0.16
0.18
0.2

(a)

(b)

(c)

FIG. 11. (Color online) Dependence of energy transfer and con-
version on the incident laser intensity and external magnetic strength.
The laser intensity ranges between 1.6 × 1015 and 2.2 × 1015 W/cm2

by a spacing of 1014 W/cm2 and the magnetic strength varies from
100 to 2000 T by a spacing of 100 T, with the laser intensity
I0 = 2.0 × 1015 W/cm2. (a) Px , (b)Py , and (c) Ploss.
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by the propagating laser pulse, during which we treated the
response of the gaseous medium in two parts: the neutral atoms
and the LPP. For the neutral response, we adopted a harmonic
potential with an intrinsic frequency ω0 chosen as the cyclotron
frequency of an intra-atomic electron in the ground state.
The treatment of responses from ionized electrons released
at τ0 were performed by analytically solving the Lorentz
equations in matrix form and the initial velocities satisfied
a Gaussian-like distribution weighted by the E(τ0)-based
ionization rates. Then the numerical calculations were carried
out by using the fourth-order Runge-Kutta approach and the
derivatives of physical quantities with respect to time were
evaluated by the five-point difference method.

The simulation results show that the irradiation of an
intense incident laser field leads to significant ionizations of the
gaseous medium, which means the time-varying densities of
neutral atoms and ionized electrons. Due to the presence of the
external intense magnetic field, an electric field polarized along
the y axis is created with a relative time delay to the driving
laser field. It is evident that the electric field Ey(τ ) is generated
only when the strength of the electric field enters the tunneling
regime (γK � 1), which means that the ionized electrons play
a dominant role in exciting the electric field Ey(τ ). Because of
the tenuity of the medium, the effect of neutral atoms on the
excitation of electric fields polarized along the y axis can be
neglected.

In order to evaluate the rotation of the polarization of the
laser field, we defined two useful parameters, the average
rotation angle 〈θ〉 and the rotating speed ω, and analyzed
their evolutions during the laser’s propagation. By varying the
incident laser intensities and the external magnetic strengths,
we found that the average rotation angles keep increasing with
the increasing initial laser intensity and external magnetic
strengths for a fixed propagation distance. However, for a
sufficiently intense laser intensity and external magnetic field,
the average rotation angle reaches a limit because of the
ionization saturation and the energy exchanges between the
two orthogonally polarized components. By using polynomial
fitting, we obtained a simple relation, i.e., Eq. (15), of the
ARA with the propagation distance, the incident laser intensity,
and the external axial magnetic field. Since the ARS is an
important parameter to characterize the modulation of laser
polarization, we investigated the dependence of the ARS on
the incident laser intensity and the external magnetic field.
The linear relations for the lower magnetic strengths and lower
laser intensities were also demonstrated. Finally, we calculated
the energy density normalized to the incident laser field and
analyzed the processes of energy transfer and conversion of the
laser field polarized along the x and y axes, respectively, and
the loss caused by the ionizations and heating of the gaseous
medium. The atoms first absorb sufficient energy from the
incident laser field to release their electrons. Then ionized
electrons continue gaining laser energy to obtain their kinetic

energy and the external magnetic field bends its velocity, which
creates the laser field polarized along the y axis according to
Ampère’s law.

From the analysis above, the polarization of the output
electric field was determined by the incident laser field and
the external magnetic field; it contains a wealth of information
about the LPP. The chirality of the polarization plane of the
output electric field depends on the direction of the axial
magnetic field. A probable consideration of our work is
in the interaction of a superstrong laser field with a dense
plasma, where the self-generated magnetic field due to the
density and temperature gradients of the plasma may exert an
influence on the incident laser pulse. The obtained relation
(15) implies a probable scheme for the diagnosis of the
magnetic field and the calibration of laser intensity. Moreover,
the flourishing research on the chiral materials has led to the
demand for light sources with modulated polarization. In view
of the potentially interesting applications of such polarization-
modulated laser pulses, a great number of microscopic and
macroscopic processes and the corresponding mechanisms are
ongoing research issues. In order to produce the demanded
polarization-modulated pulse for some special purposes, one
needs to shape the profile of an incident laser pulse and adjust
its initial intensity and the magnetic strength.
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APPENDIX: DERIVATION OF EQ. (1)

Adopting the Coulomb gauge (∇ · E = 0), the propagation
of laser field in a medium is described by [21]

∇2E = μ0
∂2D
∂t2

= μ0ε0
∂2E
∂t2

+ μ0
∂2P
∂t2

, (A1)

where D = ε0E + P is the electric displacement vector and
the polarization P = Pneu + Pion involves the contributions
from neutral atoms and ionized electrons in the field-ionizing
medium. In the comoving frame τ = t − z/c and ξ = z, which
gives ∂2

∂τ 2 = ∂2

∂t2 and ∂2

∂z2 = ∂2

∂ξ 2 − 2
c

∂2

∂ξ∂τ
+ 1

c2
∂2

∂τ 2 , Eq. (A1)
becomes

∂2E
∂ξ 2

− 2

c

∂2E
∂ξ∂τ

+ ∇2
⊥E = μ0

∂2Pneu

∂τ 2
+ μ0

∂2Pion

∂τ 2
,

where ∇2 = ∂2

∂z2 + ∇2
⊥ and c2 = 1/μ0ε0 are used. In a slowly

varying envelope approximation [33,36,37], i.e., ∂2E
∂ξ 2 ≈ 0,

Eq. (1) is obtained.
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