
PHYSICAL REVIEW A 90, 043828 (2014)

Multimode effects in cavity QED based on a one-dimensional cavity array
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We present a microscopic model of cavity quantum electrodynamics based on a one-dimensional (1D) coupled
cavity array (CCA), where a supercavity (SC) is composed by a segment of the 1D CCA with relatively smaller
couplings with the outsides. The single-photon scattering problem for the SC empty or with a two level atom in it
is investigated. We obtain the exact theoretical result on the transmission rate for our system, which predicts that
the transmission peaks shall appear near the eigenenergies of the SC. Our numerical results further prove that the
SC is a well-defined multimode cavity. When a two level atom resonant with the SC locates at the antinode of
the resonant mode, the transmission spectrum shows a clear sign of vacuum Rabi splitting as expected. However,
when the atom locates at the node of the resonant mode, we observe a deep valley in the transmission peak, which
can be explained by the destructive interference of two transmission channels: one is the resonant mode, while
the other is arising from the atom coupling with the nonresonance modes. The effect of nonresonance modes on
vacuum Rabi splitting is also analyzed.
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I. INTRODUCTION

Cavity QED, the study of the interaction between atoms and
the quantized electromagnetic fields in a microcavity, has been
one of the central research areas in both quantum optics and
quantum information since the pioneering work of Purcell [1].
In a single cavity with one atom or multiatoms, the hallmark
phenomena, such as vacuum Rabi splitting [2], Rabi oscillation
[3], collective Lamb shift [4], and electromagnetically induced
transparency [5], have been successfully observed.

With the rapid development of experimental technologies
in recent years, the system of a coupled cavity array (CCA)
with atoms embedded in it has aroused significant attention. It
is a promising test bed which is widely used in various areas
and also a building block for important quantum devices. In
quantum simulation, many important phenomena in condensed
matter have been successfully observed on this platform, such
as Mott-superfluid transitions [6–8] and some topological
effects [9–12].

A CCA also shows its application in controlling single
photons, which is of essential importance in quantum optics
and quantum information. One of the pioneering works [13]
focuses on a one-dimensional (1D) CCA doped with a two
level system and shows that the controllable system can behave
as a quantum switch for the coherent transport of single photon.
Furthermore, the single-photon scattering for a 1D CCA with
a pair of two level atoms or with three level atoms has also
been discussed [14]. Aside from the 1D CCA, single-photon
scattering for a two-dimensional CCA is also important for its
promising application in quantum networks [15]. In addition,
a CCA may be introduced in more research areas; e.g., a recent
paper designed an experiment on a CCA to explore the basic
principle in quantum mechanics [16].

In this paper, we use a CCA to investigate the basic
problem in cavity QED. Based on a 1D CCA, we propose
a new real space cavity model with a supercavity (SC) as
our cavity. The characteristics of a SC empty or with a two
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level atom doped in it are explored by studying the single-
photon scattering problem. Applying the discrete coordination
scattering equation [13] to the case of an empty SC, we give the
transmission spectrum in order to numerically and analytically
prove that the transmission peaks shall appear near the
eigenvalues of the empty SC system. These transmission peaks
with nonzero width imply that the empty SC can be considered
as a well-defined multimode cavity with dissipation.

In particular, we consider the variation of the single-photon
transmission due to a two level atom which is near resonant
with one of the SC modes. When the atom is located at the
antinode of the resonant mode, we observe the vacuum Rabi
splitting in the transmission spectrum. However, when the two
level atom is located at the node of the resonant mode, i.e., it
does not interact with the resonant mode, an obvious valley
in the transmission spectrum is observed, which is further
explained by the destructive interference of two transmission
channels: one is provided by the resonant mode of the SC,
while the other results from the two level atom which couples
to the nonresonance modes of the SC.

The rest of the paper is organized as follows. In Sec. II,
we introduce the theoretical model of our system and give
the analytical result of the single-photon transmission rate. In
Sec. III, we study the single-photon scattering on the empty SC,
which shows the characteristic features of the SC. In Sec. IV,
we investigate in detail how a two level atom essentially
changes the transmission spectrum, especially focusing on
the effect of nonresonance modes of the SC. In Sec. V, we
introduce the two level approximation of the SC system to
physically explain the transmission valley as the destructive
interference between the two transmission channels assisted
by the two levels, respectively. In Sec. VI, we briefly discuss
the experimental feasibility of the theoretical predictions and
give a summary of our results.

II. MODEL AND THEORETICAL RESULTS

The system we consider is composed by a two level atom
interacting with the nth cavity in a 1D coupled single mode
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FIG. 1. (Color online) Schematic configuration of the single-
photon scattering problem for the 1D CCA model. A single photon
(filled red circle) with the wave vector k injects from the left side
of the supercavity composed of N cavities, which is formed by a
relatively small coupling strength η with the outside cavities. A two
level atom (filled blue circle) is in the nth cavity of the SC. The
transmission spectrum is measured by the detector on the right side
of the SC. Here we take N = 5 and n = 3.

cavity array with infinite length, which is shown in Fig. 1.
The hopping strength between neighboring cavities l and l +
1 is ξ for l /∈ {0,N}, and the hopping strength is η for l ∈
{0,N}, which is much less than ξ . In such a setting, the cavities
between 1 and N form a secondary cavity, which we will call
the supercavity hereafter. Meanwhile, the two level atom is
required to be inside the supercavity, i.e., 1 � n � N .

A tight-bonding model including five parts is introduced to
describe the system

H = HS + HL + HR + HSL + HSR, (1)

where

HS =
N∑

j=1

ωca
†
j aj +

N∑
j=2

ξ (a†
j−1aj + a

†
j aj−1)

+ωa|e〉〈e| + g(a†
nσ

− + H.c.), (2)

HL =
0∑

j=−∞
[ωca

†
j aj + ξ (a†

j−1aj + a
†
j aj−1)], (3)

HR =
∞∑

j=N+1

[ωca
†
j aj + ξ (a†

j aj+1 + a
†
j aj+1)], (4)

HSL = η(a†
0a1 + H.c.), (5)

HSR = η(a†
NaN+1 + H.c.). (6)

Here HS describes the SC system, HL (HR) describes the left
(right) channel that is formed by the segment of the cavity array
left (right) of the SC, and HSL (HSR) describes the interaction
between the SC with the outsides. a†

j (aj ) is the photon creation
(annihilation) operator for the j th single mode cavity, |e〉
(|g〉) is the excited (ground) state of the atom, and σ−(σ+)
is the atomic lowering (raising) operator. ωc is the intrinsic
frequency of each single mode cavity, ωa is the transition
frequency of the two level atom, and g is the coupling strength
between the cavity and the atom. ξ is the coupling strength
between neighboring cavities in the SC, the left channel and the
right channel, while η is the coupling strength of neighboring
cavities between them. In addition, we require that η � ξ and
set � = 1 throughout this paper.

The basic task here is to investigate the single-photon
scattering problem. When a single photon with wave vector
k injects from the left channel toward the SC system, what is
the transmission spectrum obtained in the right channel?

Now the scattering state can be expanded as

|�k〉 = |φk〉 + r|φ∗
k 〉 + t |ϑk〉 +

N∑
j=1

dj |j 〉 + λ|e〉, (7)

where

|φk〉 =
0∑

j=−∞
eikj |j 〉, (8)

|ϑk〉 =
+∞∑

j=N+1

eikj |j 〉, (9)

with |j 〉 = a
†
j |G〉 and |e〉 = σ+|G〉. Here, |G〉 = |vac; g〉

represents the state with all the cavities in their vacuum
states while the atom is in the ground state. In Eq. (7),
the coefficients r and t are the reflection and transmission
amplitudes, respectively; dj is the probability amplitude for
finding the photon in the j th cavity; and λ is the probability
amplitude for the atom in the excited state. The scattering state
satisfies the stationary Schrödinger equation:

H |�k〉 = Ek|�k〉. (10)

In general, the transmission amplitude t is completely
determined by Eq. (10), and the transmission rate T = |t |2
can be obtained. One of our main theoretical results is

t = ie−i(k+π)(N+1)2γ 2 sin k

e−2ik
∣∣An

N

∣∣ + γ 2e−ik
(∣∣An

N−1

∣∣ + ∣∣An−1
N−1

∣∣) + γ 4
∣∣An

N−2

∣∣ ,
(11)

where γ = η/ξ and An
N = [HS(N,n) − Ek]/ξ with the dis-

persion relation Ek = ωc + 2ξ cos k (the wave vector k is
dimensionless by setting the distance between two arbitrary
neighboring cavities as the unit), HS(N,n) is the Hamiltonian
of the SC system with N cavities and the two level atom in the
nth cavity, and |An

N | is the determinant of An
N . The detailed

derivation of Eq. (11) is given in the Appendix.
Since γ is a small parameter, the transmission peaks occur

only when |An
N | is small at least in the order of γ 2. In addition,

|An
N | = 0 only when Ek is the eigenenergy of the SC system.

Therefore, the necessary condition to observe the transmission
peaks is that Ek is near resonant with the eigenmodes of the
SC system.

III. SINGLE-PHOTON SCATTERING WITH
EMPTY SUPERCAVITY

As the first step, we study the transmission spectrum for the
SC without the two level atom, i.e., an empty SC. As is well
known, the eigenvalues and eigenstates of the empty SC are

νm = ωc + 2ξ cos θm, (12)

|�m〉 =
√

2

N + 1

N∑
j=1

sin(jθm)|j 〉, (13)

where θm = mπ
N+1 , with m being any integer between 1 and N .

Then the peaks in the transmission spectrum shall appear
near the resonance Ek = νm, i.e., k = θm, which is numerically
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FIG. 2. (Color online) (a) The transmission rate vs the incident
wave vector k for the empty SC. Only the first five transmission
peaks are shown. (b) Zoom in of the fourth transmission peak. Here
we choose the parameters N = 31, ξ = 1, and η = 0.01.

demonstrated in Fig. 2(a). In the figure, we only show the first
five peaks, where the fourth peak is zoomed in in Fig. 2(b). It is
apparent that each peak has a nonzero width, which means the
corresponding electromagnetic mode in the SC system has a
finite lifetime due to the dissipation arising from the coupling
with the left and right channels. In other words, the left and
right channels act not only as the carriers of the scattering
waves but also as the dissipation reservoirs of the SC.

As demonstrated above, the numerical results show that the
SC is essentially an N -mode cavity, and every eigenmode of
the SC has a relatively long lifetime. In what follows, we will
study how a single two level atom that couples with the SC can
dramatically change the transmission spectrum, and we will
investigate the effects induced by the multimode cavity fields.

IV. SINGLE-PHOTON SCATTERING WITH ONE
ATOM IN THE SUPERCAVITY

When a two level atom interacts with the nth cavity, it is
convenient to rewrite the Hamiltonian HS in the eigenmodes
of the SC as

HS =
∑

k

νkb
†
kbk + ωa|e〉〈e| +

∑
k

gk(b†kσ− + bkσ+), (14)

where

b
†
k =

√
2

N + 1

N∑
j=1

sin(jθk)a†
j , (15)

gk = g

√
2

N + 1
sin(jθk). (16)

Note that the coupling strength gk depends on the location of
the atom and the length of the SC. It is the standard model of
cavity QED in the multimode setting.

When the frequency of the atom is near resonant with
a preselection k∗th mode of the SC, we may adopt the
single mode approximation for the SC. Then the two relative
eigenenergy levels are

Ek± = νk∗ + ωa

2
± �k∗

2
, (17)

where the vacuum Rabi splitting is

�k∗ =
√

(νk∗ − ωa)2 + 4g2
k∗ . (18)
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FIG. 3. (Color online) (a) Transmission rates vs the incident
wave vector (just around the resonant mode). Blue dashed and red
solid lines each stand for the atom at the antinode (n = 12) or node
(n = 8) of the mode. (b) Zoom in of the red peak. Here the atom is near
resonant with the fourth mode of the SC with ωa = 1.847760755ξ ,
and g = 0.1.

Now we numerically check the validness of the above
single-mode approximation. First, we plot the transmission
spectrum when the two level atom is located at the node and
antinode of the resonant mode of the SC, which is shown in
Fig. 3 (a). When the atom is located at the antinode of the
resonant mode, the obvious vacuum Rabi splitting appears.
When the atom is located at the node, i.e., the two level
atom does not interact with the resonant mode of the SC,
no vacuum Rabi splitting is observed as expected. However,
the peak is lower than 1/2 in the latter case. If the single
mode approximation is valid, then the two level atom without
interacting with the resonant mode of the SC will not affect the
transmission rate. In other words, it is expected to be similar to
the case shown in Fig. 2(b). Thus we plot the zoom in for the
case of the atom at the node as shown in Fig. 3(b). Obviously,
the transmission spectrum shown in Fig. 2(b) exhibits an
obvious valley exactly at the resonant mode of the SC, which
is essentially different from Fig. 7(b).

To investigate the physics underlying the transmission
spectrum shown in Fig. 3(b), the frequency of the atom is
tuned to be resonant with the mode while keeping the atom at
the node, and the transmission spectrum is given for different
coupling strengths g as shown in Fig. 4(a). When g = 0, we
recover the transmission spectrum shown in Fig. 2(b). When g

is not equal to zero, a second peak appears near the frequency
of the atom. Since the atom does not couple with the resonant
mode, the peak must be originated from the atom coupling with
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FIG. 4. (Color online) Transmission spectrum for the atom at the
node of the resonant mode with g = 0 (blue dotted line), g = 0.05
(green dashed line), and g = 0.1 (red solid line). (a) ωa = ν4. (b)
ωa = 1.847760755ξ .
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the nonresonance modes. We assert that due to the different
influences of the outsides the transmission spectrum for
each channel independently partially overlaps at the resonant
condition, which leads to the above-mentioned transmission
spectrum as shown in the next section. By increasing g, the
transmission peak becomes wider as expected. The numerical
result in Fig. 4(a) clearly shows that in the case of the atom
located at the node of the resonant mode two channels exist
for the photon transmitting through the SC: one is the resonant
cavity, while the other results from the atom coupling with the
nonresonance modes.

Further, as shown in Fig. 4(b), we tune the frequency
of the atom so that the transmission peaks for the two
channels coincide as shown in the next section. However,
we find that the single photon is completely reflected at the
original transmission peak of the resonant mode, which implies
that the transmission amplitudes through the two channels
interfere destructively. The appearance of the transmission
valley comes from the different widths of the transmission
peaks from the two channels. Moreover, the widths of the
valleys are determined by the coupling strength g, which
further confirms the existence of quantum interference. A more
physical explanation of the transmission spectrum is given in
the next section to intuitively show the mechanism behind the
transmission dip.

As discussed above, the nonresonance modes dramatically
change the transmission spectrum when the atom is located
at the node, so a natural problem is how the nonresonance
modes affect the transmission spectrum when the two level
atom is located at the antinode of the resonant mode. To this
end, we plot the transmission spectrum for different detunings
when the atom is located at the antinode as shown in Fig. 5.
We show that, by tuning the frequency of the atom higher
than the resonant mode, the peak of the high frequency will
move away faster than the one with the low frequency, and the
opposite behavior can be seen if tuning the atom frequency
lower. Obviously, this behavior cannot be explained by the
single mode approximation and must be attributed to the
effects of nonresonance modes of the SC. Notice that a similar
phenomenon is mentioned in [17].
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FIG. 5. (Color online) Transmission spectrum for different de-
tunings when the atom is located in the antinode. Here we give the
results for � = ωa − ν4 = 0 (blue solid line), � = 0.01ξ (red dashed
line), and � = 0.02ξ (black dotted line).

V. PHYSICAL EXPLANATION OF THE TRANSMISSION
VALLEY IN THE TWO LEVEL APPROXIMATION

Now let us give a more detailed and physical explanation
about the transmission valley shown in Fig. 4. As we know, the
energy levels of the SC that are near resonant with the energy
of the incoming photon dominate the photon transmission
through the SC. In the cases that the transmission valley
occurs, there are two energy levels of the SC that are near
resonant with the energy of the incoming photon: one is
the near resonant mode of the SC that does not interact
with the atom, and the other is the atomic excited state
dressed by the nonresonance modes. Thus it is reasonable
to maintain only these two levels in the Hamiltonian HS ,
which is called the two level approximation. In the two level
approximation, the Hamiltonian of our system can be written
as H = HS + HL + HR + HSL + HSR , with HL and HR the
same as in the exact model and

HS = νm|ψm〉〈ψm| + ωA|ϕm〉〈ϕm|, (19)

HSL = η [(α1|0〉〈ψm| + β1|0〉〈ϕm|) + H.c.] , (20)

HSR = η [(α2|N + 1〉〈ψm| + β2|N + 1〉〈ϕm|) + H.c.] , (21)

where |ψm〉 = b
†
m|G〉α1 = 〈1|ψm〉, β1 = 〈1|ϕm〉,

α2 = 〈N |ψm〉, and β2 = 〈N |ϕm〉. ωA is the eigenenergy
of the atomic state.

Now the scattering state can be expanded as

|�k〉 = |ϕk〉 + r|ϕ∗
k 〉 + t |ϑk〉 + μ|ψm〉 + ζ |ϕm〉, (22)

with μ and ζ being the excitation amplitudes of the modes
|ψm〉 and |ϕm〉, respectively.

The stationary Schrödinger equation H |�k〉 = Ek|�k〉
results in the following set of scattering equations:

ωcr
′ + ξ (e−ik + reik) + η(α1μ + β1ζ ) = Ekr

′
, (23)

η[r
′
α1 + t

′
α2] + νmμ = Ekμ, (24)

η[r
′
β1 + t

′
β2] + ωAζ = Ekζ, (25)

ωct
′ + η(α2μ + β2ζ ) + ξ t

′
eik = Ekt

′
, (26)

and the transmission rate T = |t |2 can be determined. Here,
we set t

′ = teik(N+1) and r
′ = 1 + r .

From Eq. (26), the condition for the perfect reflection is

α2μ + β2ν = 0. (27)

Equation (27) can be understood as follows. When the three
levels |ψm〉, |ϕm〉, and |N + 1〉 are considered, the state
μ|ψm〉 + ζ |ϕm〉 is the dark state relative to |N + 1〉 as in the
electromagnetically induced transparency setting. This shows
the interference mechanism behind the transmission valley and
is the central point to understand the phenomenon.

A. Analytical and numerical results for ωa = νm

When the atom is resonant with the mth mode of the cavity
(ωa = νm), the state |ϕm〉 with eigenenergy ωA = ωa can be
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FIG. 6. (Color online) (a) The blue (red) solid line and triangle
each represent the excitation amplitude of the SC and the atom as in
state |ψm〉 (|ϕm〉). (b) The green dashed (red solid) line and triangle
(circle) each represent the excitation amplitude of the SC and the atom
as in state |�m〉SC in the two level approximation model (the exact
model). Here, g = 0.05 and m = 4 while all the other parameters are
the same as before.

analytically expressed as

|ϕm〉 = c†m|G〉 + d†
m|G〉 − 1 + γ

g
√

A
sin θm|e〉, (28)

where

c†m = 1√
A

n∑
j=1

sin(jθm)a†
j ,

d†
m = − γ√

A

N∑
j=n+1

sin(jθm)a†
j ,

γ = n/(N − n + 1),

A =
√

N + 1

N − n + 1

[
n

2
+ N + 1

g2(N − n + 1)
sin2 θm)

]
.

The states |ψm〉 and |ϕm〉 are demonstrated in Fig. 6(a). In
addition, a simple calculation shows that the perfect reflection
appears at Ek = νm. Then the analytical result of the scattering
state within the SC

|�m〉SC = C

[√
2

N + 1
sin(Nθm)c†m|G〉 + α2 sin θm

g
√

A
|e〉

]
,

(29)

where

C = −2i(γ + 1) sin θm

η(α1β2 − α2β1)
.
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FIG. 7. (Color online) Transmission rates vs the incident wave
vector for different models. (a) The results under the full Hamiltonian
(red solid line) and two level approximation (green dashed line).
(b) The results when we only consider one channel which is supported
by the mth eigenstate of the SC (blue dashed line) and the atomic state
(green solid line).
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FIG. 8. (Color online) Transmission spectrum for various chan-
nels. The transition frequency of the atom ωa = 1.847760755ξ .
(a) Blue dashed line: the cavity state |ψm〉. Green solid line: the atomic
state |ϕm〉. (b) Green dashed line: the two level approximation. Red
solid line: the exact model.

The state is clearly localized between the atom and the left end
of SC, while the two modes represented by |ψm〉 and |ϕm〉 are
extended throughout the SC (as clearly shown in Fig. 6).

To test the validness of the two level approximation, we
compare the numerical results in the approximation with
those from the exact model. As shown in Fig. 7(a), the
transmission spectrum from the two level approximation
agrees well with those from the exact model, which verifies
that the transmission valley is a two level effect. To further
clarify the two level approximation, we give the transmission
spectrum when either one of the two levels is considered,
which is shown in Fig. 7(b). Obviously, the transmission valley
appears only in the overlap region due to quantum interference.

B. Numerical results for ωa �= νm

When the atom is near resonant with the mth mode of the
SC, the analytical expression for the state |ϕm〉 is difficult to
obtain. Then we numerically evaluate the state |ϕm〉 and the
eigenenergy ωA. The transmission spectrum within the two
level approximation is shown in Fig. 8(a). As before, we also
compare these approximate results with those from the exact
model and find that the approximation is quite accurate. The
transmission spectra from both of the two levels are shown in
Fig. 8(b), which verifies that the transmission valley comes
from the quantum interference between the two channels
assisted by the two levels.

VI. REMARKS AND CONCLUSION

In this paper, we have studied the single-photon scattering
in a typical CCA system. Experimentally, the CCA can be
realized by the superconducting transmission line resonators
which support the single mode microwave electromagnetic
field with the resonant frequency ωc/2π ≈ 3 GHz [18]. The
coupling between neighboring resonators can be realized via
the tunable capacitances and achieves strengths of ξ (η)/2π =
5–100 MHz [18,19]. Correspondingly, the two level atom can
be realized by a superconducting qubit such as the flux qubit
whose transition frequency can be tuned by readily adjusting
the flux through the loop, and a coupling strength of g ≈
0.12ωc between the qubit and the resonator was achieved in a
recent experimental scheme [20].

In conclusion, we propose a simple microscopic model of
cavity QED based on a CCA and prove that the transmission
peaks shall appear near the eigenvalues of the whole SC
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system. One of the advantages of this model is that it provides
a platform to deal with the nonresonance modes in the
microscopic level. First we show that the SC composed by
a segment of a 1D cavity array is a multimode cavity by
studying the transmission spectrum through an empty SC.
Then we study the multimode effects in the SC system by
investigating the transmission spectrum for the SC interacting
with a two level atom, located at the antinode or node of a
preselected resonant mode of the SC. When the atom locates
at the antinode, we observe the vacuum Rabi splitting in the
transmission spectrum as expected. However, when the two
level atom locates at the node of the near resonant mode,
we find a valley in the transmission spectrum, which can be
explained by the interference of the transmission amplitude
through two channels: one channel is the resonant mode,
and the other is the atomic excited state dressed by the non-
resonance modes. We hope this model can enlighten the study
of multimode effects in cavity QED.
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APPENDIX: LOCATIONS OF THE PEAKS

By comparing the coefficients of {|j 〉} and |e〉 in the
stationary scattering equation (10), we obtain

Ek = ωc + 2ξ cos k, (A1)

and

ωcr
′ + ξ (e−ik + reik) + ηd1 = Ekr

′
, (A2)

ωcd1 + ηr
′ + ξd2 = Ekd1, (A3)

ωcdj + ξ (dj−1 + dj+1) = Ekdj , (A4)

ωcdn + ξ (dn−1 + dn+1) + λg = Ekdn, (A5)

λωa + gdn = λEk, (A6)

ωcdN + ξdN−1 + t
′
η = EkdN, (A7)

ωct
′ + ηdN + ξ t

′
eik = Ekt

′
. (A8)

where 2 � j � N − 1 and j �= n.
For ωa �= Ek , Eq. (A6) leads to

λ = g

Ek − ωa

dn. (A9)

Substituting Eq. (A9) into Eq. (A5), we have(
ωc + g2

Ek − ωa

)
dn + ξ (dn−1 + dn+1) = Ekdn. (A10)

We introduce the following parameters:

d0 = 1 + r, (A11)

dN+1 = teik(N+1), (A12)

α = ωc − Ek

ξ
= −eik − e−ik, (A13)

β =
ωc − Ek + g2

Ek−ωa

ξ
= α + g2

ξ (Ek − ωa)
, (A14)

γ = η

ξ
, (A15)

δ = eik − e−ik. (A16)

Then the scattering equation can be expressed in the following
matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α + eik γ

γ α 1

1 α 1

. . .

1 α 1

1 β 1

1 α 1

. . .

1 α 1

1 α γ

γ α + eik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0

d1

d2

...

dn−1

dn

dn+1

...

dN−1

dN

dN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ

0

0

...

0

0

0

...

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A17)
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which is abbreviated as

BD = �, (A18)

with

B =

⎛
⎜⎜⎜⎜⎝

α + eik γ

γ An
N γ

γ α + eik

⎞
⎟⎟⎟⎟⎠ (A19)

and

An
N = HS − Ek

ξ
. (A20)

By applying Cramer’s Rule, the transmission amplitude is

t = e−ik(N+1)dN+1 = e−i(k+π)(N+1) δγ
2

|B| , (A21)

with |B| the determinant of the matrix. From Eq. (A19), |B|
can be analytical expressed as

|B| = e−2ik
∣∣An

N

∣∣ + e−ikγ 2
(∣∣An−1

N−1

∣∣ + ∣∣An
N−1

∣∣) + γ 4
∣∣An−1

N−2

∣∣.
(A22)

As mentioned before, η � ξ leads to γ � 1. Thus, in order
to gain large transmission probability, |An

N | in the denominator
of Eq. (A22) must be small at least in the order of γ 2, which
clearly shows that the transmission peaks should be achieved
only near the eigenvalues of the SC system. This result is easy
to generalize to a multiatom situation.
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