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Unpolarized states and hidden polarization
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We capitalize on a multipolar expansion of the polarization density matrix, in which multipoles appear
as successive moments of the Stokes variables. When all the multipoles up to a given order K vanish, we can
properly say that the state is Kth-order unpolarized, as it lacks of polarization information to that order. First-order
unpolarized states coincide with the corresponding classical ones, whereas unpolarized to any order tally with the
quantum notion of fully invariant states. In between these two extreme cases, there is a rich variety of situations
that are explored here. The existence of hidden polarization emerges in a natural way in this context.
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I. INTRODUCTION

Very often an involved physical concept can be better
understood in terms of its opposite. Polarization is a pertinent
example: perhaps the most sensible way to look at it is to
explore unpolarized states, as one can make sense of them
using exclusively invariance principles, a tool of paramount
importance in physics.

The constitution of unpolarized light was investigated
from the very beginning of modern optics. Indeed, al-
ready Stokes [1] and Verdet [2] offered a lucid charac-
terization of what they called “natural” light by using the
projections of the intensity onto the axes of a rotated
Cartesian coordinate system. Unpolarized states are those
that remain invariant under any rotation of that coordinate
system and under any phase shift between its rectangular
components.

In classical optics, the field components of unpolarized
light are well modeled by zero-mean, uncorrelated, stationary
Gaussian random process [3]. The previous invariance condi-
tions thus determine the entire probabilistic structure of the
projected intensities [4]. However, as the standard theory is
limited to first-order moments, unpolarized light is presented
as having zero-mean Stokes vector, which in geometrical terms
means that it is just the origin of the Poincaré sphere [5]. We
stress, though, that this is an incomplete characterization, for
it safely overlooks higher-order moments [6].

At the quantum level, the invariance requirement fixes once
and for all the structure of the density matrix, as first pointed
out in Refs. [7,8]: unpolarized states are maximally mixed in
each subspace with a given number of photons [9,10]. To put
it in another way, it specifies the probability distribution and,
as a result, all the moments of the Stokes variables.

Nowadays, there is a widespread belief that a thorough
appreciation of the subtle effects arising in the quantum
world requires a careful scrutiny of higher-order polarization
fluctuations. We have been advocating the use of a hierarchy
of correlation functions that take into account the successive
moments of the Stokes variables [11–13]. The most systematic
way to accomplish this is by expanding the density matrix in
multipoles [14].

The idea of unpolarized states can be directly translated
in this scenario: when all the multipoles up to a given order
(say K) vanish, the state lacks of polarization information up
to that order and hence will be called Kth-order unpolarized.
The classical picture matches the first-order theory, whereas
the quantum condition implies that all the multipoles are
identically null. Our goal here is to explore the terra incognita
between these two extreme cases. In this respect, we mention
that, as we shall see, this is closely related with the so-called
hidden polarization, introduced by Klychko [15,16].

Our paper is organized as follows: In Sec. II we concisely
sketch the fundamentals needed to grasp the polarization
hallmarks of quantum fields and introduce the multipoles. In
Sec. III we revisit unpolarized states from the viewpoint of
these multipoles, defining Kth unpolarized states. In Sec. IV
we apply the formalism to some illuminating examples and,
finally, our conclusions are briefly summarized in Sec. V.

II. POLARIZATION STRUCTURE OF QUANTUM FIELDS

A satisfactory description of the polarization structure of
quantum fields is of utmost significance for our purposes. This
is precisely the objective of this section.

A. Quantum polarization sector

Let us consider a monochromatic field specified by two
operators âH and âV , representing the complex amplitudes
in two linearly polarized orthogonal modes, we indicate as
horizontal (H ) and vertical (V ), respectively. The Stokes
operators are [17]

Ŝx = 1

2
(â†

H âV + â
†
V âH ), Ŝy = i

2
(âH â

†
V − â

†
H âV ),

Ŝz = 1

2
(â†

H âH − â
†
V âV ), (2.1)

together with the total photon number

N̂ = â
†
H âH + â

†
V âV . (2.2)

The superscript † stands for the Hermitian adjoint. In this
Schwinger representation [18], these operators differ by a
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factor 1/2 from the common Stokes parameters [5], but in
this way the components of the Stokes vector Ŝ = (Ŝx,Ŝy,Ŝz)
satisfy the commutation relations of the SU(2) algebra:

[Ŝx,Ŝy] = iŜz, (2.3)

and cyclic permutations (we use � = 1 throughout).
The noncommutability of these operators precludes the

simultaneous sharp measurement of the corresponding quanti-
ties. Among other consequences, this implies that no field state
(apart from the two-mode vacuum) can have definite nonfluc-
tuating values of all the Stokes operators simultaneously. This
is quantified by the uncertainty relation

�2Ŝ = �2Ŝx + �2Ŝy + �2Ŝz � 1
2 〈N̂〉, (2.4)

where �2Ŝj = 〈Ŝ2
j 〉 − 〈Ŝj 〉2 are the variances. In this vein, one

can say that the electric vector of a monochromatic quantum
field never describes a definite ellipse.

Moreover, while the Stokes operators are all Hermitian,
the noncommutability makes mixed, nonsymmetric products
(such as Ŝx Ŝy) non-Hermitian, also precluding their direct
measurement.

In classical optics, the total intensity is a well-defined
quantity and the Poincaré sphere appears then as a smooth
surface with radius equal to that intensity. In contradistinction,
in quantum optics we have

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = S(S + 1)1̂, (2.5)

where S = N/2 plays the role of the spin (N being the
photon number). As fluctuations in N are unavoidable (leaving
aside photon-number states), we are forced to talk of a
three-dimensional Poincaré space (with axis Sx , Sy , and Sz)
that can be envisioned as a set of nested spheres with radii
proportional to the different photon numbers that contribute
significantly to the state.

We next make the important observation that

[N̂,Ŝ] = 0. (2.6)

This expresses in the quantum language the fact that polariza-
tion and intensity are separate concepts: the form of the ellipse
described by the electric field (polarization) does not depend
on its size (intensity).

This fact brings about remarkable simplifications. First, it
means that each subspace with a fixed number of photons must
be handled separately. Equivalently, in the previous onionlike
picture of the Poincaré space, each shell has to be addressed
independently. This can be emphasized if instead of the Fock
states {|nH ,nV 〉}, which are an orthonormal basis of the Hilbert
space of these two-mode fields, we employ the relabeling

|S,m〉 ≡ |nH = S + m,nV = S − m〉, (2.7)

which can be seen as the common eigenstates of Ŝ2 and Ŝz. For
each fixed S, m runs from −S to S and these states span a (2S +
1)-dimensional invariant subspace, wherein the operators Ŝ act
in the standard form

Ŝ± |S,m〉 =
√

S(S + 1) − m(m ± 1) |S,m ± 1〉,
Ŝz |S,m〉 = m|S,m〉. (2.8)

Second, from (2.6) it follows that any function of the
Stokes operators f (Ŝ) commutes with N̂ . Therefore, the

matrix elements of the density matrix �̂ (which describes
the state) connecting subspaces with different values of S do
not contribute to 〈f (Ŝ)〉. Put differently, the only accessible
polarization information from any state �̂ is its block-diagonal
form

�̂pol =
⊕

S

PS �̂(S), (2.9)

where PS is the photon-number distribution (S = 0,1/2,1, . . .)
and PS �̂(S) is the reduced density matrix in the subspace with
spin S. This �̂pol has been termed the polarization sector [19]
or the polarization density matrix [20]. What matters for
our purposes is that any �̂ and its associated �̂pol cannot be
distinguished in polarization measurements and, accordingly,
we shall be using the block-diagonal form (2.9) and drop
henceforth the subscript pol.

B. Polarization multipoles

Instead of using directly the states {|S,m〉}, it is more
convenient to expand each component �̂(S) in (2.9) as

�̂(S) =
2S∑

K=0

K∑
q=−K

�
(S)
Kq T̂

(S)
Kq . (2.10)

The irreducible tensor operators T
(S)
Kq are [21]

T̂
(S)
Kq =

√
2K + 1

2S + 1

S∑
m,m′=−S

CSm′
Sm,Kq |S,m′〉〈S,m|, (2.11)

with CSm′
Sm,Kq being the Clebsch-Gordan coefficients that couple

a spin S and a spin K (0 � K � 2S) to a total spin S. These
tensors are an orthonormal basis

Tr
[
T̂

(S)
Kq T̂

(S ′) †
K ′q ′

] = δSS ′δKK ′δqq ′ , (2.12)

and they have the right transformation properties: under a
rotation parametrized by the Euler angles (α,β,γ ), we have

R̂(α,β,γ ) T̂
(S)
Kq R̂†(α,β,γ ) =

∑
q ′

DS
q ′q(α,β,γ ) T̂

(S)
Kq ′ ,

(2.13)

where the DS
q ′q(α,β,γ ) stands for the matrix elements of the

rotation operator R̂(α,β,γ ) in the basis |S,m〉 [21].
Although at first sight they might look a bit intimidating,

they are nothing but the multipoles used in atomic physics [14].
After some calculations, one can recast Eq. (2.11) as

T̂
(S)

00 = 1√
2S + 1

1̂,

T̂
(S)

10 =
√

3

(2S + 1)(S + 1)S
Ŝz, T̂

(S)
1∓1=

√
3

(2S + 1)(S + 1)S
Ŝ±,

T̂
(S)

20 =
√

C

6

(
3Ŝ2

z − Ŝ2
)
, T̂

(S)
2∓1 =

√
C

2
{Ŝz,Ŝ±}, T̂

(S)
1∓2 =

√
C

2
Ŝ2

±,

(2.14)

where C = 30/[(2S + 3)(2S + 1)(2S − 1)(S + 1)] and {,} is
the anticommutator. In consequence, we conclude that T̂

(S)
Kq

can be related to the Kth power of the Stokes operators (2.1).
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The corresponding expansion coefficients

�
(S)
Kq = Tr

[
�̂(S) T̂

(S) †
Kq

]
(2.15)

are known as state multipoles. The hermiticity imposes the
symmetry condition

�
(S)
K−q = (−1)q �

(S)
Kq, (2.16)

and the positive semidefiniteness of �̂(S) forces the bound

W (S)
K ≡

K∑
q=−K

∣∣�(S)
Kq

∣∣2 � C
(S)
K , (2.17)

for every K > 1 and C
(S)
K a positive constant. The quantity

W (S)
K is just the strength of the Kth multipole in the state �̂(S).
Finally, we turn to the important class of axially symmetric

states [14]. They are invariant under rotations about an axis that
we take as the z axis. Since DS

qq ′ (0,0,γ ) = exp(−iqγ )δqq ′ , this
implies

�̂(S)
axsym =

2S∑
K=0

�
(S)
K0 T̂

(S)
K0 . (2.18)

Thus, they are characterized exclusively by the multipole
components �K0. Any density operator that can be obtained
from �̂axsym via an SU(2) transformation, represents as well an
axial symmetric state, as a rotation only change the direction
of the symmetry axis of the state.

Some axially symmetric systems are also invariant under
the reversal of the symmetry axis (i.e., z → −z). As this
corresponds to a rotation around the y axis by an angle π

and DS
qq ′ (0,π,0) = (−1)K+qδq −q ′ , we get from (2.13)

�
(S)
K0 = (−1)K�

(S)
K0, (2.19)

so only multipoles of even rank K contribute.

III. KTH-ORDER UNPOLARIZED STATES

From now on, we restrict ourselves to a single component
�̂(S) (i.e., a fixed number of photons). This is by no means a
restriction, as the discussion can be extended in a natural way
to the complete polarization density matrix in (2.9).

The full polarization information is encoded in the complete
multipole distribution {W (S)

K }. However, for most of the states,
only a limited number of multipoles play a substantive role and
the rest of them have a small contribution. As a consequence,
gaining a good feeling of the corresponding behavior may be
tricky.

A way to bypass this disadvantage is to look at the
cumulative distribution

A(S)
K =

K∑
	=1

W (S)
	 . (3.1)

Please, note carefully that the monopolar term has been
excluded, as it is trivially isotropic for all the states. The
quantity A(S)

K conveys whole information up to order K . We
know from probability that it has remarkable properties [22].

To get extra insights into this subject, let us focus, for the
time being, on the key example of SU(2) coherent states (also

known as spin or atomic coherent states), which can be written
down as the superposition [23,24]

|θ,φ〉 =
S∑

m=−S

CSm(θ,φ) |S,m〉, (3.2)

with coefficients

CSm(θ,φ)

=
(

2S

S + m

)1/2 (
sin

θ

2

)S+m (
cos

θ

2

)S−m

e−i(S+m)φ,

(3.3)

and θ and φ are the polar and azimuthal angles on the
sphere, respectively. If n is the unit vector in the direction
(θ,φ), the operator Ŝn = n · Ŝ is the observable measured
in polarization experiments [25]: coherent states can be
alternatively interpreted as eigenstates of Ŝn

Ŝn|θ,φ〉 = S|θ,φ〉, (3.4)

from which one can confirm that they saturate the uncertainty
relation (2.4) and so they are the minimum uncertainty states
in polarization optics.

For these states, one can immediately find

A(S)
K,SU(2) = 2S

2S + 1
− [�(2S + 1)]2

�(2S − K)�(2S + K + 2)
. (3.5)

As conjectured in Ref. [13], this is the maximal value attainable
for any K in each subspace S. This nicely corroborates
the amazing properties of SU(2) coherent states: they are
maximally polarized states to any order, as one would expect
from a pure state that corresponds as nearly as possible to a
classical spin vector pointing in a given direction.

This maximality property suggests at once a hierarchy of
degrees of polarization

P(S)
K =

√√√√ A(S)
K

A(S)
K,SU(2)

, (3.6)

which sort the relevant polarization information up to order
K (K = 1, . . . ,S). The experimental reconstruction reported
in Ref. [13] reveals that by performing a Stokes measurement
in 2K + 1 independent directions, one can actually determine
A(S)

K and hence all the degrees P(S)
K .

We will say that a state is Kth-order unpolarized when
P(S)

K = 0 (which obviously implies A(S)
K = 0; i.e., all the mul-

tipoles up to order K vanish) and we will denote these states
as �̂

(S)
unpol,K . Note, though, that Kth-order unpolarized states do

carry polarization information when one looks at higher-order
moments. This is referred to as hidden polarization, according
to the terminology coined by Klyshko [15,16], albeit it
would be better to say that such states display higher-order
polarization [26].

In more physical terms, the condition of Kth-order un-
polarization amounts to imposing that the moments 〈Ŝ	

n〉 are
independent of the direction n for 	 = 1, . . . ,K (i.e., they are
isotropic). Therefore, all the moments up to order K do not
show any angular structure, whereas higher-order ones do.
Notice, in passing, that this is the logic beyond the recent
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proposal of anticoherent states [27]: such states point nowhere
(to a given order), and this is certainly one way to serve as the
opposite of a state that points, as much as possible, somewhere.
From this perspective, these unpolarized states are exhibits the
most nonclassical features [28,29].

For the particular case of the dipole (K = 1), Eq. (3.6)
reduces to

P(S)
1 =

√
〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2

S
, (3.7)

which coincides with the standard definition [30]. First-order
unpolarized states verify P(S)

1 = 0, so 〈Ŝ〉 = 0. This goes to
the classical notion of random states, as it involves exclusively
first-order moments.

When the state is unpolarized to any order, only the
monopole contributes:

�̂
(S)
unpol = 1

2S + 1
12S+1, (3.8)

so it is a random state within each invariant subspace. This
is the quantum definition, which demands that the whole
probability distribution to be SU(2) invariant [7,8]; that is,

[�̂,Ŝ] = 0, (3.9)

wherefrom Eq. (3.8) follows [10]. The vacuum state is the
only pure state that is unpolarized according to this definition,
and unpolarized mixed states are maximally mixed in each
subspace S. Any two-mode thermal state is hence unpolarized.

IV. MENAGERIE OF UNPOLARIZED STATES

A. Single-photon unpolarized states

Single-photon states (S = 1/2) are fairly special: they can
only be first-order unpolarized. The multipole expansion of a
general single-photon state reads

�̂(1/2) = �
(1/2)
00 T̂

(1/2)
00 +

∑
q

�
(1/2)
1q T̂

(1/2)
1q . (4.1)

Since the state has only dipolar component, quantum and
classical descriptions coincide. Positivity constraints the pos-
sible values of the dipole to the range 0 � A(1/2)

1 � 1/2. The
condition A1/2

1 = 0 fixes at once unpolarized states; viz,

�
(1/2)
unpol,1 = 1

2

(
1 0
0 1

)
. (4.2)

These states are both classically and quantum unpolarized, but,
like all quantum objects, can only be considered as elements
of an ensemble [31].

B. Two-photon unpolarized states

For two-photon states, there are first-order (or classical)
and second-order (or quantum) unpolarized states. The general
condition for first-order unpolarization is

�̂
(1)
unpol,1 = �

(1)
00 T̂

(1)
00 +

∑
q

�
(1)
2q T̂

(1)
2q , (4.3)

with the extra constraint of positivity.

The case of axially symmetric states deserves special
attention as they can always be diagonalized via SU(2)
rotations; viz, ρ̂(1)

assym = R̂(α,β,γ ) �̂
(1)
d R̂†(α,β,γ ), with

�̂
(1)
d =

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠

= 1√
3
T̂

(1)
00 + λ1 − λ3√

2
T̂

(1)
10 + 1 − 3λ2√

6
T̂

(1)
20 . (4.4)

The state is first-order unpolarized when λ1 = λ3. Since
Tr(�̂d ) = 1, we can write

�̂
(1)
unpol,1 =

⎛
⎝λ 0 0

0 1 − 2λ 0
0 0 λ

⎞
⎠ , (4.5)

and positivity enforces 0 � λ � 1/2, i.e., 0 � A(1)
2 � 2/3.

Both the purity P (1) = Tr{[�̂(1)
d ]2} and the second-order degree

P(1)
2 depend on λ

P (1) = 6λ2 − 4λ + 1, P(1)
2 =

√
(3λ − 1)2, (4.6)

while P(1)
1 = 0 as anticipated. This can be recast as

P(1)
2 =

√
[3P (1) − 1]/2. (4.7)

In Fig. 1 we have plotted P(1)
2 as a function of the purity.

The maximum degree P(1)
2 is attained for the pure states

∣∣�(1)
unpol,1

〉 = 1√
2

sin β[eiα|1,1〉 − e−iα|1,−1〉] + cos β|1,0〉,

(4.8)

and they are the transformed of the state |1,0〉 under SU(2)
rotations R̂(α,β,γ ). Incidentally, these states have served as
the thread to experimentally verify the existence of hidden
polarization [32,33]. They coincide with the anticoherent states
introduced in Ref. [27] and worked out using the Majorana
representation [34,35]. Unfortunately, their nice geometric
properties cannot be extended to mixed states (4.5).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

2

FIG. 1. (Color online) Second-order degree of polarization as a
function of the purity, for the first-order unpolarized states (4.5).
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FIG. 2. (Color online) Q function for three-photon first-order
pure unpolarized states (4.13).

C. Three-photon unpolarized states

For three-photon states we have first- (classical), second-,
and third-order (quantum) unpolarized states.

The diagonalizable states can be brought to the form

�̂
(3/2)
d =

⎛
⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞
⎟⎠ = 1

2
T̂

(3/2)
00

−
(

2λ2 + 4λ3 + 6λ4 − 3

2
√

5

)
T̂

(3/2)
10

+
(

1

2
− λ2 − λ3

)
T̂

(3/2)
20

+
(−4λ2 + 2λ3 − 2λ4 + 1

2
√

5

)
T̂

(3/2)
30 . (4.9)

The condition for first-order unpolarization is

2λ2 + 4λ3 + 6λ4 − 3 = 0, (4.10)

and the dipole is absent. Now there are not axially symmetric
first-order unpolarized states, because when S is a half integer,
no state of the basis lacks first-order polarization.

The diagonal operator of a three-photon first-order unpo-
larized state reads

�̂
(3/2)
unpol,1

=

⎛
⎜⎝

λ3 + 2λ4 − 1/2 0 0 0
0 −2λ3 − 3λ4 + 3/2 0 0
0 0 λ3 0
0 0 0 λ4

⎞
⎟⎠ ,

(4.11)

and positivity translates into 0 � λ3 + 2λ4 − 1/2 � 1 and
0 � −2λ3 − 3λ4 + 3/2 � 1, 0 � λ3,λ4 � 1. The purity P is

P = 1
4 + 5

4 (2λ3 + 2λ4 − 1)2 + (λ3 + 3λ4 − 1)2. (4.12)

with the bounds 1/4 � P � 5/8.
We remark that by using the Majorana representa-

tion mentioned above, one can check that the SU(2)

FIG. 3. (Color online) Q function for axially symmetric
three-photon second-order unpolarized states with maximal purity.
In the left, we represent the state 3/4|3/2,1/2〉〈3/2,1/2| +
1/4|3/2,−3/2〉〈3/2,−3/2|, while in the right the state
1/3|3/2,3/2〉 〈3/2,3/2| + 1/2|3/2, −1/2〉〈3/2, −1/2| + 1/6|3/2,

−3/2〉〈3/2,−3/2| is plotted.

transformed of∣∣�(3/2)
unpol,1

〉 = 1√
2
|3/2,−3/2〉 + 1√

2
|3/2,3/2〉, (4.13)

are first-order unpolarized, although they do not fall in the class
of states defined by (4.11). To better appreciate these states,
one can work out the SU(2) Q function, which is defined
as [36,37]

Q(S)(θ,φ) = 〈θ,φ|�̂(S)|θ,φ〉, (4.14)

where |θ,φ〉 are SU(2) coherent states. In Fig. 2 we plot this
Q function for the state (4.13).

To get a second-order unpolarized state, we need the
additional condition: λ3 + 3λ4 − 1 = 0 and, the diagonal form
for these states is

�̂
(3/2)
unpol,2 =

⎛
⎜⎜⎝

1
2 − λ4 0 0 0

0 3λ4 − 1
2 0 0

0 0 1 − 3λ4 0
0 0 0 λ4

⎞
⎟⎟⎠ . (4.15)

The maximal purity of a second-order unpolarized axially
symmetric three-photon state is P = 7/18. In Fig. 3, we
represent the Q function for second-order unpolarized states
maximizing the purity.

V. CONCLUDING REMARKS

Multipolar expansions are a powerful machinery. We have
applied such an expansion to the polarization density matrix,
showing how the multipoles quantify higher-order fluctuations
in the Stokes variables. In this way, we have provided a
systematic characterization of unpolarized states as those
states whose multipoles up to a given order vanish.

The formalism can be extended to systems in which SU(2)
symmetry plays a crucial role (such as Bose-Einstein conden-
sates, spin chains, etc.) and to other unitary symmetries, such
as SU(3) (which is pivotal to understanding the polarization of
the near field).
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