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Microscopic theory of diffraction of light from a small hole
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On the basis of the Maxwell-Lorentz local-field equations and nonlocal linear response theory, a self-consistent
microscopic Green function theory of diffraction of light from a single hole in a thin and plane metallic screen
is established. By subtracting the scattering of identical incident fields from screens with and without a hole,
a causal effective optical aperture response tensor is introduced. An approximate expression is derived for the
aperture response tensor in the limit where the screen behaves like an electric-dipole absorber and radiator. In
this limit the internal electron dynamics is that of a quantum well. For a screen so thin that its bound electron
motion can be described by a single quantum level, a approach for a quantum mechanical calculation of the
aperture response tensor is presented. When the linear dimensions of the hole become sufficiently small the
so-called aperture field, defined as the difference between the prevailing electric field with and that without
a hole, becomes identical to the field from an incident-field-induced electric dipole with anisotropic linear
polarizability. Our theory is formulated in such a manner that preknowledge only of (i) the incident electromagnetic
field and (ii) the light-unperturbed optical electron properties (the microscopic conductivity tensor) of the
screen with the geometrically given hole is needed. Since the microscopic theory allows for the presence of an
(oscillating) component of the sheet current density perpendicular to the plane of the screen, a generalization
of (i) the standard jump conditions of the field across the sheet and (ii) the reflection symmetries of the various
fields in the plane of the screen is worked out. As our theory deviates radically from the approach of all
classical diffraction theories, which are based on the macroscopic Maxwell equations and some kind of pheno-
menological expression for the screen conductivity σ (often just σ → ∞), we give a brief review of classical
diffraction theory, formulated in such a manner that a comparison to the microscopic theory is made easier.
In particular, the Bethe-Bouwkamp theory of classical diffraction from a small hole in an infinitely thin and
perfectly conducting (σ → ∞) screen is our focus. We suggest that experimental frequency and angular resolved
studies of the interference of the diffracted fields from quantum wells with and without holes are undertaken
to obtain detailed insight into the microscopic aperture response functions, not least in the optical near-field
domain.

DOI: 10.1103/PhysRevA.90.043830 PACS number(s): 42.25.Fx, 03.50.Kk

I. INTRODUCTION

A survey of the literature indicates that theoretical studies of
the vectorial diffraction of electromagnetic fields (e.g., light)
at an aperture (hole) in a metallic screen up to now have been
based on the macroscopic Maxwell equations, together with
the standard boundary conditions. Additionally, in the over-
whelming majority of (older) investigations it is assumed that
the metal is a perfect conductor (has infinite conductivity) and
that the screen is infinitely thin. Classical theories invoking the
latter two assumptions traditionally have been named rigorous
diffraction theories [1], not for physical reasons but because
the scattering problem becomes a well-defined mathematical
boundary value problem. Although the perfect conductor
assumption certainly is an idealization, it may represent a good
approximation, particularly at electromagnetic frequencies far
below optical frequencies. “Rigorous” classical diffraction
studies most often start from the exact Helmholtz-Kirchhoff
integral theorem [2–4] and proceed via the Kirchhoff method,
in which the correct diffracted field in the hole is replaced
by the incident field (possibly plus the reflected field), and the
field behind the screen is assumed to vanish [1]. The Kirchhoff
solution (scalar or vectorial) does not satisfy the boundary
condition on the screen, however [5,6].

*okeller@physics.aau.dk

In an important paper [7] published in 1944, Bethe seeked
to repair the “boundary condition defect” of the vectorial
Kirchhoff theory and showed that a solution, satisfying the
macroscopic Maxwell equations and the boundary conditions
everywhere, could be obtained for a circular hole with a
radius small compared to the wavelength of the incoming
electromagnetic wave. The Bethe paper leads to the conclusion
that the diffracted far field may be represented as owing
to the radiation of an electric and a magnetic dipole, both
placed in the center of the small hole. Although it was
shown by Bouwkamp in 1950 that the result of Bethe needs
a correction in the near field of the aperture [8,9], Bethe’s
paper offered substantial new physical insight into classical
diffraction problems.

More recently, the advent of the scanning near-field mi-
croscope [10,11] (and the development of near-field optics
as such) and the discovery of so-called extraordinary optical
transmission [12] have stimulated new research on diffraction
of light from single apertures and periodic hole arrays [13,14].
A good review of the extensive work in this field has been
given by Garcia-Vidal et al. [15]. In 1987 Roberts presented
a macroscopic classical diffraction theory of light from a
circular aperture in a perfectly conducting screen of finite
thickness using the so-called coupled-mode method [16].
Using a different approach, more along the lines of Bethe,
the same geometry was analyzed by Garica de Abajo [17].
In the framework of the perfect conductor approximation
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the coupled-mode method, moreover, has been used to study
transmission of light through a rectangular hole [18] and
to provide analytical expressions for transmittance through
isolated circular and rectangular holes [19]. The spectral
positions of the transmission resonances appearing in isolated
holes also have been analyzed analytically using the coupled-
mode method [20]. The diffraction of light from single
apertures in nonideal metals, characterized by a complex
dielectric constant, has been analyzed using different nu-
merical methods to solve the related macroscopic Maxwell
equations. Some of the first calculations were made by
Wannermacher using the multiple-multipole method [21], but
the Green’s dyadic technique [22–26] and the finite-difference
time-domain method [27] have also been employed. Recently
a semianalytical approach for a circular subwavelength hole
in a metal film was developed [28].

Partly motivated by the present authors’ interest in un-
derstanding the microscopic physics related to the near-field
diffraction of a single-photon wave packet (or a few photons)
from a subwavelength hole, and single-photon near-field
interference from two holes, we have found it necessary to
reanalyze aspects of the electromagnetic diffraction theory
starting from a quantum physical framework. As we see
it, the description of a photon’s transmission through a
small hole cannot be separated from the spatial localization
problem of the photon and this circumstance leads to the
assertion that the photon tunneling effect, a genuine near-field
quantum phenomenon, plays a crucial role in the vicinity
of the hole [29]. The entire problem appears to be even
more intriguing since there exists a link between near-field
two-photon entanglement and spatial photon localization [30].
Due to the fact that a sufficiently small hole in the classical
Bethe-Bouwkamp theory in the far field tends to behave
like a source for electric- and magnetic-dipole radiation, a
connection to certain theoretical quantum optical studies, in
which the interference between the quantized electric-dipole
(ED) radiation from two two-level atoms is examined, emerges
[31,32].

As a forerunner to the full quantum electromagnetic theory,
we present here a semiclassical microscopic theory, i.e., a
description in which the electromagnetic field is treated as
a classical quantity, whereas the massive particle (electron)
dynamics is governed by the rules of quantum mechanics [the
(many-body) Schrödinger equation].

In Sec. II, we give a summary of certain aspects of classical
diffraction theory for perfect conductors, paying particular
attention to a formulation adequate for a later comparison
to our microscopic approach for a plane metallic screen.
From the Lorenz-Rayleigh vectorial diffraction formula a
bridge to the general scattering theory of the electromagnetic
field from a current density sheet is made starting from the
scattered vector potential in the Lorenz gauge. On the basis of
the diffraction formula of Smythe [33], valid for the electric
field of an infinitely thin and perfectly conducting screen, we
calculate the diffracted field at distances from the aperture
which are large compared to the linear dimensions of the
hole, assuming that the field in the aperture is known. A
determination of the electromagnetic field in the aperture
poses a difficult problem, whose basic framework is briefly
reviewed in Appendix A using an approach based on the

insertion of an appropriate fictitious magnetic current density
distribution into the aperture region.

In Sec. III, the microscopic diffraction theory is established,
starting from the microscopic Maxwell-Lorentz equations
in the frequency (ω) domain. In these all electromagnetic
properties of matter are described via the microscopic charge
and current densities, and only the microscopic electric and
magnetic fields appear. From the outset, our approach deviates
radically from the various classical ones in that we consider the
determination of the local microscopic electric field [E(r; ω)]
inside the screen to be the cental goal. The field-matter
interaction generates a microscopic current density [J(r,ω)]
in the screen. Under the assumption that this interaction is
linear, J(r,ω) and E(r; ω) are related via a spatially nonlocal
constitutive equation involving the microscopic conductivity
tensor, σ (r,r′,ω). Despite its name, a formulation based on
σ (r,r′,ω) enables one to describe the diffraction not only
from metal screens but also from dielectric and semiconductor
screens. The microscopic Maxwell-Lorentz equations allow
one to set up an inhomogeneous integral relation between
E(r,ω) and J(r; ω). The kernel of the relation is the well-
known standard dyadic Green function, G(r,r′; ω), and when
J = 0, the electric field equals the incident field E0(r; ω), an
assumed preknown quantity. By combining the Green function
formalism and the constitutive relation we obtain a causal,
spatially nonlocal constitutive equation between the current
density induced in the screen and the incident electric field. The
related causal conductivity tensor σ cau(r,r′; ω) can be obtained
from G(r,r′ω) and a knowledge of σ (r,r′; ω), at least formally.
Once the current density in the screen has been calculated,
it is easy to determine the diffracted field everywhere in
space.

It appears from the outline given above that the microscopic
diffraction problem for a given screen, characterized by its
linear electrodynamic properties and the form of the aper-
ture(s), placed in a prescribed incident field, has been turned
into a question of calculating the microscopic response tensor
σ cau(r,r′ω). In principle, σ cau(r,r′ω) may be determined from
a knowledge of ω and the (many-body) wave functions and
related eigenenergies of the Schrödinger equation describing
the field-unperturbed electronic states of the screen with
a given aperture(s). In general, it is a hopeless task to
make a direct quantum mechanical calculation of σ cau(r,r′ω).
However, it is intuitively clear that it is the electronic properties
of the screen in the vicinity of the aperture (hole) which are of
primary importance. To take advantage of this, we compare
the diffraction (scattering) from screens with and without
holes. Apart form the disturbance caused by the hole the
two screens are assumed to possess identical electrodynamic
properties. Let σ cau(r,r′ω) and σ cau

∞ (r,r′ω) denote the relevant
microscopic conductivity tensors for screens with and without
a hole, respectively. Provided the screens are excited by
identical incident fields, E0(r; ω), the difference between the
diffracted fields in the two situations relates directly to a
quantum mechanical calculation of the conductivity tensor
difference σ cau(r,r′; ω) − σ cau

∞ (r,r′; ω). As the reader may
know, comparison of diffractions from (ideal conducting)
screens with and without a hole is central to Bethe’s analy-
sis [7]. Although the determination of σ cau − σ cau

∞ effectively
involves only the electron dynamics in the vicinity of the hole,
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the quantum mechanical calculation is still difficult to carry
through, in general.

In the spirit of classical Bethe-Bouwkamp diffraction
theory we next assume that the screen is so thin that it
behaves like an ED absorber and ED radiator sheet (ED-
ED sheet). In this limit, only the integral [�(r‖,r′

‖; ω)] of
σ cau(r,r′; ω) − σ cau

∞ (r,r;′ ω) over the directions (z and z′)
perpendicular to the screen appears. This fact simplifies the
quantum mechanical calculation considerably. Furthermore,
when the screen becomes sufficiently thin it behaves like a
quantum well (QW). For QWs without a hole, much is known
concerning the internal electron dynamics and σ cau(r,r′; ω) =
σ cau(r‖,r′

‖,z,z
′; ω) (see Refs. [34] and [35], and references

therein). For an ED-ED sheet (screen) the aperture response
tensor, �(r‖,r′

‖; ω), hence becomes the central quantity. The
range of �(r‖,r′

‖; ω) determines the effective size of the “hole”
(the geometrical hole size plus the depth of the optical surface
response layer).

A final simplification occurs if the effective hole size
is small compared to the characteristic length parameter of
the incident field. In the lowest order only the integral of
�(r‖,r′

‖; ω) over r‖ and r′
‖ appears, and the related response

tensor �(ω), multiplied by iω, takes the role of an ED
polarizability tensor of the small hole.

In the microscopic diffraction theory, not least for QW
sheets, it is necessary to take into account that the field-
induced oscillatory (ω) screen current density in general has
a component perpendicular to the plane of the sheet. This
is well known for QWs without apertures, and the related
generalization of the jump (boundary) conditions for the
electromagnetic field has been obtained previously [34]. We
show that the jump of the microscopic aperture field across
the screen fulfills the generalized jump conditions, and in
Appendix B, we add an analysis giving further insight into
the physics behind these conditions. In particular, the jump
in the component of the electric field parallel to the given
interface is focused on, because this jump occurs only when
the sheet current density has a component, J⊥, perpendicular
to the interface.

It is known from classical diffraction theory that the
reflection symmetries of the A, E, and B fields in the plane
of the screen play a crucial role in the calculation of the
diffracted electromagnetic field (cf. the summary given in
Sec. II). It is important therefore to establish the generalized
symmetries (asymmetries) existing when J⊥ is nonvanishing.
This is done in Appendix C. In Sec. IV, we present how we,
from a theoretical standpoint and in the wake of the present
microscopic theory, see a possible future interplay between
theory and experiments in the optical region, in particular, in
the case of subwavelength holes in QW screens. In Sec. V,
we show how the aperture response tensor of a metallic (or
semiconducting) screen, with electron dynamics dominated
by the diamagnetic interaction, may be obtained for a sheet
so thin that it behaves like a single-level QW. A recently
established two-dimensional (2D) extinction theorem [36],
used here in combination with an infinite metal/hole barrier
model, is central for the calculation. For a single-level
QW with electronic-point correlation the difference between
σ cau(r,r′; ω) and σ (r,r′; ω) takes a particularly simple form in
the first Born approximation.

II. CLASSICAL DIFFRACTION THEORY

Since our microscopic theory of diffraction by a (small)
hole in a plane conducting screen deviates radically from
the classical approach, we begin with a summary of the
classical theory. We highlight those aspects of the theory
which are of particular importance for a comparison to our
microscopic description, and we point out deficiencies and
self-contradictory features shown by all classical approaches,
essentially.

A. Lorenz-Rayleigh vectorial diffraction formula

Let us assume that the scalar field u(r; ω), given here in
the space (r)–frequency (ω) domain, satisfies the free-space
Helmholtz equation(∇2 + q2

0

)
u(r; ω) = 0, (1)

where q0 = ω/c0 is the vacuum wave number of light (c0 being
the vacuum speed of light). A scalar Green function, g(r,r′; ω),
for the Helmholtz equation is defined by(∇2 + q2

0

)
g(r,r′; ω) = −δ(r − r′), (2)

where δ(r − r′) is the Dirac δ function. The Green function is
not specified completely by Eq. (2), but for what follows it is
adequate to make the choice

g(|r − r′|; ω) = eiq0|r−r′|

4π |r − r′| . (3)

The Green function in Eq. (3) is the so-called Huygens scalar
propagator. If V is the volume bounded by a closed surface S

and r is inside V , then [1,6,37]

u(r) =
∮

S

[u(r′)n̂(r′) · ∇′g(R) − g(R)n̂(r′) · ∇′u(r′)]dS ′,

(4)

where n̂(r′) is the inwardly directed normal to S at point r′.
In the notation above the reference to ω has been left out, and
R = |R| = |r − r′|. Equation (4), which expresses the scalar
field at r in terms of a surface integral over a certain surface
S, is the integral theorem of Helmholtz and Kirchhoff [2–4].
To investigate the diffraction from an aperture in an infinitely
thin plane screen (placed at z = 0) we let part of the surface
of integration consist of the plane z′ = 0+. The remaining
part of S is a hemisphere S∞ in the half-space z > 0 (see
Fig. 1). In the limit where the radius of the hemisphere is
infinite, only the integral over the plane surface (henceforth
denoted S) contributes. The integral over S therefore now
extends over the screen S and the aperture A, i.e., S = S + A.
Other diffraction formulas equivalent to the one given in Eq. (4)
are often used. For the present purpose it is useful to start from
the Lorenz-Rayleigh integral formula

u(r) = −2
∫
S+A

g(R)
∂u(r′)
∂z′ dS ′, z > 0, (5)

valid for diffraction from a plane screen (at z = 0) in the
half-plane z > 0. The primary source of the incident scalar
field, u0(r), must be located entirely in the region z < 0 for
Eq. (5) to hold. The expression in Eq. (5) is generally known
as the Rayleigh diffraction formula of the second kind [1], but
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U0(r)

n’
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S = + +
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z’ = 0+

FIG. 1. Helmholtz-Kirchhoff integral theorem applied to investi-
gate the diffraction of an incident vector field U0(r) from an aperture
in a plane screen. The surface is divided into three parts: the screen
S (solid line) and the aperture A (short-dashed line) in the z = 0+

plane and the remaining hemisphere S∞ (dashed line). Note that r
is a point inside S and that the normals n̂′ = n̂(r′) to the surface are
inwardly directed.

we prefer to call it the Lorenz-Rayleigh diffraction formula
because it is a fact that it was established by Lorenz in
1860 [38–40], many years before Rayleigh’s independent 1897
publication [41].

For a vector field U(r) = (ux,uy,uz), where each of the
Cartesian components satisfies the free-space Helmholtz equa-
tion, one obviously obtains the following vectorial equivalent
of Eq. (5):

U(r) = −2
∫
S+A

g(R)
∂U(r′)

∂z′ dS ′, z > 0. (6)

In the context of electromagnetism, one may, e.g., identify
U with the vector potential (A), the electric field (E), or the
magnetic field (B). A number of other vectorial diffraction
integrals equivalent to the one in Eq. (6) exists [1], but
none of these is needed here. An incident vector field, U0(r)
(with sources located in the region z < 0), gives rise to a
scattered field, US(r), from the screen, and the total field, U(r),
prevailing in source-free points of space is hence

U(r) = U0(r) + US(r). (7)

The linearity of the free-space Maxwell equations allows one
to apply Eq. (6) to U0, US , or U; cf. the vectorial Helmholtz
wave equation. Before proceeding, we stress that Eq. (6) allows
one to determine U(r) for z > 0 provided that ∂U(r′)/∂z′ in
the z = 0+ plane is known.

B. Remarks related to general scattering theory

Assume that an incident vector potential A0(r; ω) ≡ A0(r)
interacts with a distribution of charged particles and (in a
continuum description) gives rise to an induced current density
J(r; ω) ≡ J(r) in the particle domain. In the Lorenz gauge the
total vector potential, A(r; ω) ≡ A(r), is known to be given by
the scattering formula [42]

A(r) = A0(r) + μ0

∫ ∞

−∞
g(R)J(r′)d3r ′, (8)

where μ0 is the vacuum permeability. Applied to an infinitely
thin current sheet located in the plane z = 0, i.e., with J(r) =
JS(r‖)δ(z) [where r‖ = (x,y)], and under the assumption that
JS(r‖) = JS

‖ (r‖) + JS
⊥(r‖) has no component perpendicular (⊥)

to the plane of the sheet, that is,

JS
⊥(r‖) = 0, (9)

the scattered vector potential AS(r) = A(r) − A0(r) is given
by the surface integral

AS(r) = μ0

∫
S

g(R)JS
‖ (r′

‖)d2r ′
‖, (10)

which only extends over the screen since JS
‖ (r‖) = 0 in the

aperture. Above and in the following the surface element d S ′
over the screen is written as d2r ′

‖. Although all classical diffrac-
tion studies apparently have been based on the demand that
the sheet current density in the screen must flow in directions
parallel (‖) to the screen, i.e., JS(r‖; ω) = JS

‖ (r‖; ω), the re-
quirement in general is correct only in the low-frequency limit
[JS(r‖; ω → 0) = JS

‖ (r‖; ω → 0)] (cf. Refs. [34] and [35], and
references therein). In our microscopic approach, we relax the
assumption in Eq. (9).

In order to solve the macroscopic as well as the microscopic
diffraction problem the boundary (jump) conditions for the
electromagnetic field at the plane of the screen must be
investigated. In Appendix B, we establish the boundary
conditions in the general case where JS

⊥(r‖,ω) 	= 0 and show
that these reduce to the standard boundary conditions [6] for
JS

⊥(r‖,ω) = 0. We also derive the connection between a given
scattered vector field (AS , ES , or BS) in the space points
(x,y,z) and (x,y, − z) in Appendix C. For JS

⊥(r‖,ω) = 0 we
regain the well-known (standard) reflection symmetries for the
scattered vector field. Since the incident electromagnetic field
is differentiable at every space point, the jump conditions refer
to the scattered fields.

When JS
⊥(r‖,ω) = 0, the component of the magnetic field

parallel to the screen is odd in z. This fact, in combination
with the standard jump condition for the magnetic field across
a nonmagnetic current sheet, gives

2n̂ × BS(r‖,z = 0+; ω) = μ0JS
‖ (r‖; ω). (11)

By inserting Eq. (11) into Eq. (10) one obtains

AS(r) = 2
∫
S

g(R)n̂ × BS(r′
‖,0

+)d2r ′
‖. (12)

In the two equations above n̂ = (0,0,1).
The result in Eq. (12) may be derived in a slightly different

manner starting from Eq. (6) applied to the diffracted vector
potential, viz.,

AS(r) = −2
∫
S+A

g(R)
∂AS(r′

‖,0
+)

∂z′ d2r ′
‖. (13)

It appears from Eq. (10) that the vector potential is parallel
to the plane of the screen, everywhere; that is, n̂ · AS(r) = 0.
Since BS(r) = ∇ × AS(r), this in turn implies that

−∂AS(r)

∂z
= n̂ × BS(r). (14)
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With this relation inserted into Eq. (13) one is led back to
Eq. (12).

C. Diffraction formula of Smythe: A perfectly
conducting screen

An integral expression for the scattered magnetic field is
obtained by taking the curl of Eq. (12). Hence,

BS(r) = 2∇ ×
∫
S+A

g(R)n̂ × BS(r′
‖,0

+)d2r ′
‖, z 	= 0,

(15)

in a notation where we formally have extended the surface
integral to include the aperture region where n̂ × BS(r‖,0+) =
0.

Since the duality transformation ES ⇒ c0BS , BS ⇒
−ES/c0 leaves the free-space Maxwell equations for the
scattered field form invariant, a relation analogous to the one
in Eq. (15) holds for the scattered electric field for z > 0,
viz.,

ES(r) = 2∇ ×
∫
S+A

g(R)n̂ × ES(r′
‖,0

+)d2r ′
‖, z > 0. (16)

The reflection symmetries for ES in the z = 0 plane implies
that the right-hand side of Eq. (16) must be multiplied by
−1 for z < 0. The duality transformation also holds for the
incident electromagnetic field, and therefore, starting from
Eq. (6) applied to the incident vector potential, A0, a moment’s
thought shows that the incident electric field E0(r) has an
integral expansion

E0(r) = 2∇ ×
∫
S+A

g(R)n̂ × E0(r′
‖,0

+)d2r ′
‖, z > 0, (17)

in the right half-space. By addition of Eqs. (16) and (17) one
obtains

E(r) = 2∇ ×
∫
A

g(R)n̂ × E(r′
‖,0

+)d2r ′
‖, z > 0. (18)

As indicated, the surface integral only extends over the aperture
because it has been assumed that the infinitely thin metallic
screen is a perfect conductor (has infinite conductivity), so
that the total electric field (E) vanishes on the screen. The
standard (textbook) boundary conditions for E thus yield
n̂ × E(r′

‖,0
+) = 0 over the screen. The integral relation in

Eq. (18) was first obtained by Smythe [33] in 1947 and later (in
1954) presented by Bouwkamp [9] in his review of diffraction
theory.

In order to determine the diffracted electric field from
Eq. (18) one needs preknowledge of the tangential electric
field n̂ × E(r‖,z = 0+) over the aperture. Since the electric
field is continuous in the hole E(r‖,z = 0−) = E(r‖,z =
0+)[=E(r‖,0)] ≡ E(r‖). Once E(r‖) has been determined
(in practice, only approximately) the diffracted field can be
determined everywhere in the half-space z > 0 from

E(r) = 2∇ ×
∫
A

g(|r − r′
‖|)n̂ × E(r′

‖)d2r ′
‖, z > 0, (19)

by a direct integration over the aperture. The central problem
in classical diffraction theory hence is the determination
of the aperture field E(r‖). In Appendix A, we indicate

how the aperture-field problem has been addressed by in-
troducing a fictitious magnetic current density distribution
in the hole region (see also Refs. [5,7,9,33,43], and [44],
and references therein). As noted by Smythe [33], Eq. (18)
[or Eq. (19)] has the exact same form as the term from
the integrated field equations used by Bethe [7] in his
analysis of diffraction from a small circular hole. In Bethe’s
1944 paper a certain approximate calculation of E(r‖) was
presented.

D. Diffracted field at “large” distances from the aperture

Let us now assume that we are interested in the electric
field at distances from the aperture which are large compared
to the linear extension of the aperture; i.e., |r| � |r′

‖|. From
a Taylor expansion of the Huygens propagator around r,
viz.,

g(|r − r′
‖|; ω) = eiq0r

4πr
− r′

‖ · r̂
iq0r − 1

4πr2
eiq0r + . . . , (20)

where r̂ = r/r , one finds that the diffracted field [Eq. (19)] in
lowest (zeroth) order, E(0)(r; ω), is given by

E(0)(r; ω) =
(

iq0 − 1

r

)
eiq0r

2πr
r̂ ×

∫
A

n̂ × E(r′
‖; ω)d2r ′

‖.

(21)

Using the relation r̂ × (. . . ) = U × r̂ · (. . . ), where U is the
unit tensor, Eq. (21) may be rewritten in the form

E(0)(r; ω)[≡EMD(r; ω)] = −μ0

c0
ω2GM(r; ω) · m(ω), (22)

where

GM(r; ω) = iq0

4π

(
1

iq0r
− 1

(iq0r)2

)
eiq0rU × r̂ (23)

is the so-called magnetic Green function [42]. The expression
in Eq. (22) shows that the diffracted field to the lowest order
in r ′

‖/r equals the electric field from a magnetic dipole [42] of
moment,

m(ω) = 2

iμ0ω
n̂ ×

∫
A

E(r′
‖; ω)d2r ′

‖. (24)

It appears from this equation that the magnetic-dipole moment
lies in the aperture plane. This is in agreement with the
conclusion obtained by Bethe in the far field of a small circular
aperture [7]. For the first-order term one gets

E(1)(r; ω) = − 1

2π
∇ ×

∫
A

(r′
‖ · r̂)

iq0r − 1

r2

× eiq0r n̂ × E(r′
‖; ω)d2r ′

‖

= − 1

2π

∫
A

∇
(

iq0r − 1

r2
eiq0rr′

‖ · r̂
)

× [n̂ × E(r′
‖,ω)]d2r ′

‖. (25)

By introducing the electric Green function [42]

G(r,ω) = iq0

4π

{
1

iq0r
(U − r̂r̂)

−
[

1

(iq0r)2
− 1

(iq0r)3

]
(U − 3r̂r̂)

}
eiq0r , (26)
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Eq. (25) can be written as

E(1)(r; ω) = 2q2
0

{
g(r)n̂

∫
A

r′
‖ · E(r′

‖; ω)d2r ′
‖

−
[

G(r; ω) ·
∫

A

r′
‖

]
× [n̂ × E(r′

‖; ω)]d2r ′
‖

}
,

(27)

a result which indicates that the first-order contribution (in
r ′
‖/r) to the diffracted electric field in general is not identical

to the field from an ED, p(ω), namely [42],

EED(r; ω) = μ0ω
2G(r; ω) · p(ω). (28)

Offhand, Eqs. (22) and (27) seem to conflict with the results
presented by Bethe and Bouwkamp [9], who calculated the
diffracted field from a small circular hole by introducing a
fictitious magnetic current density and expanding it in orders
of q0a, where a is the radius of the hole. In the far field they
find an ED contribution to the diffracted field in lowest (zeroth)
order, and in first order a magnetic dipole contribution is added.
Note, however, that the analysis by Bethe and Bouwkamp is
fundamentally different from the analysis presented above, as
they expand in q0a, whereas we expand in r ′

‖/r .

III. MICROSCOPIC DIFFRACTION THEORY

In classical diffraction from an aperture in an infinitely thin
metallic screen of infinite conductivity the central problem
is a self-consistent determination of the sheet current den-
sity, JS

‖ (r; ω). Once this has been calculated (approximately,
in practice) the scattered electromagnetic vector potential,
AS(r; ω), can be found everywhere in space outside the screen;
see Eq. (10). In turn, the scattered magnetic field is obtained
from

BS(r; ω) = ∇ × AS(r; ω), (29)

and in the Lorenz gauge [42] the scattered electric field is
obtained from

ES(r; ω) = iω
(
U + q−2

0 ∇∇) · AS(r; ω). (30)

For a self-consistent approximate calculation and for numer-
ical studies, it is most often technically preferable to replace
the original problem by its dual problem, at least when the
linear extension of the aperture is small compared to the
wavelength of the incident field. This is so because the system
of differential-integral equations determining the fictitious
magnetic current density in the aperture, and thereafter the
scattered electric and magnetic fields (see Appendix A), is
easier to approximate in a self-consistent manner [9].

In a sense it is obvious that the Bethe-Bouwkamp approach,
in which the screen is assumed to be infinitely thin and of
infinite conductivity, cannot give us any deep understanding
of the indispensable field-matter interaction in the metallic
screen. For instance, when the screen becomes sufficiently thin
it will tend to behave like a QW (in the z direction), and in the
quantum regime the frequency-dependent conductivity cannot
be considered as infinite. In the mesoscopic (nano-optical)
domain, the screen is not opaque, for certainty. The remarks
above do not fail to appreciate that classical diffraction theory
has led to many quantitatively excellent results. However, it

zE0(r)

J(r)

σ(r,r’)

zE0(r)

J (r)

σ  (r,r’)

8
8

(a) (b)

FIG. 2. (a) A system of source charges generates an incident field
E0 which subsequently excites an infinitely extended plane screen
with a hole. The screen is in the xy plane and the optical electronic
properties of the screen are described by the nonlocal conductivity
tensor σ (r,r′). The field E0(r) induces a self-consistent current density
J(r) in the screen. (b) The same as (a), except that there is no hole in
the screen.

is also clear that microscopic approaches are needed as the
covering theory for the classical studies and in cases where
classical diffraction theory is obviously wrong.

A. Microscopic response theory

Let us consider an infinitely extended plane metallic screen
of finite thickness and with a hole, and let us assume that
the screen is excited by an incident electric field, E0(r; ω) ≡
E0(r). The field-matter interaction generates in the screen
a microscopic current density, denoted J(r,ω) ≡ J(r) [see
Fig. 2(a)]. Assuming that J(r) has been determined, the total
microscopic electric field E(r,ω) ≡ E(r) may be calculated
everywhere in space from the integral relation

E(r) = E0(r) + iμ0ω

∫ ∞

−∞
G(r,r′) · J(r′)d3r ′, (31)

where G(r,r′) [≡G(r,r′; ω)] is the standard dyadic Green
function relating to vacuum [42,45]. For “observation” points
(r) inside the screen special care must be shown in the
calculation because G(r,r′) here has an |r − r′|3 singularity,
stemming from the fact that the Green function contains a
nonpropagating part in the metallic domain and its near-field
zone [42]. In the framework of conventional microscopic
linear response theory, J(r) is related to E(r) via the nonlocal
constitutive relation

J(r) =
∫ ∞

−∞
σ (r,r′) · E(r′)d3r ′, (32)

where σ (r,r′) [≡ σ (r,r′; ω)] is the microscopic conductivity
tensor, a quantity to be calculated from quantum theory in,
say, the random-phase-approximation [46,47]. By substituting
Eq. (32) into Eq. (31) one obtains an integral equation for the
prevailing field, viz.,

E(r) = E0(r) +
∫ ∞

−∞
K(r,r′) · E(r′)d3r ′, (33)

with a frequency-dependent tensorial kernel,

K(r,r′) = iωμ0

∫ ∞

−∞
G(r,r′′) · σ (r′′,r′)d3r ′′, (34)
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including field (G) and electronic (σ ) correlation effects at
different space points. For observation points inside the screen
Eq. (33) provides us with an integral equation for the self-
consistent field in the metal. Formally, the solution to Eq. (33)
is given by

E(r) =
∫ ∞

−∞
�(r,r′) · E0(r′)d3r ′, (35)

where the field-field response tensor (the local field tensor)
�(r,r′) [≡�(r,r′; ω)] satisfies the integral equation

�(r,r′) = Uδ(r − r′) +
∫ ∞

−∞
K(r,r′′) · �(r′′,r′)d3r ′′. (36)

Various approximate schemes have been established previ-
ously to determine �(r,r′) from quantum physics in the
case where there is no hole in the screen (see Ref. [35],
and references herein). Below we realize how the local-field
calculation for an infinite screen can be helpful in solving the
diffraction problem for a (small) aperture.

Knowledge of �(r,r′) allows one to establish a causal (cau)
constitutive relation between the driving (incident) field, E0(r),
and the induced current density, J(r), viz.,

J(r) =
∫ ∞

−∞
σ cau(r,r′) · E0(r′)d3r ′, (37)

where

σ cau(r,r′) =
∫ ∞

−∞
σ (r,r′′) · �(r′′,r′)d3r ′′. (38)

The word causal refers to the fact that the relation between J
and E0 is retarded in the time domain. By combining Eq. (31)
and Eq. (37), it appears that

E(r) =E0(r) + iμ0ω

∫ ∞

−∞
G(r,r′′) · σ cau(r′′,r′) · E0(r′)

× d3r ′′d3r ′. (39)

In principle, it now appears that the total electric field
everywhere in space can be determined by knowledge of the
incident field, E0(r), and a quantum mechanical (e.g., random-
phase approximation) calculation of the microscopic linear
conductivity tensor σ (r,r′; ω). The latter quantity depends only
on the optical electronic properties of the metallic screen at ω,
as these appear in the presence of a given aperture.

B. Effective optical aperture

It is intuitively plausible that the diffraction pattern is
determined by the field-matter interaction in the vicinity of the
aperture, and for a small hole it is convenient to compare the
scattering from screens with [Fig. 2(a)] and without [Fig. 2(b)]
a hole.

Apart from the disturbance caused by the hole, the two
screens are assumed to have identical optical properties, and
the incident field is the same in the two cases. To distinguish
the two diffraction problems, we add a subscript (∞) to the
relevant quantities for the screen without a hole. In the absence
of the aperture, Eq. (31), is replaced by

E∞(r) = E0(r) + iμ0ω

∫ ∞

−∞
G(r,r′) · J∞(r′)d3r ′, (40)

where

J∞(r) =
∫ ∞

−∞
σ∞(r,r′) · E∞(r′)d3r ′, (41)

and we recognize that the vacuum Green function must be the
same in Eqs. (31) and (40). By choice the incident field is also
the same in the two cases. A procedure analogous to the one
described in Sec. III A of course leads to the causal constitutive
relation

J∞(r) =
∫ ∞

−∞
σ cau

∞ (r,r′) · E0(r′)d3r ′ (42)

for the aperture-less screen, where σ cau
∞ (r,r′) formally can be

obtained from the knowledge of σ∞(r,r′) and G(r,r′). By
combining Eq. (40) and Eq. (42) one obtains, for the screen
without a hole,

E∞(r) = E0(r) + iμ0ω

∫ ∞

−∞
G(r,r′′) · σ cau

∞ (r′′,r′) · E0(r′)

× d3r ′′d3r ′. (43)

By subtracting Eq. (43) from Eq. (39) one obtains the
important result

E(r; ω) − E∞(r; ω)

= iμ0ω

∫ ∞

−∞
G(r,r′′; ω) · �(r′′,r′; ω) · E0(r′; ω)d3r ′′d3r ′,

(44)

where

�(r,r′; ω) = σ cau(r,r′; ω) − σ cau
∞ (r,r′; ω) (45)

in notation where the reference to the frequency has been
reinserted. We denote �(r,r′; ω) the causal effective optical
aperture response tensor. Before proceeding with the calcu-
lation, let us reflect on the result in Eq. (44). First, we have
not assumed that the metal-vacuum interfaces are sharp, and
in consequence, no jump conditions need to be imposed at the
interfaces for either the electromagnetic field or the particle
current density at this state of the theory. In a forthcoming
paper [36] dealing with a quantum physical calculation of the
causal effective aperture response tensor �(r,r′; ω), we shall
discuss the physical approximations needed for a transition
from a smooth to a sharp metal-vacuum interface model.
Second, �(r,r′; ω) is nonvanishing only in and close to the
aperture (see Fig. 3).

The words close to here refer to the so-called spatial
correlation length, dc, a concept which in a qualitative
sense determines how far the spatial points r and r′ need
to be separated before the microscopic conductivity tensor
σ cau(r,r′; ω) [or σ cau

∞ (r,r′; ω)] vanishes. At distances from the
hole larger than ∼dc the response tensor σ cau(r,r′; ω) becomes
identical to σ cau

∞ (r,r′; ω). Third, the electromagnetic diffraction
problem has been transferred to its roots, viz., a (quantum
mechanical) calculation of the electromagnetic properties of
the screen with a given aperture. Fourth, for small holes it
appears advantageously from an experimental point of view
to compare (subtract) the diffraction from screens with and
without a hole both excited by the same incident field (see also
Sec. IV). Fifth, there is no need to assume that the screen is
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A x

y

FIG. 3. The effective optical aperture in the plane of the screen—
henceforth denoted A—is the area defined by the region where
σ cau − σ cau

∞ is nonvanishing. Note that A is lager than the geometrical
aperture indicated by the thick solid line.

opaque. The source region for the difference field (E − E∞)
we call the effective optical aperture (cf. Fig. 3).

C. Electric-dipole absorber sheet

Let us now assume that the thickness of the screen is so
small that the variation of the incident field across the screen
(in the z direction) is negligible. By dividing the given position
coordinate [r (or r′)] into its components parallel (r‖) and
perpendicular (r⊥ = zẑ) to the plane of the screen, i.e., r =
r‖ + zẑ, the current density, J(r) ≡ J(r‖,z), in Eq. (37) takes
the approximate form

J(r‖,z) =
∫ ∞

−∞

[∫
QW

σ cau(r‖,r′
‖,z,z

′)dz′
]

· E0(r′
‖,0)d2r ′

‖,

(46)

where E0(r′
‖,z

′) = E0(r′
‖,0) for all z′ coordinates inside the

screen. We have added the subscript QW to the integral sign
of the z′ integration to indicate that a sufficiently thin screen
becomes a QW from a microscopic point of view. In what
follows a thin current sheet is therefore sometimes referred to
as a QW (sheet). Since the screen obviously must be at least one
monolayer thick, the approximation in Eq. (46) requires that
the characteristic wavelength (variation length) of the incident
field must be larger than that of x rays. If needed, one may
go beyond the approximation in Eq. (46) by making a Taylor
series expansion of E0(r′

‖,z
′) in z′ around the origo. In the

lowest order approximation [Eq. (46)] the QW sheet behaves
electromagnetically as an ED absorber [34].

D. Electric-dipole radiator sheet

When the screen is sufficiently thin it also behaves in lowest
order as an ED radiator sheet [34]. In order to quantify this we
return to Eq. (39), written as

E(r‖,z) − E0(r‖,z)

= iμ0ω

∫ ∞

−∞
G(r‖,r′

‖,z,z
′) · J(r′

‖,z
′)dz′d2r ′

‖, (47)

where G(r‖,r′
‖,z,z

′) ends up being the Green’s function in disk
contraction [48–50]. Its explicit form in the mixed (angular
spectrum) representation is given in Sec. III G. At lowest order

the variation of the Green function across the current sheet is
neglected, that is, G(r‖,r′

‖,z,z
′) = G(r‖,r′

‖,z,0) in Eq. (47).
Hence

E(r‖,z) − E0(r‖,z)

= iμ0ω

∫ ∞

−∞
G(r‖,r′

‖,z,0) · JS(r′
‖)d2r ′

‖, (48)

where

JS(r‖) =
∫

QW
J(r‖,z)dz. (49)

In the moment expansion of a localized current distribu-
tion [42], here in one dimension, the sheet current density
is, at lowest (zero) order, given by

J(0)(r‖,z) = JS(r‖)δ(z). (50)

Inserting this form into Eq. (47) one regains Eq. (48) of course.
The result in Eq. (48) may, if desired, be obtained starting from
Eq. (10) [42].

E. ED-ED sheet. Aperture response tensor

In the consistent approximation where the screen behaves
both as an ED absorber and as an ED radiator (we call such
a sheet an ED-ED sheet [34]), a combination of Eq. (46) and
Eq. (49) shows that

JS(r‖) =
∫ ∞

−∞
S(r‖,r′

‖) · E0(r′
‖)d2r ′

‖, (51)

where the quantity

S(r‖,r′
‖) =

∫
QW

σ cau(r‖,r′
‖,z,z

′)dz′dz (52)

may be called the causal surface (or ED-ED sheet) conductivity
response tensor. In Eq. (51) we have, for brevity, written
E0(r′

‖,0) = E0(r′
‖). A result analogous to the one given by

Eqs. (51) and (52) may be derived for the screen without an
aperture, of course. Thus,

JS
∞(r‖) =

∫ ∞

−∞
S∞(r‖,r′

‖) · E0(r′
‖)d2r ′

‖, (53)

with

S∞(r‖,r′
‖) =

∫
QW

σ cau
∞ (r‖,r′

‖,z,z
′)dz′dz. (54)

Let us now return to the central result in Eq. (44), and herein
make the ED-ED sheet approximation. This gives the result

E(r; ω) − E∞(r; ω) = iμ0ω

∫
A

G(r‖,r′
‖,z; ω) · �(r′

‖,r
′′
‖; ω)

· E0(r′′
‖; ω)d2r ′′

‖ d2r ′
‖, (55)

where

�(r‖,r′
‖; ω) = S(r‖,r′

‖; ω) − S∞(r‖,r′
‖; ω). (56)

In Eq. (55) G(r‖,r′
‖,z; ω) ≡ G(r‖,r′

‖,z,z
′ = 0; ω) and

E0(r′′
‖; ω) ≡ E0(r′′

‖,z
′′ = 0; ω). The quantity �(r‖,r′

‖; ω) we
call the ED-ED aperture response tensor because it is
nonvanishing only in the effective aperture region (A), a plane
area here (cf. Fig. 3). To emphasize this we have written
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∫
A(. . . ) instead of

∫ ∞
−∞(. . . ) above. For the purposes of this

article Eq. (55) is a central result, showing that the entire
diffraction problem (for a thin screen) essentially can be
turned into (reduced to) a quantum mechanical calculation
of the spatially nonlocal ED-ED aperture response tensor,
�(r‖,r′

‖; ω). A general quantum mechanical calculation of the
aperture response tensor is a comprehensive task, which is
outside the scope of the present work. However, in Sec. V
we present a calculation for perhaps the simplest case of all,
namely, a one-level QW screen.

F. Scattering from small apertures

It is of particular importance, e.g., in nano-optics and
quantum optics, to study diffraction from small holes. By small
we refer to a situation where the ratio between the correlation
length (dc) and the characteristic length parameter (�) of the
electromagnetic field is so low that E0 and G can be expanded
in a Taylor series in r′′

‖ and r′
‖ around the origo. If the aperture is

located in the far field of the incident field, the wavelength (λ0)
of E0 is this field’s �. It turns out that the Green function may
involve evanescent modes. These mode’s length parameter can
be much smaller than λ0 (see Sec. III G). At lowest order, one
neglects the variation of E0 and G across the aperture. This
approximation one may denote an ED-ED approximation (here
with respect to the coordinates parallel to the plane of the
screen).

Let us introduce the difference field,

EA(r; ω) = E(r; ω) − E∞(r; ω), (57)

and call this field the aperture field. From Eq. (55) we find that
this field in the ED-ED approximation is given as

EA(r; ω) = iμ0ωG(r‖,z; ω) · �(ω) · E0(0,ω), (58)

where

�(ω) =
∫
A

�(r‖,r′
‖; ω)d2r ′

‖d
2r‖. (59)

In Eq. (58), the natural notational abbreviations E0(r‖ = 0,z =
0; ω) ≡ E0(0; ω) and G(r‖,r′

‖ = 0,z,z′ = 0; ω) ≡ G(r‖,z; ω)
are used. A comparison of Eq. (28) and Eq. (58) shows that the
field from the effective aperture in the ED-ED limit is identical
to the field of an ED with a dipole moment given by

p(ω) = i

ω
�(ω) · E0(0; ω) (60)

and placed at the center of the aperture (r = 0), as in-
dicated. The frequency-dependent ED polarizability tensor,
(i/ω)�(ω), thus is obtained from a quantum mechanical
calculation of �(ω) in our microscopic theory. Note that we
have not assumed that the small hole has a specific form.
However, it is obvious that the mutual relations between
the various complex tensor elements of �(ω) depend on the
aperture’s geometrical form.

As noted in Sec. II D, in the Bethe-Bouwkamp theory for a
circular hole of radius a in an isotropic infinitely thin screen of
infinite conductivity (σ ) the aperture far field is, at lowest order
of q0a, that of an ED. At the next order a magnetic-dipole field
is added [9]. It is of overriding importance to understand that
the Bethe-Bouwkamp theory to second order basically has only

one parameter, namely, the radius of the hole, a, because the
assumption σ → ∞ is made. In general, one would certainly
not expect this parameter to describe the physics of diffraction
correctly (e.g., at all frequencies; see also Sec. IV). To make a
connection with the Bethe-Bouwkamp approach, let us assume
that our 2D system (screen plus hole) exhibits infinitesimal
rotational symmetry around the z axis and reflection symmetry
with respect to an arbitrary plane containing the z axis (say,
the plane x = 0). In this case, it appears that

�(ω) = (U − ẑẑ)�‖(ω) + ẑẑ�⊥(ω), (61)

and one is left with at least two frequency-dependent parame-
ters, �‖(ω) and �⊥(ω).

G. Jump conditions for the aperture field

We now return to Eq. (55). Due to the fact that here we
have reduced the electrodynamics in the z direction to that of
a δ function sheet, one cannot expect to uphold the continuity
of the microscopic aperture field across the effective aperture
(Fig. 3). To investigate this point let us introduce the aperture
surface current density,

JA(r‖) =
∫
A

�(r‖,r′
‖) · E0(r′

‖)d2r ′
‖. (62)

In view of the fact that the vacuum Green function necessarily
has infinitesimal translation invariance along any direction
parallel to the sheet plane, i.e.,

G(r‖,r′
‖,z) = G(r‖ − r′

‖,z), (63)

and because the integration(s) over A can be extended to
infinity since �(r‖,r′

‖) vanishes outside the effective aper-
ture region, the convolution theorem leads to the following
algebraic relation:

EA(q‖; z) = iμ0ωG(q‖,z) · JA(q‖). (64)

Physically, q‖ is the wave vector of the various field quantities
parallel to the plane of the sheet. In the above, so-called mixed
representation [42], the Green function must be described in
disk contraction [48–50] and thus is given by the dyadic form

G(q‖,z) = q−2
0 δ(z)ẑẑ + i

2κ⊥q2
0

eiκ⊥|z|[q2
0 U − q‖q‖

− κ2
⊥ẑẑ − (q‖ẑ + ẑq‖)κ⊥sgn(z)

]
, (65)

with

κ⊥ =
{ (

q2
0 − q2

‖
)1/2

for q‖ < q0 (propagating modes),

i
(
q2

‖ − q2
0

)1/2
for q‖ > q0 (evanescent modes).

(66)

The first term in Eq. (65) relates to the self-field inside the
screen. For a δ function sheet, this term must be neglected in
advance, of course.

The jump of the aperture field across the z = 0 plane (from
z = 0− to z = 0+) is readily obtain from Eqs. (64) and (65).
Hence,

Jump[iμ0ωG(q‖,z) · JA(q‖)] = 1

ε0ω
(q‖ẑ + ẑq‖) · JA(q‖).

(67)
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By utilizing Fourier transformation and by dividing the
aperture current density into its components parallel (JA‖ ) and
perpendicular (JA

⊥ = ẑ · JA) to the QW plane, the following
jumps for the components of the aperture field parallel and
perpendicular to z = 0 emerge:

EA
‖ (r‖,0+) − EA

‖ (r‖,0−) = 1

iε0ω
∇‖JA

⊥ (r‖), (68)

EA
⊥ (r‖,0+) − EA

⊥ (r‖,0−) = 1

iε0ω
∇‖ · JA‖ (r‖). (69)

In the Bethe-Bouwkamp approach, as well as in all other
classical theories (to the best of our knowledge), it is assumed
that JA

⊥ = 0, as mentioned in Sec. II B. In Appendix B, we
study the boundary conditions in the physically important case
where J⊥ 	= 0.

IV. REMARKS ON THE INTERPLAY BETWEEN
THEORY AND EXPERIMENT

In 1995, Obermüller and Karrai published an experimen-
tal paper on the far-field angular intensity distribution of
light (λ0 = 633 nm) diffracted from subwavelength circular
apertures (radius a) located at the apex of Al-coated optical
fiber tips [51]. A primary goal was to propose a method
which allows one to determine the effective optical size of
subwavelength holes. In the small-radius limit (q0a 
 1) the
authors compared their data to the Bethe theory, in which
the far-field radiation is identical to the field obtained by
a combination of an in-plane magnetic dipole (moment m)
oriented antiparallel to the magnetic field H0 (the field on
the z = 0− side of the screen if there is no hole) and an
ED (moment p) directed perpendicular to the screen and
proportional to the zeroth-order electric field E0 = E0

⊥ at
z = 0− (see below).

Obermüller and Karrai concluded that Bethe’s theory failed
to describe their data. However, to the authors’ surprise, they
found that the data could be fitted perfectly for a choice of m
and p proportional to that of Bethe, but with p lying in the
aperture plane in the direction parallel to E0

fiber, the field in the
fiber in the front of the aperture, and with m directed parallel
to H0

fiber. Thus, in the Gaussian units used by Bethe,

p = a3

3π
αE0

fiber (70)

and

m = 2a3

3π
(μ0c)αH0

fiber, (71)

where α is an unknown proportionality factor. Since the
boundary condition of the field plays a crucial role for
the diffraction problem, it is not surprising that there is a
discrepancy between the flat-screen model and the coated-
fiber-tip data, as emphasized by Obermüller and Karrai. To
first order in q0a, the Bethe-Bouwkamp theory represents the
far field by a superposition of the fields from the dipoles,

p = a3

3π
E0, m = −2a3

3π
H0, (72)

E0 = E0
⊥ and H0 = H0

‖ being the fields (at the origo) if there
is no hole in the screen.

Putting aside the question of the orientation of the dipoles,
it appears from Eq. (72), as also noted in Sec. III F, that
the Bethe-Bouwkamp theory has only one polarizability
parameter, viz., the hole radius a (to the third power). From
a physical point of view, this gives their approach a limited
scope. The electric and magnetic polarizabilities (at least) must
be frequency dependent, since diffraction in the small hole
originates in the electrodynamic field-matter interaction. In the
Bethe-Bouwkamp model, where the conductivity is assumed
to be infinite, this interaction is blocked. In Eqs. (70) and (71),
there is also one common polarizability parameter, namely,
a3α. In principle, α may depend on the electromagnetic
frequency, α = α(ω), but in Ref. [51] this possibility is not
examined since all angular distributions refer to a single
frequency. Some experiments in the literature [23,52–56] do
study the frequency dependence of small-hole polarizabilities.
In the paper by Adam et al. [55] the frequency dependence of
the near-field diffraction is measured in the terahertz region.
The data obtained are in agreement with the Bouwkamp
theory, as one perhaps might expect at these long wavelengths.
A comparison of our theory to experiments dealing with
plasmon effects in small-hole diffraction [23,52–54,56] will
require that the pole structure of the aperture response
tensor be analyzed. We address this issue in a forthcoming
paper [36]. From a theoretical point of view we consider
frequency-resolved experiments of crucial importance. In our
microscopic diffraction theory the aperture response tensor
has a least two frequency-dependent parameters, �‖(ω) and
�⊥(ω) [see Eq. (61)]. These parameters are not intrinsically
independent of course. In the ED-ED limit the effective
aperture radiates in our theory like an ED with anisotropic
polarizabilty, i.e.,

p(ω) = i

ω
(�‖(ω)E0

‖ + �⊥(ω)E0
⊥). (73)

Curiously, we find that contributions from EDs oriented both
perpendicular (theory of Bethe) and parallel (experiments
by Obermüller and Karrai) are needed to account for the
diffraction from small circular holes in isotropic screens
[cf. the remarks preceding Eq. (61)].

In view of the fact that there exists a variety of theoretical
models dealing with optical diffraction from small holes, we
consider it important to obtain more experimental information.
In particular, it would be stimulating to carry out measurements
on a metallic (or semiconducting) QW screen with a small
(ED-ED) hole. Since a QW (with a few bound energy levels)
will be quite transparent, and the diffraction from the hole
very small, it appears favorable in our view to carry out some
kind of interference experiment on QWs without (shifted π in
phase) and with a hole.

V. APERTURE RESPONSE TENSOR FOR A
SINGLE-LEVEL QUANTUM-WELL SCREEN WITH

DIAMAGNETIC ELECTRON DYNAMICS

To accomplish a quantum mechanical calculation of the
aperture response tensor it is necessary to restrict the analysis
to simple situations (systems). In this section we carry out
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a calculation for perhaps the simplest case of all, namely, a
one-level metallic (or semiconducting) QW screen subjected to
optical radiation with frequencies in the mid- and far-infrared
regions. The chosen example offers additional physical insight
into the various processes hidden in the microscopic diffraction
theory advanced in Sec. III.

In the frequency range mentioned above, the microscopic
conductivity of a metallic (or semiconducting) mesoscopic
medium usually is well described retaining only the diamag-
netic part of σ (r,r′; ω) (see Ref. [57], and references therein),
that is,

σ (r,r′; ω) = 
(r; ω)δ(r − r′)U, (74)

with


(r,ω) = ie2

m(ω + i/τ )
n0(r), (75)

where e and m are the electron charge and mass, and τ is the
(phenomenological) electron momentum relaxation time. The
quantity n0(r) is the field-unperturbed electron density at space
point r. In the random-phase approximation n0(r) in thermal
equilibrium is given by [47,57]

n0(r) = 2
∑

k

fk|ψk(r)|2, (76)

where ψk(r) is the electron Schrödinger wave function of
the single-particle state k, and fk ≡ f (εk) is the Fermi-
Dirac distribution factor belonging to the energy εk. The
summation in Eq. (76) runs over all k states and the factor
of 2 stems from the assumed spin degeneracy. Although
the overall diamagnetic conductivity is spatially local and
isotropic, the individual electronic transitions contributing to
this conductivity are nonlocal and anisotropic, as they must
be [42]. With σ given by Eq. (74), the causal conductivity
tensor takes the form

σ cau(r,r′; ω) = 
(r; ω)�(r,r′; ω). (77)

The nonlocality and anisotropy of σ cau thus are associated
solely with the field-field response tensor. This tensor is
determined from Eq. (36), with the kernel K(r,r′; ω) =
iμ0ωG(r,r′; ω)
(r′; ω). Since it is unlikely that an exact
analytical solution can be found, we rely on an iterative
solution, namely,

�(r,r′) = Uδ(r − r′) + iμ0ω
(r′)G(r,r′) + (iμ0ω)2

×
∫ ∞

−∞

(r′′)G(r,r′′) · G(r′′,r′)
(r′)d3r ′′ + . . . .

(78)

In the first Born approximation, where only the two first
terms on the right side of Eq. (78) are retained, the causal
conductivity tensor is given by

σ cau(r,r′; ω) = σ (r,r′; ω) + iμ0ω
(r; ω)G(r,r′; ω)
(r′; ω).

(79)

The result in Eq. (79) exemplifies the important fact that the
correlation effects in the causal conductivity tensor between

σ(r,r’;ω) = Σ(r;ω)δ(r-r’)U

Σ(r’;ω)
r’r

G(r,r’;ω)

FIG. 4. Electronic δ function and (lowest order) direct elec-
tromagnetic correlation effects in the causal conductivity tensor,
σ cau(r,r′; ω).

the space points r and r′ are of both electronic and electro-
magnetic origin. Thus, σ (r,r′; ω) describes the electronic δ

function correlation, and 
(r; ω)G(r,r′; ω)
(r′; ω) the direct
(lowest order) electromagnetic correlation. This is illustrated
schematically in Fig. 4.

In a QW context the thinnest possible screen is one
containing only one bound QW level. In such a single-level
(SL) QW the bound electron motion is confined to a plane
(here z = 0), essentially. In the diamagnetic case this means
that


(r; ω) = 
SL(r‖; ω)δ(z). (80)

Within the first Born approximation the causal surface conduc-
tivity tensor for a single-level QW, SSL(r‖,r′

‖; ω), is obtained
by combining Eqs. (52), (74), (79), and (80). Hence, one gets

SSL(r‖,r′
‖; ω) = U
SL(r‖; ω)δ(r‖ − r′

‖) + iμ0ω

× 
SL(r‖; ω)G(r‖,r′
‖; ω)
SL(r′

‖; ω), (81)

with the abbreviation G(r‖,r′
‖,z = 0,z′ = 0; ω) =

G(r‖,r′
‖; ω).

To determine the ED-ED aperture response tensor

�(r‖,r′
‖; ω)

= U
[

SL(r‖; ω) − 
SL

∞ (r‖; ω)
]
δ(r‖ − r′

‖) + . . .

= ie2U
m(ω + i/τ )

[
n0(r‖) − n0

∞(r‖)
]
δ(r‖ − r′

‖) + . . . , (82)

we need to calculate the 2D electron density,

n0(r‖) = 2
∑

k‖

fk‖ |ψT (r‖; k‖)|2, (83)

and an analogous expression for n0
∞(r‖) in which ψT (r‖; k‖)

is replaced by the plane-wave state ψ∞
k‖ (r‖). By means of

a recently established 2D extinction theorem for electrons
the non-plane-wave function ψT (r‖; k‖) can be related to
ψ∞

k‖ (r‖) [36]. In its general form the extinction theorem allows
one to handle the physics in the selvedge region separating
the bulk potential of the screen from the hole potential. In
the framework of the so-called infinite-barrier model [58] one
obtains the integral equation for ψT (r‖; k‖) [T for total (wave
function)]

ψT (r‖; k‖) = ψ∞
k‖ (r‖) + ψS(r‖; k‖) = ψ∞

k‖ (r‖)

−
∮

C0

G(k‖|r‖ − r′
‖|)n̂0(r′

‖) · ∇′
‖ψ

T (r‖; k‖)dr ′
‖,

(84)
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Ψk (r )

n0

C0

Ψ  (r  ; k )

Hole
8

S

FIG. 5. Scattering of the electron wave function from the hole in
the QW screen.

where the one-dimensional integral runs over the contour (C0)
of the hole. The quantity n̂0 is an outward directed normal
to C0. The line integral in Eq. (84) describes the scattered
part, ψS(r‖; k‖), of the total wave function ψT (r‖; k‖). The
scattered wave function from the various space points (r′

‖) on
the contour propagates back into the screen in a manner given
by the outgoing 2D electron scalar propagator,

G(k‖R‖) = i

4
H

(1)
0 (k‖R‖), (85)

H
(1)
0 being the zeroth-order Hankel function of the first kind.

A schematic of the 2D scattering geometry is shown in Fig. 5.
The integral equation in Eq. (84) may be solved by iteration

(Born series approach) or numerically.
When combined with Eqs. (82) and (83) the result in

Eq. (84) forms the basis for understanding the effective optical
aperture concept (Fig. 3), in particular, the extension of A out-
side the hole, here within the framework of the infinite-barrier
model. Neglecting local-field effects [�(r,r′) = Uδ(r − r′)],
σ cau(r,r′; ω) = σ (r,r′; ω), and in this approximation, the
extension of A into the screen is given by n0(r‖) − n0

∞(r‖),
essentially. The contribution to this difference from the k‖
component is proportional to

|ψT (r‖; k‖)|2 − ∣∣ψ∞
k‖ (r‖)

∣∣2

= |ψS(r‖; k‖)|2 + [(
ψ∞

k‖ (r‖)
)∗

ψS(r‖; k‖) + C.c.
]
. (86)

The range of this difference is given by the term proportional
to ψS(r‖; k‖)[(ψS(r‖; k‖))∗] and, hence, by the range of the
Hankel function H

(1)
0 (k‖|r‖ − r′

‖|); i.e., (k‖|r‖ − r′
‖|)−1/2.

APPENDIX A: NOTES ON THE
APERTURE-FIELD CALCULATION

It is not the purpose of this Appendix to present a review of
the method by which the introduction of a fictitious magnetic
current density distribution in the aperture region may allow
one to determine the aperture field E(r‖) in Eq. (19). However,
the notes given below may be useful seen from the perspective
of our microscopic theory.

Let us assume that we have a magnetic (sheet) current
density distribution JM

‖ (r‖; ω) = JM
‖ (r‖) in the aperture region

and that this, as indicated by the notation, has no component
perpendicular to the plane of the screen (similar to the general
assumption for the electric current density in classical diffrac-
tion theory). In the magnetic Lorenz gauge the (scattered)

magnetic vector potential, aS , originating in this sheet current
density, then is given by

aS(r‖) = μ0

∫
A

g(|r‖ − r′
‖|)JM

‖ (r′
‖)d2r ′

‖ (A1)

at the arbitrary point r‖ = (x,y) inside the aperture [cf.
Eq. (10)]. Although g(|r‖ − r′

‖|) is singular at r′
‖ = r‖, the

integral in Eq. (A1) is absolutely convergent. To obtain the
magnetic vector potential [aS(r)] also outside the aperture
plane, one just makes the replacement r‖ ⇒ r in Eq. (A1).
Knowledge of aS(r) allows one to obtain the scattered electric
and magnetic fields from

ES(r) = −c∇ × aS(r) (A2)

and

BS(r) = iq0aS(r) + i

q0
∇∇ · aS(r), (A3)

remembering that

aS
⊥(r) = 0. (A4)

The electromagnetic field defined by Eqs. (A1) (with r‖ ⇒ r)
to (A4) satisfies the Maxwell equations for z 	= 0 and the
boundary conditions at our perfect metal screen [E‖ = 0 and
B⊥ = 0].

From ∇ · E = 0 it follows that E⊥(r‖,0+) = E⊥(r‖,0−),
and since E⊥ = 0 (and also E‖ = 0) inside our perfect
magnetic conductor (a perfect magnetic conductor assumption
is a necessity in order to fulfill the boundary conditions), one
realizes that

E0
⊥(r‖) + ES

⊥(r‖) = 0 (A5)

in the aperture (z = 0). By means of Eq. (A2) taken for r = r‖,
the condition in Eq. (A5) can be rewritten in the form

∂

∂x
aS

y (r‖) − ∂

∂y
aS

x (r‖) = 1

c
E0

⊥(r‖). (A6)

For a perfect magnetic conductor one, finally, must have

B0
‖(r‖) + BS

‖ (r‖) = 0, (A7)

in analogy to the circumstance that E‖ = 0 (and also E = 0) in
a perfect electric conductor. If one utilizes Eqs. (A3) and (A6)
and remembers that the incident field must satisfy the dual
Maxwell equation −∇ × E0 = −iωB0 (no source term), some
algebraic effort allows one to rewrite Eq. (A7) as

(∇2
‖ + q2

0

)
aS(r‖) = 1

c
n̂ ×

[
∂

∂z
E0

‖(r‖,z)

]
z=0

. (A8)

The set of complicated differential-integral equations in
Eqs. (A1), (A6), and (A8), is the starting point for the
determination of JM

‖ (r‖) and, subsequently, n̂ × E(r‖), given
E0

⊥ and ∂E0
‖/∂z in the aperture region. These equations also

are those used by Bouwkamp in his critical analysis of Bethe’s
theory [7,9].

In the Bethe-Bouwkamp theory it is assumed that the
metallic part of the screen is opaque (a perfect conductor).
If such a drastic assumption is made for all frequencies in the
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microscopic approach, Eq. (57) is reduced to

E(r,ω) = E∞(r,ω) + EA(r,ω), z < 0, (A9)

E(r,ω) = EA(r,ω), z > 0, (A10)

since E∞(r,ω) = 0 in the half-space z > 0. The reflection
symmetry of the aperture field in the z = 0 plane is determined
by the related symmetry of the dyadic Green function,
G(|r‖ − r′

‖|,z; ω) [see Eqs. (55) and (63)]. It is known (see
Ref. [59]) that the Green function in the mixed representation
has the tensorial form

G(|r‖ − r′
‖|,z) =

⎛
⎝Gxx 0 Gxz

0 Gyy 0
Gzx 0 Gzz

⎞
⎠. (A11)

If one only allows the sheet current to flow in the plane of the
screen (the assumption of the classical diffraction theory), the
symmetries of EA

‖ ’s x and y components are those of Gxx and
Gyy . Since these are symmetric in z, EA

‖ (r‖,z) = EA
‖ (r‖, − z).

The normal component EA
⊥ has the odd reflection symmetry

of Gzx ; that is, EA
‖ (r‖,z) = −EA

‖ (r‖, − z). The symmetries of
the microscopic aperture field with the assumption that J⊥ = 0
hence are in agreement with those of Bethe; see Eqs. (7), (9),
and (9c) in Ref. [7].

APPENDIX B: GENERALIZED JUMP CONDITIONS

As mentioned in Sec. II B, classical diffraction theory
makes use of the assumption that the sheet current density,
JS(r‖), has no component perpendicular to the plane of the
screen; that is, J S

⊥(r‖)[≡ J S
z (r‖)] = 0. However, it is known

that the assumption cannot be correct in general [cf. the
remarks following Eq. (10)]. When J S

⊥(r‖) is nonvanishing
the standard (textbook) boundary condition, which asserts that
the vectorial component (E‖) of the electric field parallel to the
given sharp interface is continuous, must be modified. In the
present context this means that E‖ suffers a finite jump (�E‖)
across the sheet.

1. Generalization of the result of Ref. [34] for �E‖

In the sheet model description of the linear optical response
of a QW given in Ref. [34], it was concluded (see Eqs. (91)
and (94) in Ref. [34]) that

E‖(q‖x̂; z = 0+) − E‖(q‖x̂; z = 0−) = q‖x̂
ε0ω

JS
⊥(q‖x̂) (B1)

in the mixed representation and for q‖ = q‖x̂. Since the result
for the jump cannot depend on the orientation of the Cartesian
axes perpendicular to ẑ, it follows that

E‖(q‖; 0+) − E‖(q‖; 0−) = q‖
ε0ω

JS
⊥(q‖) (B2)

in the general case where q‖ = q‖,x x̂ + q‖,y ŷ. A 2D Fourier-
integral transformation of Eq. (B2) immediately leads to the
following jump condition in direct space:

E‖(r‖,0+) − E‖(r‖,0−) = 1

iε0ω
∇‖J S

⊥(r‖). (B3)

The result in Eq. (B3) is in agreement with the jump obtained
for the parallel component of the aperture field (EA

‖ ) on the
basis of the Green function in disk contraction [see Eq. (68)].

2. Alternative derivation of the jump in E‖

Additional insight into the physics hidden in Eq. (B3) may
be obtained by the derivation presented below. Studying the
alternative calculation, the reader need not to be familiar with
the derivation given in Ref. [34].

From the microscopic Maxwell-Lorentz equation

∇ × B(r; ω) = μ0J(r; ω) − iω

c2
0

E(r; ω), (B4)

it appears that rotational-free [often called longitudinal (L)]
parts of the electric field (EL) and the current density (JL) are
related by

JL(r; ω) = iε0ωEL(r; ω). (B5)

Furthermore, JL is related to the current density itself, J, by a
spatially nonlocal relation which, in the mixed representation,
takes the form (omitting the reference to ω)

JL(q‖; z) =
∫ ∞

−∞
δL(q‖,z − z′) · J(q‖,z′)dz′, (B6)

where (with z − z′ = Z and q̂‖ = q‖/q‖)

δL(q‖,Z) = ẑẑδ(Z) + q‖
2

e−q‖|Z|

× [q̂‖q̂‖ − ẑẑ + i(q̂‖ẑ + ẑq̂‖)sgn(Z)] (B7)

is the dyadic longitudinal δ function in disk contraction [50].
For z coordinates inside a QW (screen) of finite thickness, one
thus has

JL(q‖; z) = ẑJ⊥(q‖; z) + (. . . ), (B8)

where (. . . ) is the nonlocal contribution originating in the
second line of Eq. (B7). When the QW thickness tends to 0, the
term ẑJ⊥(q‖; z) will be the dominating part of the right-hand
side of Eq. (B8) (ẑJ⊥ develops into a δ function singularity,
whereas the nonlocal term stays finite). With

JL(q‖; z) ≈ J⊥(q‖; z)ẑ = J S
⊥(q‖)δ(z)ẑ, (B9)

the longitudinal electric field is given by

EL(q‖; z) = 1

iε0ω
JS

⊥(q‖)δ(z)ẑ (B10)

in the mixed representation. From the physical point of view it
is intuitively clear that the jump conditions for the electric field
across a QW of thickness much smaller than the wavelength
of the electromagnetic field may be calculated retaining only
the nonretarded longitudinal part of the electric field. With
E ≈ EL,

∇ × E(r‖,z) � 0, (B11)

and upon a 2D Fourier transformation of Eq. (B10),

E(r‖,z) � 1

iε0ω
JS

⊥(r‖)δ(z)ẑ. (B12)
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Together Eqs. (B11) and (B12) allow one to regain the jump
condition in Eq. (B3). To realize this, let us integrate the y

component of Eq. (B11) from z = 0− to 0+ keeping r‖ fixed.
Thus, ∫ 0+

0−

∂

∂z
Ex(r‖,z)dz =

∫ 0+

0−

∂

∂x
Ez(r‖,z)dz, (B13)

and then

Ex(r‖,0+) − Ex(r‖,0−) = ∂

∂x

∫ 0+

0−
Ez(r‖,z)dz. (B14)

By inserting the expression for Ez(r‖,z) given in Eq. (B12)
under the integral sign in Eq. (B14), one obtains

Ex(r‖,0+) − Ex(r‖,0−) = 1

iε0ω

∂

∂x
J S

⊥(r‖). (B15)

A similar derivation, via the x component of Eq. (B11), leads
to

Ey(r‖,0+) − Ey(r‖,0−) = 1

iε0ω

∂

∂y
J S

⊥(r‖). (B16)

The results of Eqs. (B15) and (B16) are precisely the x and
the y component of Eq. (B3). QED.

3. The jump in E⊥

To obtain the jump condition for the z component of the
electric field, Ez(r; ω) ≡ E⊥(r; ω), by integration across the
sheet, we start from the Maxwell-Lorentz equation

∇ · E(r; ω) = ε−1
0 ρ(r; ω), (B17)

where ρ(r; ω) is the microscopic charge density.
Hence,∫ 0+

0−

∂

∂z
E⊥(r‖,z)dz = 1

ε0

∫ 0+

0−
ρ(r‖,z)dz

− ∇‖ ·
∫ 0+

0−
E‖(r‖,z)dz. (B18)

Since E‖ is finite throughout the QW, the last term in
Eq. (B18) vanishes when the sheet becomes infinitely thin.
This fact is in line with the circumstance that only the
longitudinal part of E enters Eq. (B17) (∇ · ET = 0) and that
this part in turn tends to be directed perpendicular to the QW
plane when the sheet thickness goes to 0. Consequently, one
obtains

E⊥(r‖,0+) − E⊥(r‖,0−) = ε−1
0 ρS(r‖), (B19)

where

ρS(r‖) =
∫ 0+

0−
ρ(r‖,z)dz (B20)

is the ED-ED sheet charge density. By employing the 2D
version of the charge equation of continuity, viz.,

∇‖ · JS
‖ (r‖; ω) = iωρS(r‖; ω), (B21)

Eq. (B19) may be written as

E⊥(r‖,0+) − E⊥(r‖,0−) = 1

iε0ω
∇‖ · JS

‖ (r‖), (B22)

a result identical to the form given for the aperture field jump
in Eq. (69).

4. The jump in B‖

It is instructive to apply the method presented in Sec. B 2 to
obtain the jump in the vectorial component of the microscopic
magnetic field parallel to the sheet plane. With E � EL, the
divergence-free [transverse (T)] part of Eq. (B4) takes the
approximate form

∇ × B(r; ω) = μ0JT (r; ω). (B23)

Following the argumentation in Sec. B 2, it is obvious that the
transverse current density, JT = J − JL, may be approximated
by the self-field form

JT (r) = (U − ẑẑ) · J(r) (B24)

when the QW thickness tends toward 0 [cf. Eq. (B9)]. From
Eq. (B24) one then sees that the direction of JT (r) becomes
parallel to the sheet plane; i.e.,

JT (r) � J‖(r). (B25)

An integration of the x component of Eq. (B23) across the
sheet with Eq. (B25) inserted now gives

By(r‖,0+) − By(r‖,0−) = ∂

∂y

∫ 0+

0−
Bz(r‖,z)dz

− μ0

∫ 0+

0−
J‖,x(r‖,z)dz. (B26)

The first term on the right-hand side of Eq. (B26) vanishes in
the limit since Bz stays finite. The jump therefore is given by

By(r‖,0+) − By(r‖,0−) = −μ0J
S
‖,x(r‖). (B27)

An analogous expression can be derived for the jump in Bx ,
and together the two jump conditions may be written in the
well-known compact vectorial form

n̂ × (B(r‖,0+) − B(r‖,0−)) = μ0JS
‖ (r‖). (B28)

The last “jump” condition,

n̂ · (B(r‖,0+) − B(r‖,0−)) = 0, (B29)

expressing the continuity in the normal component of the
magnetic field is of no concern here.

In the microscopic approach only E and B fields occur, and
all “dielectric” and “magnetic” properties are contained in the
microscopic conductivity response tensor (see Ref. [42], and
references therein). For this reason it is of no use to introduce
auxiliary D and H fields in our approach (Sec. III). However, in
classical diffraction theory (Sec. II) it is important to specify
the permittivity and permeability properties of the media in
question, of course.

APPENDIX C: FIELD ASYMMETRIES
WHEN JS

⊥(r‖; ω) �= 0

In classical diffraction theory the scattered electric and
magnetic fields from an infinitely thin screen, assumed to
be able to carry a frequency-dependent current density only
parallel to the plane (z = 0) of the screen, satisfy certain
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well-known reflection symmetries in z; i.e., ES
‖ and BS

⊥ are even
and ES

⊥ and BS
‖ are odd [6]. In the general case, where the sheet

current density also has a component JS
⊥(r‖; ω), perpendicular

to the plane of the screen, some of the reflection properties of
the fields are modified.

To obtain the new asymmetric reflection properties we start
from the integral expression

AS(r; ω) = μ0

∫
S

g(|r − r′
‖|; ω)JS(r′

‖; ω)d2r ′
‖, (C1)

giving the scattered vector potential from an ED-ED current
density sheet in the Lorenz gauge. It appears from Eq. (C1)
that AS is even in z; i.e.,

AS(r‖, − z) = AS(r‖,z). (C2)

The reflection properties of the scattered magnetic field are
determined from Eq. (29) utilizing the symmetry in Eq. (C2).
As the reader may show, one obtains

BS
⊥(r‖, − z) = BS

⊥(r‖,z) (C3)

and

n̂ × (BS
‖ (r‖,z) + BS

‖ (r‖, − z))

= 2∇‖AS
⊥(r‖,z) = 2∇‖

∫
S

g(|r − r′
‖|)J S

⊥(r′
‖)d2r ′

‖. (C4)

It appears from Eqs. (C3) and (C4) that only the symmetry
of the parallel component of the scattered magnetic field
is modified: When J S

⊥ 	= 0, BS
‖ is no longer odd in z. By

combining Eqs. (B28) and (C4) one obtains the result in
Eq. (11) for J S

⊥ = 0.
The reflection properties of the scattered electric field are

determined utilizing Eq. (C2) in the Lorenz gauge connection
given in Eq. (30). Thus, it is realized that

ES
‖ (r‖,z) − ES

‖ (r‖, − z)

= 2iωq−2
0 ∇‖

∂

∂z
A⊥(r‖,z)

= 2iωq−2
0 ∇‖

∂

∂z

∫
S

g(|r − r′
‖|)J S

⊥(r′
‖)d2r ′

‖ (C5)

and

ES
⊥(r‖,z) + ES

⊥(r‖, − z)

= 2iω

[
1 + q−2

0

∂2

∂z2

]
AS

⊥(r‖,z)

= 2iω

[
1 + q−2

0

∂2

∂z2

] ∫
S

g(|r‖ − r′
‖|)J S

⊥(r′
‖)d2r ′

‖. (C6)

Hence, the symmetries of both the parallel and the perpendic-
ular components of the scattered electric field are modified
when J S

⊥ 	= 0. However, note that the standard reflection
symmetries [6] in z are recovered from Eqs. (C3)–(C6) if
J S

⊥ = 0.
In order to investigate the correspondence between the

microscopic and the macroscopic diffraction theories it would
be important to modify the standard theory of classical

BS BS
 ,x

ES

0

ES
 ,x

(a) (b)

(c) (d)

     ,x JS~

~ JS
 ,y

JS
 ~

z z

zz

00

0

FIG. 6. Schematics of the asymmetries and jumps in the various
electromagnetic field components (thick black lines) across a current
sheet placed at z = 0. The usual textbook result, with the assumption
J S

⊥ = 0, is also sketched (thin gray lines). (a) The symmetry and the
jump in BS

⊥ are the same in the two cases. (b) The jump in B‖ (only the
x component is shown here) is the same, but the symmetry is no longer
antisymmetric with respect to z. (c) The jump in E⊥ is the same, but
the symmetry is modified; it is no longer antisymmetric with respect
to z. (d) Both the jump and the symmetry of E‖ (only the x component
is sketched here) are modified. In the general case E‖ jumps at z = 0
and it is not symmetric with respect to z. Note also that the jumps
in B‖ and E⊥ in general are not symmetric around 0 [as depicted in
(b) and (c)]. For the textbook case where J S

⊥ = 0 this is a condition
imposed by the antisymmetry of B‖ and E⊥. This antisymmetry is
lost for J S

⊥ 	= 0. An alternative sketch of the x component of B‖ is
shown in Fig. 7.

diffraction so as to account for situations where J S
⊥ 	= 0. Such

a modification, which is outside the scope of the present study,
would require the use of the reflection properties given in
Eqs. (C2)–(C6), as well as the generalized jump conditions
presented in Appendix B.

We end this Appendix with a figure presenting a schematic
overview of the derived reflection properties [Eqs. (C2)–
(C6)] and jumps [Eqs. (B3), (B22), (B28), and (B29)] of
the electromagnetic field across an ED-ED current density
sheet (Fig. 6). The figure also presents a comparison with
the usual textbook results, where the assumption J S

⊥ = 0 is
imposed.

BS
 ,x

~ JS
 ,y z0

FIG. 7. Alternative sketch of the x component of B‖. As in Fig. 6,
thick black lines are the generalized case with J S

⊥ 	= 0 and thin gray
lines represent the textbook result in which J S

⊥ = 0.
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