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Superradiant phase transition in an atom-cavity system combined
with intracavity parametric down-conversion
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We study an atom-cavity system composed of an ensemble of three-level atoms interacting with a high-finesse
single-mode optical resonator. Two examples of physical models, the laser-driven �-type atomic system and the
three-level ladder-type atomic system, are investigated in detail. By altering the collective atom-cavity dynamics
via an intracavity optical parametric amplification process, a spin-boson model is realized when the composite
system operates in the far-detuning regime. When the number of atoms exceeds a critical value, the quantum
system undergoes a superradiant phase transition whose dependence on different experimentally adjustable
parameters is explored in detail. The effects of the spontaneous emission of atoms and the cavity loss on the
phase transition are considered, and measuring the cavity output field itself gives an experimental probe of the
superradiant phase transition.
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I. INTRODUCTION

Superradiant phase transitions have been of interest for
many years [1–5]. Captured in their simplest form by the
Dicke Hamiltonian [6], the phase transition occurs when the
coupling between a set of two-level atoms and an optical
mode is increased above a critical threshold; beyond this,
the optical mode becomes macroscopically populated and
a dramatic and collective change to the atoms’ electronic
states occurs [7,8]. In its original context, the Dicke model
has not been realized experimentally. However, an equivalent
quantum phase transition has been observed [9,10] in a system
involving a Bose-Einstein condensate (BEC) trapped inside a
high-finesse optical cavity transversely driven by an external
standing-wave pump laser [11–13]. When the pump power
exceeds a critical value, the BEC undergoes a transition to a
spatially self-organized phase.

Nevertheless, a practical realization of a Dicke phase
transition for real atoms in a cavity remains as a challenge:
it is impossible to realize the so-called counter-rotating terms
in the usual Dicke Hamiltonian [1], due to the fact that
the energy splitting between two involved atomic levels and
cavity-mode frequency dramatically exceed the atomic dipole
coupling strength [14]. Furthermore, in practice, unavoidable
atomic spontaneous emission and cavity loss irreversibly break
the unitary time evolution such that open-quantum-system
extensions to the Dicke model should be explored.

A promising route to the Dicke phase transition has been
proposed in Ref. [15], where a large number of laser-driven
three-level �-type atoms are strongly coupled to a high-
finesse cavity. By setting both driving-field and cavity-mode
frequencies far-off-resonant to their corresponding atomic
transitions, respectively, the influence of atomic spontaneous
emission can be sufficiently suppressed [16] and the energy
separation of two involved atomic levels in the traditional
Dicke model is significantly reduced to the energy splitting of
two ground-state hyperfine levels. Moreover, since the system
works in the strong-coupling regime, the optical resonator
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interacts with atoms for many times before the cavity loss
happens. Consequently, the effective atom-cavity interaction in
the usual Dicke model is strong enough that the phase transition
regime can be reached for the real atoms [17,18].

Along this promising route [15], we explore a more rich
composite system composed of an ensemble of laser-driven
three-level �-type atoms interacting with a single-mode opti-
cal resonator in Sec. II. We employ the nonlinear process of in-
tracavity laser-driven degenerate parametric down-conversion
to obtain an effective Dicke-like model in the far-detuned
regime of the atom-light field and atom-cavity interactions. We
find that a superradiant quantum phase transition occurs when
the number of atoms is larger than a critical value. The relation
of this phase transition to the nonlinear parametric oscillation
and other experimentally turnable parameters is discussed
in detail. We further study the dependence of the phase
transition on the unavoidable cavity dissipation and find
the superradiant phase transition is marked by a significant
amplification of the quadrature fluctuations of the cavity output
field around the critical point.

Our physical model provides an alternative approach to
access the Dicke-like model for real atoms in experiment,
which is of benefit to the experimental diversity, for example,
improving the adjustable freedoms of different physical
parameters. Besides, introducing the nonlinear optics into
the collective atom-cavity dynamics leads to interesting and
unpredictable results, which are very different from those
predicted in the traditional Dicke model [1] and an optical
cavity-quantum-electrodynamics system [15]. Some examples
of these results are the following. (i) For a nondissipative
system only the atomic excitation branch is valid in both nor-
mal and superradiant phases while both atomic and photonic
excitation branches are valid for a dissipative systems. (ii)
Enlarging the cavity loss rate can reduce the threshold of the
superradiant phase transition in the dissipative case.

In Sec. III, we further explore another atom-cavity compos-
ite system, where an ensemble of three-level ladder-type atoms
collectively interacting with a single-mode optical cavity,
combined with the intracavity parametric down-conversion.
We are motivated by the fact that the total transition strength
(rate) of a multiphoton process is proportional to the product
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of the transition strengths of different one-photon processes.
Due to the cavity mode simultaneously coupling two atomic
transitions, the collective atom-cavity interaction strength is
strongly enhanced by a factor of

√
N compared with that in

the �-type system, which results in a significant reduction
of the threshold of the phase transition. Like in Sec. II, both
nondissipative and dissipative cases are discussed in detail and
the spectroscopic properties of the output field are studied as
well in Sec. III.

Finally, we give our conclusions and summerize the
similarities and differences between those two physical models
in Sec. IV.

II. �-TYPE ATOMIC SYSTEM

In this section, we consider a composite atom-cavity
system, where the collective interaction between a large
number of three-level �-type atoms and a single-mode optical
cavity is modulated by an intracavity laser-driven nonlinear
parametric process. We first establish the physical model and
then investigate the possible superradiant phase transition in
an ideal system where no dissipation is involved. Finally,
we study the influence of the unavoidable cavity loss on
the phase transition from the spectrum of the cavity output
field.

A. Physical model

A one-dimensional chain of lattice-trapped three-level �-
type atoms is placed inside a high-finesse single-mode optical
resonator as shown in Fig. 1. All atoms are equally separated
and localized at the cavity standing-wave antinodes. An
external laser field at frequency ωc propagating perpendicular
to the atomic chain is applied to couple the one-photon
|1〉 − |3〉 transition (frequency ω3,1) with a Rabi frequency
� and a detuning �c = ωc − ω3,1. The single-mode cavity
at frequency ωl interacts with the other leg of the �-type
system, i.e., the atomic |2〉 − |3〉 transition (frequency ω3,2),
with a detuning �p = ωl − ω3,2. A nonlinear medium pumped
by an extra field is inserted inside the resonator so as to
introduce a degenerate parametric down-conversion [19], i.e.,
the medium converts a pump-field photon at frequency 2ωl

into a pair of identical intracavity photons at frequency ωl ,
into the atom-cavity dynamics.

To our best knowledge, this physical system was first
discussed in Ref. [20], where the external field used to pump
the nonlinear crystal was also treated as a cavity-field mode and
the optical bistability in the intracavity-field intensity versus
pumping intensity was predicted. In our system, the pump
field is considered to be a classical field in the parametric
approximation [21].

In the rotating-wave approximation (RWA) and under
phase-matching conditions, the Hamiltonian describing a
degenerate parametric amplification process and atoms si-
multaneously interacting with an external driving field and
a single-mode cavity is

Ĥ /� = �cĴ1,1 + �pĴ2,2 + β(â†â† + ââ)

+ �(Ĵ †
1,3 + Ĵ1,3) + g(Ĵ †

2,3â + â†Ĵ2,3), (1)

FIG. 1. (Color online) (a) Schematic of the composite atom-
cavity system. A bunch of atoms tightly confined in a one-dimensional
optical lattice are placed inside a single-mode optical resonator.
Each lattice site contains only one atom, which is localized at the
standing-wave antinode of the cavity mode. An external laser field
traveling in a perpendicular direction to the cavity axis is applied to
excite atoms. A nonlinear crystal driven by a classical pump field is
inserted inside the optical cavity so as to introduce the degenerate
parametric down-conversion process into the atom-cavity dynamics.
(b) A three-level �-type atomic system composed of |1,2,3〉 states.
The external laser field couples to the |1〉 − |3〉 transition with a Rabi
frequency � and detuning �c while the optical cavity interacts with
atoms via the |2〉 − |3〉 transition with a coupling strength of g and
detuning �p .

where the collective atomic operators Ĵμ,ν = ∑N
i=1(|μ〉〈ν|)i

(N is the number of atoms) obeying

[Ĵμ,ν,Ĵν ′,μ′] = δν,ν ′ Ĵμ,μ′ − δμ,μ′ Ĵν ′,ν (2)

and g is the atom-cavity coupling strength. â and â† are
the annihilation and creation operators for the cavity pho-
tons, respectively. The coupling constant β is proportional
to the second-order susceptibility tensor of the nonlinear
crystal and to the amplitude of the external pump field
[19]. Here we assume the far-detuned atom-light field and
atom-cavity interactions, |�c,p| � �,g. Hence, we can ignore
the effects of atoms inelastically scattering photons (the
atomic spontaneous emission) on the atom-cavity dynamics
[22,23]. The strength β is adjusted to be comparable with
the detunings �c,p. Here we assume both frequencies of the
driving field and the cavity mode are in the blue-detuned
side of their corresponding atomic transitions, respectively,
i.e., �c,p < 0.

By eliminating the upper state |3〉 via the Schrieffer-Wolff
transformation [24] and expanding to second order in terms of
�
�c

and g

�p
, the effective Hamiltonian describing the collective
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atom-cavity interaction is given by

Ĥ /� ≈
(

�c + �2

�c

)
Ĵ1,1 + β(â†â† + ââ)

+
[
�p + g2

�p

â†â − βg2

�2
p

(â†â† + ââ)

]
Ĵ2,2

+ gR

(
â† − 2β

�c + �p

â

)
Ĵ−√
N

+ gR

(
â − 2β

�c + �p

â†
)

Ĵ+√
N

, (3)

where we have defined the collective Raman-transition
strength [16]

gR =
√

Ng�

2�c�p

(�c + �p) (4)

and the collective spin operators Ĵ− = ∑
i(|2〉〈1|)i and Ĵ+ =∑

i(|1〉〈2|)i . Note that the atom-light field interaction causes
a light shift �2

�c
to the atomic |1〉 state while the atom-cavity

coupling and the parametric amplification process induce extra
ac Stark shifts g2

�p
â†â and − βg2

�2
p

(â†â† + ââ) to |2〉. The relative

energy splitting �R between the |1〉 and |2〉 states,

�R = δR + g2

4�p

(
2β

�p

− 1

)
(â† + â)2

− g2

4�p

(
2β

�p

+ 1

)
[i(â† − â)]2, (5)

can be enlarged or reduced by choosing the sign of β. Here we
have defined the Raman detuning

δR = �c − �p + �2

�c

+ g2

2�p

, (6)

which includes the ac Stark shifts induced by the atom-
light field and atom-single photon interactions. Moreover,
the collective counter-rotating terms (âĴ−, â†Ĵ+), which are
particularly important in the common Dicke model [1], are
presented in Hamiltonian (3) due to the nonlinear parametric
oscillation modulating the collective atom-cavity dynamics.
In addition, the relative strengths between the collective
counter-rotating terms (âĴ−, â†Ĵ+) and the collective rotating
terms (â†Ĵ−, âĴ+) can be adjusted by changing the coupling
constant β and the atom-light and atom-cavity detunings �c,p

in experiment. In the following, we assume β < 0 and one can
apply the same approach to analyze other cases.

There are three terms in Hamiltonian (3) that lead to
generation of photons in the cavity: (i) The gRâ†Ĵ− term
denotes one atom in the |1〉 state (spin up) transiting to the
|2〉 state (spin down) via a coherent Raman process with a
rate of gR . (ii) The parametric down-conversion denoted by
βâ†â† produces a pair of intracavity photons at a rate of β.
(iii) The term gR

2β

�c+�p
â†Ĵ+, also due to the parametric down-

conversion, indicates one atom in the |2〉 state transits to the
|1〉 state via absorbing one of two generated photons with the
other photon being left inside the cavity. Hamiltonian evolution
must be reversible. Thus, there are also conjugate terms to

processes (i)–(iii), which result in the annihilation of photons
in the cavity but through the exchange mechanism. We should
note that processes (ii) and (iii) strongly depend on each other
as they are both a function of β. When |β| > 1

2 |�c + �p|,
processes (ii) and (iii) tend to dominate over process (i). Thus,
in this limit, the primary contribution to excitation in the cavity
is due to the parametric down-conversion.

B. Superradiant phase transition in a nondissipative system

We now demonstrate that this composite system can display
a superradiant phase transition by examining the ground state
of a mean-field description of the system when there is no
loss of photons from the cavity. We investigate the dependence
of the ground state and excitation spectrum of the system
on different experimentally adjustable parameters. We write
Hamiltonian (3) in the compact form (the spin-boson model)

Ĥ /� = δRĴz + �p

(
β

2�p

+ μ(β)

4

Ĵz

N

)
(â† + â)2

+�p

(
−β

2�p

+ μ(−β)

4

Ĵz

N

)
[i(â† − â)]2

+�p

ν(β)

2
(â† + â)

Ĵ+ + Ĵ−√
N

+�p

ν(−β)

2
[i(â† − â)]

i(Ĵ+ − Ĵ−)√
N

, (7)

where Ĵz = 1
2 (Ĵ1,1 − Ĵ2,2) is the z component of the total pseu-

dospin of length N
2 . One can confirm the angular momentum

commutation relations

[Ĵ+,Ĵ−] = 2Ĵz, [Ĵ±,Ĵz] = ∓Ĵ±.

The function μ(±β) = Ng2

�2
p

(± 2β

�p
− 1), which is propor-

tional to the atomic number N , is related to the extra light
shift induced by the optical parametric process [see Eq. (5)],
while the function ν(±β) = gR

�p
(1 ∓ 2β

�c+�p
) scaled with

√
N

denotes the strength of the Raman transition between |1〉 and
|2〉. Increasing the system size N adjusts the light shifts and
enhances the collective atom-cavity interaction.

1. Ground state

In order to determine the ground state of the atom-cavity
system, we transform the Hamiltonian Ĥ into the Holstein-
Primakoff representation [25]. We make the following replace-
ments:

Ĵ− =
√

N − b̂†b̂b̂, Ĵ+ = b̂†
√

N − b̂†b̂,

Ĵz = b̂†b̂ − N/2,

where b̂ and b̂† satisfy the bosonic commutation relation
[b̂,b̂†] = 1 and 0 � b̂†b̂ � N .

We also introduce two macroscopic displacements to
both bosonic modes â and b̂. The displacement operators
D̂(

√
NA) = e

√
N(Aâ†−A∗â) and D̂(

√
NB) = e

√
N(Bb̂†−B∗b̂) are

043824-3



DESHUI YU AND SAM GENWAY PHYSICAL REVIEW A 90, 043824 (2014)

applied to the Hamiltonian as follows:

Ĥ = D̂†(
√

NB)D̂†(
√

NA)Ĥ D̂(
√

NA)D̂(
√

NB). (8)

Finally, in the limit of the large atomic number (here we assume
reasonably that N is larger than 102) the displaced Hamiltonian
Ĥ can be approximated by the expansion to second order in
the boson operators [26], e.g.,

√
N − (b̂+ +

√
NB∗)(b̂ +

√
NB)

≈
√

N (1 − B∗B)

[
1 − b̂†b̂

2N (1 − B∗B)

− (B∗b̂ + Bb̂†)

2
√

N (1 − B∗B)
− (B∗b̂ + Bb̂†)2

8N (1 − B∗B)2

]
, (9)

and one obtains Ĥ ≈ E0 + Ĥ1 + Ĥ2, where

E0/(N�) = δRnb + 2β
(
X2

A − Y 2
A

)
+ 2�p [ν(β)XAXB + ν(−β)YAYB]

√
1 − nb

+ �p

[
μ(β)X2

A − μ(−β)Y 2
A

]
(nb − 1/2) (10)

is the classical ground-state energy. Ĥ1 and Ĥ2 are linear and
quadratic with regard to bosonic operators, respectively. Here
we have defined XA = (A∗ + A)/2, YA = i(A∗ − A)/2, XB =
(B∗ + B)/2, YB = i(B∗ − B)/2, and the mean-field photon
and excited-atom numbers na ≡ A∗A = X2

A + Y 2
A and nb ≡

B∗B = X2
B + Y 2

B .
We can find the mean-field solution to our system by

choosing variables A and B such that the linear displacement
Hamiltonian Ĥ1 = 0. Using this technique, we find A and B

must satisfy

δR

�p

XB + [
μ(β)X2

A + μ(−β)Y 2
A

]
XB − ν(−β)

XBYAYB√
1 − nb

+ ν(β)XA

(√
1 − nb − X2

B√
1 − nb

)
= 0, (11)

δR

�p

YB + [
μ(β)X2

A + μ(−β)Y 2
A

]
YB − ν(β)

XAXBYB√
1 − nb

+ ν(−β)YA

(√
1 − nb − Y 2

B√
1 − nb

)
= 0, (12)

[
2β

�p

− μ(β)

2
(1 − 2nb)

]
XA

XB

+ ν(β)
√

1 − nb = 0, (13)

[
2β

�p

+ μ(−β)

2
(1 − 2nb)

]
YA

YB

− ν(−β)
√

1 − nb = 0. (14)

It is easy to verify the trivial solution E0 = A = B = 0, which
denotes all atoms are in the spin-down state |2〉 and no photons
exist inside the cavity, always satisfies Eqs. (12)–(14). We
call this trivial solution the “normal” phase of the quantum
system, as there is no macroscopic occupation of either bosonic
mode.

By solving Eqs. (12)–(14) we obtain the nontrivial ground-
state solution,

XA = XB = 0, (15)

nb = W−
μ(−β)

[
1 −

√
1 − μ(−β)

W−

(
1 − δR

�p

W+
Q

)]
, (16)

na = ν2(−β)

[W− + μ(−β)nb]2 nb (1 − nb) , (17)

and the ground-state energy,

E0/(N�) = δRnb − 2βY 2
A + 2�pν(−β)YAYB

√
1 − nb

− �pμ(−β)Y 2
A (nb − 1/2) , (18)

where W± = μ(−β)
2 ± −2β

�p
and Q = ν2(−β) + δR

�p
μ(−β). We

find that when δR

�p
> 0 (the negative Raman detuning) and

Q > W+ the average population nb is real and 0 < nb � 1 and
furthermore the ground energy E0 becomes negative, which
means a phase transition occurs in the atom-cavity system.
Neither � nor g can be adjusted over a wide range given a
fixed pair of �c,p, as we have assumed the far-detuned atom-
light field and atom-cavity interactions. Instead, here we adjust
the collective atom-cavity interaction by changing the system
size N .

Figure 2(a) displays the average mean-field occupations
na,b as a function of the system size N , where the system
is in the normal state na,b = 0 for the atomic number N

smaller than a critical value Nc while na,b �= 0 for N > Nc.
Meanwhile, the corresponding energy of the ground state E0

becomes negative [see Fig. 2(b)], which denotes the quantum
system transiting to a new phase, i.e., the superradiant phase.
By examining the derivatives of E0 around Nc, we find that the
first derivative is continuous [see Fig. 2(c)] while the second
derivative possesses a discontinuity at Nc [see Fig. 2(d)], which
indicates a second-order phase transition.

For a small number of atoms, the relatively large Raman
detuning δR �= 0 suppresses the coherent Raman transition
from |2〉 to |1〉, which provides a high threshold for the
degenerate parametric oscillation. Thus, all atoms are in the
spin-down state (|2〉) and no photons exist inside cavity. As N

is increased, the collective Raman transition strength (∝ gR =√
N�g

(�p+�c)
�p�c

) is dramatically enhanced and overcomes
the suppression of nonzero Raman detuning when N > Nc.
Consequently, a coherent atom-cavity dynamics is established
and na,b > 0. In order to maintain the collective Raman
transition between |1〉 and |2〉, an intense intracavity field is
required around the critical point.

When N is further increased, the behavior of the interacav-
ity field is different from that in the usual Dicke model [1],
i.e., na goes down while nb is gradually saturated as shown in
Fig. 2. We make the following three observations to explain
why this is the case. (i) As more atoms are populated in the |1〉
state the Raman transition from |2〉 to |1〉 is reduced, which
ceases the amplification of the intracavity field. (ii) The larger
N further amplifies the atom-cavity coupling, which means
the collective Raman transition can be maintained without
necessarily needing a strong intracavity field. (iii) In Eq. (17)
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FIG. 2. (Color online) (a) nb (solid line) and na (dashed line) as a function of the system size N with � = 10g, �c = −200g, �p = −100g,
and β = 2�p . (b) The corresponding ground-state energy E0. When N is larger than the critical atomic number Nc = 1.62 × 104, E0 becomes
negative. The first and second derivatives of the ground-state energy with respect to N around Nc are displayed in panels (c) and (d), respectively.
Here we have defined E ≡ E0

N�|�p | .

the numerator is proportional to N while the denominator
scales with N2. Therefore, further enlarging the system size
results in the decrease of the intracavity photons na .

Besides N , the intracavity field strongly depends on the
Raman detuning δR . As shown in Figs. 3(a) and 3(b), making
δR more negative dramatically increases the occupation of
cavity mode, especially around the critical point, though δR

rarely affects nb. For a system in the superradiant phase, more
intracavity photons are required to overcome the suppression
of the collective Raman transition from the larger negative δR .
Moreover, around the critical system size Nc the number of
intracavity photons na can much exceed that of atoms in the
spin-up state nb by increasing δR more negatively.

From Eq. (17) one finds that the critical number Nc of atoms
is determined by the following equation

δR

�p

[
2β

�p

+ μ(−β)

2

]
+ ν2(−β) = 0. (19)

Figure 3(c) displays the dependence of Nc on the Raman
detuning δR and the coupling strength β. For a fixed β, Nc

can be only affected by a small δR around the resonance
Raman transition. For a large negative δR , Eq. (19) can be
approximately simplified as

Nc ≈ 2�2
p

g2

2β

2β + �p

. (20)

Reducing |�p| and enlarging g as much as possible can be
used to reduce Nc. Another option is to make |β| smaller than
|�p|. However, the derivation for our effective Hamiltonian
(3) breaks down as we previously assumed that |β| is the same
order or larger than |�p|.

2. Excitation spectrum

We have recognized a second-order phase transition in
our mean-field analysis. The next logical question to ask is
the following: What continuous symmetry in our system is
spontaneously broken? We can determine this by looking at
the low-excitation spectrum of the system. One can find this
specturm by diagonalizing the bilinear Hamiltonian Ĥ2, which
can be expressed in a general form,

Ĥ2/� = u+(â† + â)2 + v+(b̂† + b̂)2 + u−[i(â† − â)]2

+ v−[i(b̂† − b̂)]2 + λ+(â† + â)(b̂† + b̂)

+ λ−[i(â† − â)][i(b̂† − b̂)], (21)

where for brevity we have defined u+ = �p

4 [ 2β

�p
−

μ(β)
2 (1 − 2nb)], u− = �p

4 [− 2β

�p
− μ(−β)

2 (1 − 2nb)], v+ =
�p

4 [ δR

�p
+ μ(−β)na − ν(−β) YAYB√

1−nb
], v− = �p

4 [ δR

�p
+

μ(−β)na − ν(−β) (3−2nb)YAYB

(1−nb)3/2 ], λ+ = �p

2 ν(β)
√

1 − nb, and

λ− = �p[μ(−β)YAYB + ν(−β)
2

1−2nb√
1−nb

].
Following the same approach in Ref. [27], one finds the

following Bogoliubov transformation for the new bosonic
operators êa,p,

êa,p = h1â
† + h2â + h3b̂

† + h4b̂, (22)

where the parameters are defined as

h1 =
(√

εa,p

8u−
f− −

√
2u−
εa,p

1

f−

)
cos φ

+
(

−
√

εa,p

8u−
f+ +

√
2u−
εa,p

1

f+

)
sin φ, (23)

h2 =
(√

εa,p

8u−
f− +

√
2u−
εa,p

1

f−

)
cos φ

+
(

−
√

εa,p

8u−
f+ −

√
2u−
εa,p

1

f+

)
sin φ, (24)

h3 =
(

−
√

εa,p

8v−
f− +

√
2v−
εa,p

1

f−

)
cos φ

+
(

−
√

εa,p

8v−
f+ +

√
2v−
εa,p

1

f+

)
sin φ, (25)

h4 =
(

−
√

εa,p

8v−
f− −

√
2v−
εa,p

1

f−

)
cos φ

+
(

−
√

εa,p

8v−
f+ −

√
2v−
εa,p

1

f+

)
sin φ, (26)

and the excitation energies of two independent oscillator
modes are given by

εa,p = (U + V ) ±
√

(U − V )2 + L2, (27)
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FIG. 3. (Color online) (a) and (b): The average numbers of two
kinds of bosons, i.e., na and nb, as a function of the number N of
atoms and the Raman detuning δR with β = 2�p . (c) The critical
atomic number Nc as a function of the strength β of the parametric
down-conversion and different Raman detuning δR . For all figures,
� = 10g and �p = −100g. δR is adjusted by changing the detuning
�c.

where we have written U = 4
f 2−

(u+u− + v+v− − λ+
√

u−v−),

V = 4
f 2+

(u+u− + v+v− + λ+
√

u−v−), L = 8
f+f−

(u+u− −
v+v−), tan φ = − L

U−V
, and f± = ( 1

2 ± λ−
2
√

u−v−
)−1/2. The

bilinear Hamiltonian Ĥ2 is finally expressed as

Ĥ2/� = εaê
†
aêa + εpê†pêp. (28)
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0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

104 N

∋ a
p

FIG. 4. (Color online) Excitation energy εa corresponding to
Fig. 2 as a function of the system size N .

Figure 4 displays the numerical results of excitation
energies. When N < Nc only the “atomic” branch εa , which
starts from |δR|, is valid, while εp is an imaginary number.
This is because in the normal state A = B = 0 the quadratic
term β(â†â† + ââ) in Hamiltonian (3) cannot be diagonalized
via the Bogoliubov transformation, which leads to the absence
of the “photonic” branch εp. After the critical point N > Nc,
εa goes up rapidly and εp is still invalid.

The global parity operator associated with Hamiltonian (7)
is given by �̂ = exp(iπ�̂), where

�̂ = â†â + Ĵz + N (29)

counts the total number of excitation quanta [28], and it is easy
to verify the commutation relation

[Ĥ ,�̂] = 0, (30)

which means a conserved parity. In the Holstein-Primakoff
representation the parity operator �̂ becomes

�̂ = exp[iπ (â†â + b̂†b̂)]. (31)

After doing the replacements â → A + â and b̂ → B + b̂ we
obtain

�̂ = exp[iπ (â†â + b̂†b̂ + Aâ† + A∗â + Bb̂†

+ B∗b̂ + Nna + Nnb)].

In the normal state na = nb = 0, Ĥ2 is reduced back to
Hamiltonian (7), for which the global parity is conserved.
However, when N > Nc, Ĥ2 does not commute with �̂ due to
A �= 0 and B �= 0, which denotes the symmetry of the ground
state becomes spontaneously broken at Nc [10]. For the Dicke
superradiant phase, one can define the local parity operator as

�̂2 = exp[iπ (ê+
a êa + ê+

p êp)], (32)

which obviously commutes with Ĥ2.

C. Dissipative atom-cavity system

So far, we have only discussed an ideal atom-cavity system
without any dissipation. However, the energy loss due to the
atomic spontaneous emission and cavity loss occurs on a
time scale that is relevant to the coherent dynamics in real
experiments. Thus, studying the influence of the dissipation
on the system dynamics is essential.
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In our system, the inelastic photon scattering (the spon-
taneous emission of atoms) rarely contributes to the energy
loss due to the far-detuned atom-light field and atom-cavity
interactions [15]. Here we consider the relatively larger
dissipative mechanism, the cavity loss, by employing the
quantum Langevin method [29]. Following the same approach
in Refs. [30–33], the Heisenberg-Langevin equations for the
photon and collective atomic operators are written as

d

dt
x̂a(t) = −κ

2
x̂a(t) + �p

[
− 2β

�p

+ μ(−β)ĵz(t)

]
ŷa(t)

−�pν(−β)ĵy(t) + f̂κ,x(t), (33)

d

dt
ŷa(t) = −κ

2
ŷa(t) − �p

[
2β

�p

+ μ(β)ĵz(t)

]
x̂a(t)

−�pν(−β)ĵx(t) + f̂κ,y(t), (34)

d

dt
ĵx(t) = −δRĵy(t) − �p

[
μ(β)x̂2

a (t) + μ(−β)ŷ2
a (t)

]
ĵy(t)

−2�pν(−β)ŷa(t)ĵz(t), (35)

d

dt
ĵy(t) = δRĵx(t) + �p

[
μ(β)x̂2

a (t) + μ(−β)ŷ2
a (t)

]
ĵx(t)

−2�pν(β)x̂a(t)ĵz(t), (36)

d

dt
ĵz(t) = 2�pν(β)x̂a(t)ĵy(t) + 2�pν(−β)ŷa(t)ĵx(t), (37)

where we have defined the operator variables

x̂a(t) ≡ [â+(t) + â(t)]

2
√

N
, ŷa(t) ≡ i[â+(t) − â(t)]

2
√

N
,

ĵx(t) ≡ [Ĵ+(t) + Ĵ−(t)]

2N
, ĵy(t) ≡ i[Ĵ+(t) − Ĵ−(t)]

2N
,

ĵz(t) ≡ Ĵz(t)

N
.

κ is the loss rate of intracavity photons. The operators

f̂κ,x(t) = [f̂ †(t) + f̂ (t)]

2
√

N
and f̂κ,y(t) = i[f̂ †(t) − f̂ (t)]

2
√

N

describe the quantum noises injected at the cavity output mir-
ror. The Langevin noise force f̂ (t) satisfies the commutation
relation

[f̂ (t),f̂ †(t ′)] = κδ(t − t ′) (38)

and correlation functions [31]

〈f̂ (t)〉 = 〈f̂ †(t)〉 = 〈f̂ †(t)f̂ (t ′)〉 = 0,

〈f̂ (t)f̂ †(t ′)〉 = κδ(t − t ′),

where we have assumed that the thermal reservoir is at zero
temperature. Thus, the mean number of quanta in the thermal
reservior is zero, nth = 0. In addition, according to the input-
output theory in Ref. [34], the operators for the cavity output

field are given by

âout(t) = √
κâ(t) − f̂ (t)√

κ
, â

†
out(t) = √

κâ†(t) − f̂ †(t)√
κ

,

from which one can study the different output-field spectra.
Finally, we should note that the above dynamic equations must
conserve the pseudoangular momentum

ĵ 2
x + ĵ 2

y + ĵ 2
z = 1

4 . (39)

1. Steady-state solution

By taking the quantum average of each operator variable
(O(t) = 〈Ô(t)〉) in the Heisenberg-Langevin equations (34)–
(37) and neglecting the quantum fluctuations

〈Ô1(t)Ô2(t)〉 ≈ 〈Ô1(t)〉〈Ô2(t)〉, (40)

one can obtain a set of semiclassical equations of motion.
For a dissipative system, we are interested in the atom-cavity
dynamics on a time scale much longer than the cavity photon
lifetime κ−1. In this case, we can set d

dt
O(t) = 0 and consider

the steady-state solutions, which are denoted by the subscript
“o”, for example, Oo, of the system. We find the steady states
of the composite system by numerically solving the derived
semiclassical equations.

Figure 5 displays the average macroscopic occupations
of both cavity field (na = x2

a,o + y2
a,o) and atomic excitation

(nb = jz,o + 1
2 ) changing with the system size N for several

different κ . The behaviors of both na and nb are different
from those in the normal dissipative Dicke model [15] in the
following two aspects: (i) enlarging the cavity loss rate raises
the numbers of both intracavity photons and atoms in |1〉, and
(ii) the critical atomic number Nc, at which the superradiant
phase transition occurs, moves to a lower value for a larger κ .

Without the cavity loss the intracavity photons can be
produced via a combination of degenerate optical parametric
oscillation and a coherent Raman transition. After the cavity
loss is introduced into the system dynamics, the intracavity
photons have a third option, i.e., leaving the resonator
through the output mirror. (i) For the system operating in
the superradiant phase, more intracavity photons must be
generated via the nonlinear optical process so as to maintain
the strong collective atom-cavity interaction. This is because a
portion of generated photons escape from the optical cavity. In

κ
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FIG. 5. (Color online) The average numbers of two kinds of
bosons na and nb as a function of the number of atoms N for
the dissipative atom-cavity system with � = 10g, �c = −200g,
�p = −100g, and β = 2�p .
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FIG. 6. The critical atomic number Nc as a function of the cavity
loss rate κ for several different β. For all curves, � = 10g, �c =
−200g, and �p = −100g.

return, the more photons profit from the atoms in |2〉 transiting
to |1〉. As κ is increased, this reciprocal effect is strongly
amplified and results in a stronger intracavity field and larger
inversion of pseudospins than the case of κ = 0. (ii) For the
composite system in the normal phase, the relative large Raman
detuning δR suppresses the Raman transition from |2〉 to |1〉,
thereby impeding the generation of intracavity photons via the
degenerate parametric down-conversion. When the cavity loss
rate is turned to be large enough, a photon generated via the
parametric down-conversion rapidly leaves the cavity without
interacting with atoms. Consequently, for a certain atomic
number N , at which the nondissipative system stays in the
normal phase, a dissipative system may be in the superradiant
phase for a large enough κ . Thus, the critical point Nc is
reduced as κ is increased.

From Eqs. (34)–(37) we find that Nc can be derived from
the following equation:

(
κ/2

�p

δR

�p

)2

+
[

δR

�p

(
2β

�p

− μ(β)

2

)
− ν2(β)

]

×
[

δR

�p

(
− 2β

�p

− μ(−β)

2

)
− ν2(−β)

]
= 0. (41)

Figure 6 shows the dependence of Nc on β and κ . For a fixed
β, Nc goes down to zero as κ is increased, which means the
critical point for the superradiant phase transition vanishes for
a large cavity loss rate. However, for Nc → 0, Eq. (41) is no
longer valid since it is derived by neglecting fluctuations in the
thermodynamics limit N → ∞. As Nc approaches zero, the
quantum fluctuations dramatically influence the atom-cavity
dynamics and its effect cannot be neglected.

2. Stability

We arrive at an important question: Are the steady states
derived in the last subsection stable for any system size N?
The stability of a steady state can be analyzed by performing
linear stability analysis [35]. First, we consider all the operator
variables as the sum of the steady-state solution and a small
fluctuating term,

Ô(t) = Oo + δÔ(t). (42)

Based on Eqs. (34)–(37), this results in the following linear
differential equations:

d

dt
δx̂a(t) = −�pν(−β)δĵy(t) + �pμ(−β)ya,oδĵz(t)

+ [−2β + �pμ(−β)jz,o]δŷa(t)

− κ

2
δx̂a(t) + f̂κ,x(t), (43)

d

dt
δŷa(t) = −�pν(β)δĵx(t) − �pμ(β)xa,oδĵz(t)

− [2β + �pμ(β)jz,o]δx̂a(t) − κ

2
δŷa(t) + f̂κ,y(t),

(44)

d

dt
δĵx(t) = −�p

(
δR

�p

+ μ(β)x2
a,o + μ(−β)y2

a,o

)
δĵy(t)

− 2�p[μ(−β)jy,oya,o + ν(−β)jz,o]δŷa(t)

− 2�pμ(β)jy,oxa,oδx̂a(t)−2�pν(−β)ya,oδĵz(t),

(45)

d

dt
δĵy(t) = �p

(
δR

�p

+ μ(β)x2
a,o + μ(−β)y2

a,o

)
δĵx(t)

+ 2�p[μ(β)jx,oxa,o − ν(β)jz,o]δx̂a(t)

+ 2�pμ(−β)jx,oya,oδŷa(t) − 2�pν(β)xa,oδĵz(t)

(46)

d

dt
δĵz(t) = 2�pν(−β)ya,oδĵx(t) + 2�pν(β)xa,oδĵy(t)

+ 2�pν(β)jy,oδx̂a(t) + 2�pν(−β)jx,oδŷa(t).

(47)

By solving the linear differential equations (43)–(47), we
can check the steady-state stability and also investigate the
quantum fluctuations around them. The fluctuation operators
for the output field are expressed as

δâout(t) = √
κδâ(t) − f̂ (t)/

√
κ, (48)

δâ
†
out(t) = √

κδâ†(t) − f̂ †(t)/
√

κ, (49)

The noise of the cavity output field originates from the
intracavity-field fluctuation and the quantum noise injected
at the cavity mirror.

The linear equations (43)–(47) can be written in a matrix
form,

d

dt
v̂(t) = Mv̂(t) + f̂(t), (50)

where M is a constant square matrix and

v̂(t) ≡ (δx̂a(t),δŷa(t),δĵx(t),δĵy(t),δĵz(t))T ,

f̂(t) ≡ (f̂κ,x(t),f̂κ,y(t),0,0,0)T .

One obtains five eigenvalues by diagonalizing the matrix M.
One of them is always zero because of the interdependence of
δĵx,y,z(t), i.e.,

jx,oδĵx(t) + jy,oδĵy(t) + jz,oδĵz(t) = 0. (51)
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FIG. 7. (Color online) Imaginary and real parts of the atomic (ε±
a ) and photonic (ε±

p ) branch eigenvalues (in units of |�p|) as a function
of the atomic number N . For all curves, �c = −200g, �p = −100g, � = 10g, and κ = 50g. The critical atomic number for the superradiant
phase transition is Nc ≈ 1.61 × 104.

The other four eigenvalues group into two pairs: one pair
ε±
a associated with the atomic branch and the other pair ε±

p

associated with the photonic branch according to the values
in the limit of N → 0. The imaginary parts Im(ε±

a,p) give the
different excitation-energy shifts while the real parts Re(ε±

a,p)
denote the corresponding damping rates. A stable steady-state
solution requires all eigenvalues have negative real parts. It can
be checked that when the cavity loss rate κ approaches zero the
solution for the dissipative system reduces to the mean-field
description of the nondissipative system.

The dependence of two branch eigenvalues on the system
size is presented in Fig. 7. For N < Nc the photonic branch
eigenvalues have zero imaginary parts Im(ε±

p ) = 0 but negative
real parts Re(ε±

p ) < 0. Due to Im(ε±
p ) = 0 there is no photonic

excitation in the system. Hence the system is in the normal
phase, which is stable. For an initial condition of nonzero
photons inside an optical resonator, the intracavity field rapidly
decays to zero. In contrast, the atomic branch excitations have
a very weak damping rate and nonzero excitation energies
Im(ε±

a ) = ±|δR|. For N > Nc, the photonic branch excitations
are strongly shifted to positive and negative sides, respectively,
i.e., Im(ε+

p ) > 0 and Im(ε−
p ) < 0, while both atomic branch

excitations approach zero, Im(ε±
a ) → 0. Moreover, the decay

rates of both Re(ε±
p ) are equal to −κ/2 and Re(ε±

a ) still stay at a
very small value. Thus, the energy dissipation of the system in
the superradiant phase is primarily from the decay of photonic
branch excitations.

3. Spectra of the cavity output field

The light leaking from the cavity can be measured to gain
information about the experiment nondestructively [36]. We
investigate the influence of the phase transition in the system
on the output-field spectra. It is convenient to convert the linear
differential equations (43)–(47) from the time domain to the
frequency domain via a Fourier transform:

δÔ(ω) = 1√
2π

∫ ∞

∞
δÔ(t)eiωtdt, (52)

δÔ†(−ω) = 1√
2π

∫ ∞

∞
δÔ†(t)e−iωtdt. (53)

Here, we use the following notation convention: the variable on
which a function depends indicates what domain it is in, e.g.,
δÔ(t) indicates the quantum fluctuation in the time domain
while δÔ(ω) is in the frequency domain. In addition, the
correlation functions associated with the Langevin noise force

f̂ (ω) are given by

〈f̂ (ω)〉 = 〈f̂ †(ω)〉 = 〈f̂ †(−ω)f̂ (ω′)〉 = 0,

〈f̂ (ω)f̂ †(−ω′)〉 = κδ(ω + ω′),

at the zero temperature.
Generally, the normalized spectrum of fluctuations corre-

sponding to an output-field quadrature,

X̂θ (t) = 1
2 [âout(t)e

−iθ + â
†
out(t)e

iθ ], (54)

is defined as [31,33]

Sθ (ω) =
∫ +∞

−∞
〈X̂θ (t + τ ),X̂θ (t)〉eiωτ dτ, (55)

where 〈X̂,Ŷ 〉 = 〈X̂Ŷ 〉 − 〈X̂〉〈Ŷ 〉. The spectrum corresponds to
a homodyne measurement of the field quadrature component at
the angle θ . For θ = 0 we obtain the spectrum of the amplitude
fluctuations, while Sθ= π

2
(ω) gives us the spectrum of the phase

fluctuations of the output field. From Eqs. (48) and (49) we
find that Sθ (ω) is composed of three parts: the intracavity-field
fluctuations, the interaction of field inside the cavity with the
vacuum reservoir, and the vacuum fluctuation. In this system
the shot-noise limit is Sθ (ω) = 1

4 . In Fig. 8, we show two
sample spectra for θ = 0 and θ = π

2 .
For a system size much smaller than Nc, both Sθ=0(ω)

and Sθ= π
2
(ω) display a spike doublet associated with the

atomic branch eigenvalues ε±
a , whose real and imaginary

parts determine the widths and positions of two spectral
peaks. Additionally, the vacuum noise primarily limits the
quadrature spectra at all frequencies except around the atomic
branch resonances ω � Re(ε±

a ), where Sθ=0(ω) is lower than
the shot-noise level while the fluctuations are amplified for
Sθ= π

2
(ω).

As the system size N approaches Nc, the positions of atomic
branch peaks do not change but their widths are broadened.
Moreover, another broad peak at ω = 0 appears. This spectral
peak grows rapidly and becomes very sharp as N → Nc.
Above the critical point Nc, the height of the central peak
decreases dramatically. Thus, the superradiant phase transition
is characterized by a divergence of the quadrature spectra
at ω = 0. In the same regime, the atomic branch doublet
becomes very small and their separation is strongly reduced.
Meanwhile, a new pair of peaks associated with the photonic
branch eigenvalues ε±

p appears as shown in Fig. 7. Last, we
note that subshot noise squeezing can be seen in the spectrum.
Around ω � Re(ε±

p ) we find Sθ=0(ω) becomes squeezed while
the conjugate field Sθ= π

2
(ω) goes above the shot-noise limit.
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FIG. 8. (Color online) (a) Spectrum of the output-field amplitude
fluctuations Sθ=0(ω) as a function of ω for different system sizes N .
The corresponding phase noise spectrum is shown in panel (b). For
all curves, the system parameters are the same as those in Fig. 7.
The critical atomic number for the superradiant phase transition is
Nc ≈ 1.61 × 104.

Once the system is well above the critical point, the central
peak returns to the shot-noise level. Sθ=0(ω) at the photonic
branch resonances changes from having fluctuations that are
squeezed to above the shot noise while Sθ= π

2
(ω) undergoes

the opposite, i.e., from above the shot noise to the squeezed
fluctuations. In addition, the separation between two photonic
branch peaks continues to increase.

III. LADDER-TYPE ATOMIC SYSTEM

So far, we have discussed the superradiant phase transition
in a composite system consisting of a large number of laser-
driven three-level �-type atoms interacting with a single-mode
optical resonator. As discussed in the previous section, the
extra intracavity nonlinear parametric oscillation plays an
important role in the collective atom-cavity dynamics since
it leads to a spin-boson Dicke-like model where the counter-
rotating terms of the atom-cavity interactions are presented
[see Eq. (7)]. As a consequence, the superradiant phase
transition occurs when the system size is larger than a critical
value Nc.

In this section, we explore further another type of com-
posite system combined with a degenerate parametric down-
conversion process, where an ensemble of ladder-type atoms
collectively interact with a single-mode optical resonator. We
are motivated by the stronger atom-cavity interaction strength

FIG. 9. (Color online) The level structure of three-level ladder-
type atom. The single-cavity mode denoted by the photon annihilation
and creation operators

(
â,â†) simultaneously couples both atomic

transitions |1〉 − |2〉 (frequency ω21) and |2〉 − |3〉 (frequency ω31)
with the corresponding detunings �c = ωl − ω21 and �p = ωl −
ω32, respectively. The atom-cavity coupling strengths corresponding
to respective atomic transitions are given by g1 and g2.

compared with the �-type system. As we see below, since
the two-photon Raman transition of a ladder-type atom can
consume a pair of intracavity photons simultaneously, the
collective atom-cavity coupling strength is enhanced by a
factor of

√
N compared with that in the �-type system, which

results in a significant reduction of the critical system size Nc

for the superradiant phase transition. Like the previous section,
both nondissipative and dissipative cases are discussed in detail
and the spectroscopic properties of the output field are studied
as well.

A. Physical model

The schematic diagram of the physical setup is the same as
that in Fig. 1(a) except the intracavity particles are replaced
by the three-level ladder-type atoms. As shown in Fig. 9, the
ladder-type atomic system is composed of |1,2,3〉 states, where
two single-photon transitions |1〉 − |2〉 (frequency ω21) and
|2〉 − |3〉 (frequency ω32) are coupled simultaneously to the
single-mode cavity [photon operators (a,a†) and frequency
ωl] with respective detunings �c = ωl − ω21 and �p = ωl −
ω32. The corresponding atom-cavity interaction strengths are,
respectively, given by g1 and g2.

In the RWA, the Hamiltonian describing the coherent atom-
cavity interaction can be expressed as

Ĥ /� = �cĴ1,1 − �pĴ3,3 + β(â†â† + ââ)

+ g1(â†Ĵ1,2 + Ĵ
†
1,2â) + g2(â†Ĵ2,3 + Ĵ

†
2,3â)

in the interaction representation. The collective atomic opera-
tors Ĵμ,ν have been defined in the previous section. The third
term on the right side of the equal sign denotes the nonlinear
optical parametric oscillation in the parametric approximation
[21].

Here we assume that the optical cavity far-off-resonantly
interacts with both atomic transitions, i.e., �c � g1 and
�p � g2, for which one can adiabatically eliminate the
dynamics associated with the |2〉 state via the Schrieffer-
Wolff transformation and obtain the effective Hamiltonian
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(the spin-boson model)

Ĥ /� ≈ −δRĴz + gR

(
Ĵ+
N

aa + a†a† Ĵ−
N

)

+
(

ω2,x − ω1,x

Ĵz

N

)
(â† + â)2

4

+
(

ω2,y − ω1,y

Ĵz

N

)
[i(â† − â)]2

4
, (56)

where the ladder-type Raman-transition detuning δR is defined
as

δR = �c + �p − 1

2

(
g2

1

�c

− g2
2

�p

)
, (57)

the collective Raman-transition strength is given by

gR = Ng1g2

2�c�p

(
�p − �c

)
, (58)

the light shifts by ω1,x = Ng2
1

�c
(1 − 2β

�c
) + Ng2

2
�p

(1 − 2β

�p
) and

ω1,y = Ng2
1

�c
(1 + 2β

�c
) + Ng2

2
�p

(1 + 2β

�p
), and the frequencies by

ω2,x = 2β + g2
1

2�c
(1 − 2β

�c
) − g2

2
2�p

(1 − 2β

�p
) and ω2,y = −2β +

g2
1

2�c
(1 + 2β

�c
) − g2

2
2�p

(1 + 2β

�p
). The collective atomic operator

Ĵz = 1
2 (Ĵ3,3 − Ĵ1,1) measures the inversion of atoms between

|1〉 (spin-down) and |3〉 (spin-up) states while Ĵ+ = Ĵ3,1 and
Ĵ− = Ĵ1,3 are the raising and lowering angular momentum
operators, respectively.

As one can see, unlike the spin-boson model of the
�-type system [see Eq. (7)], no counter-rotating atom-cavity
interaction terms exist in Eq. (56). Thus, in the ladder-type
system only the parametric down-conversion process leads to
the generation of intracavity photons, and the atomic Raman
transition from the spin-down |1〉 state to the spin-up |3〉 state
always consumes intracavity photons. As we see below, this
leads to a different behavior of the influence of the cavity
dissipation on the threshold of the superradiant phase transition
compared with that of the �-type system.

In addition, the second term on the right side of the equal
sign in Eq. (56) indicates the collective two-photon processes,
i.e., one atom in the spin-down |1〉 (or spin-up |3〉) state absorbs
(or emits) two intracavity photons and then transits to the
spin-up |3〉 (or spin-down |1〉) state. Due to this two-photon
Raman transition, the corresponding collective atom-cavity
interaction strength gR is proportional to the system size
denoted by N . Compared with gR in the �-type system [see
Eq. (4)], the collective atom-cavity interaction strength gR [see
Eq. (58)] in the ladder-type system is amplified by a factor of√

N , which results in a significant reduction of the threshold
of the superradiant phase transition.

In the following, based on the spin-boson Hamiltonian
(56) we investigate the superradiant phase transitions in both
nondissipative and dissipative systems.

B. Superradiant phase transition in a nondissipative system

We first consider an ideal case, where no dissipation due
to the spontaneous emission of atoms and cavity loss is
involved in the atom-cavity dynamics. Similar to the previous

section, we are interested in the properties of the coupled
system in the limit of a large number of atoms. In this
case, we utilize again the Holstein-Primakoff transformation
[26] and the displacement operators D(

√
NA) and D(

√
NB)

to map the spin-boson Hamiltonian (56) into the two-mode
boson representation [see Eq. (8)]. Further, we expand the
displaced Hamiltonian Ĥ up to second order in the boson
operators [for example, see Eq. (9)] and obtain approximately
Ĥ ≈ E0 + Ĥ1 + Ĥ2.

The constant E0, which gives the ground-state energy of the
collectively coupled system, is expressed as

E0

N�
= −(

δR + ω1,xX
2
A + ω1,yY

2
A

)
nb

+
(
ω2,x + ω1,x

2

)
X2

A +
(
ω2,y + ω1,y

2

)
Y 2

A

+ 2gRXB

√
1 − nb

(
X2

A − Y 2
A

)+4gRXAYAYB

√
1 − nb,

(59)

where the variables XA,B and YA,B have been defined in the
previous section. na = X2

A + Y 2
A and nb = X2

B + Y 2
B give the

mean values of the macroscopic occupations of the intracavity
photons and atoms in the spin-up |3〉 state. By choosing XA,B

and YA,B satisfying the following set of equations,(
ω2,x + ω1,x

2
− ω1,xnb

)
XA

+ 2gR

√
1 − nb (XAXB + YAYB) = 0, (60)

(
ω2,y + ω1,y

2
− ω1,ynb

)
YA

+ 2gR

√
1 − nb (XAYB − YAXB) = 0, (61)

(
δR + ω1,xX

2
A + ω1,yY

2
A

)
XB + 2gR

XAYAXBYB√
1 − nb

− gR

(
X2

A − Y 2
A

) (√
1 − nb − X2

B√
1 − nb

)
= 0, (62)

(
δR + ω1,xX

2
A + ω1,yY

2
A

)
YB + gR

(
X2

A − Y 2
A

) XBYB√
1 − nb

− 2gRXAYA

(√
1 − nb − Y 2

B√
1 − nb

)
= 0, (63)

the linear term Ĥ1 in the displaced Hamiltonian Ĥ vanishes.
The quadratic term Ĥ2 is considered below.

1. Ground state

We restrict ourselves to the case of �c < 0, �p > 0, and
g1 = g2 = g, and one can apply the same approach to analyze
other cases. It is easy to verify that the trivial solutions XA,B =
YA,B = 0 always satisfy Eqs. (60)–(63) and the corresponding
ground-state energy is E0 = 0, which denotes the normal phase
of the system; i.e., all atoms stay in the spin-down |1〉 state
and no photons exist inside cavity. Additionally, we obtain the
other set of nontrivial solutions, i.e., XA,B �= 0, YA,B = 0, and
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the average occupations

nb =
−Pb −

√
P 2

b − 4PaPc

2Pa

, (64)

na = − δR

√
nb(1 − nb)

ω1,x

√
nb(1 − nb) + gR (1 − 2nb)

, (65)

where Pa = 1 + (ω1,x

2gR
)2, Pb = −1 − ω1,x

2gR
(ω2,x

gR
+ ω1,x

2gR
), and

Pc = 1
4 (ω2,x

gR
+ ω1,x

2gR
)2. Further, the corresponding ground-state

energy is given by

E0

N�
= −δRnb +

(ω1,x

2
+ ω2,x − ω1,xnb

)
na

− 2gRna

√
nb(1 − nb). (66)

For na,b > 0, one obtains E0 < 0, which means the system
transits in a new phase; i.e., the macroscopic occupations in
both intracavity field and pseudoangular momentum. Due to
the adiabatic limit |�p,c| � g1,2, the collective atom-cavity
interaction gR cannot be adjusted in a wide range by changing
the coupling strengths g1,2. Thus, in the following we amplify
the collective atom-cavity interaction strength gR via enlarging
the system size N .

Figure 10(a) displays an example of na,b changing with the
number of atoms inside the cavity. As one can see, there exists
a critical point Nc, after which the ground-state energy E0

becomes negative [see Fig. 10(b)]; i.e., the system undergoes
a superradiant phase transition. From the analysis of the first-
and second-order derivatives of E0 around the critical point
[see Figs. 10(c) and 10(d)], the second-order phase transition
is confirmed. For N < Nc, there are no intracavity photons

FIG. 10. (Color online) (a) nb (solid line) and na (dashed line) as
a function of the system size N . The corresponding average ground-
state energy E0 = E0

N�g
is shown in panel (b). When N is larger than

the critical atomic number Nc ≈ 4.5 × 102, E0 becomes negative. The
first and second derivatives of the ground-state energy with respect
to N around Nc are displayed in panels (c) and (d), respectively. For
all curves, �c = −20g, �p = 30g, β = 10g, and g1 = g2 = g.

or excited atoms. When N > Nc, more and more atoms are
populated in the spin-up |3〉 state while the intracavity field
is first amplified and then goes down as the system size N is
further enlarged.

For a small number of atoms, the relative larger Raman-
transition detuning δR impedes the two-photon excitation of
atoms from |1〉 to |3〉 and in turn this suppression of atomic
excitation blocks the degenerate parametric down-conversion
process. In this case, the system is in the normal phase E0 =
na = nb = 0. Since the collective atom-cavity interaction gR

is proportional to N , the strongly coupled regime of the
composite system can be reached as N is increased. When
N > Nc, the strong atom-cavity interaction overcomes the
large Raman-transition detuning δR and a collective intracavity
dynamics is rapidly established, which results in na,b > 0. As
gR is further increased for a larger N , it no longer requires a
large number of intracavity photons to support the collective
atom-cavity dynamics. Thus, the intracavity field goes down
while nb keeps climbing up [see Fig. 10(a)].

Comparing Fig. 10(a) with Fig. 2(a), we find that the
behaviors of na,b versus the system size N in two different
collectively coupled systems are alike. This is because the
fundamental models of these two composite systems are
similar, i.e., the collective Raman transition plus the nonlinear
parametric oscillation. Nevertheless, the critical system size Nc

for the ladder-type system is obviously much smaller than that
for the �-type system. As we have pointed out, this is primarily
because the collective atom-cavity interaction strength gR

[Eq. (58)] in the ladder-type system is strongly enhanced
by a factor of

√
N due to the two-photon Raman transition

compared with that for the �-type system [Eq. (4)]. For this
reason, even a much smaller intracavity light field can maintain
a strong collective atom-cavity dynamics in the ladder-type
system, which makes the superradiant phase transition occur
more easily.

Figures 11(a) and 11(b) show the dependence of na,b on
the Raman-transition detuning δR for different N . For a fixed
N , at which the system is in the superradiant phase, enlarging
δR enhances both the intracavity field and atomic population
inversion. This is because more photons inside the cavity are
needed so as to maintain the strong collective atom-cavity
dynamics and in return more atoms are excited to the spin-up
state. Moreover, from the expression of the ground-state energy
(66) one finds that the larger δR profits from the occurrence
of the superradiant phase transition. However, δR cannot be
increased very much since the effective Hamiltonian (56) is
only valid to the second-order terms of g2

1/�c and g2
2/�p.

Moreover, from Eq. (64) we can numerically investigate the
critical system size Nc for the superradiant phase transition and
the results are shown in Fig. 11(c). As one can see, increasing
either β or δR raises Nc because of the enlarged light shifts
and Raman detuning.

2. Elementary excitations

So far, we have only discussed the ground state of the
coupled system. Now we consider the elementary excitations
of the composite system in different phases, which are closely
tied up with the system parity. The quadratic term Ĥ2 in the
expansion of the Hamiltonian Ĥ can be written in a general
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FIG. 11. (Color online) Macroscopic occupations na (a) and nb

(b) as a function of the system size N and the Raman-transition
detuning δR , where �c = −30g and β = 10g. (c) The dependence of
the critical system size Nc on β and δR . For all figures, δR is adjusted
by changing �p .

form same to Eq. (21), where we have defined the parameters
u+ = 1

4 [−ω1,xnb + ω1,x

2 + ω2,x − 2gR

√
nb(1 − nb)], u− =

1
4 [−ω1,ynb + ω1,y

2 + ω2,y + 2gR

√
nb(1 − nb)], v+ =

1
4 [−δR − ω1,xna − gRna

√
nb

(−3 + 2nb)
(1− nb)3/2 ], v− = 1

4 [−δR −
ω1,xna + gRna

√
nb

1−nb
], λ+ = ω1,x

√
nanb + gR

√
na

1−2nb√
1−nb

,

and λ− = gR

√
na(1 − nb).
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FIG. 12. (Color online) The elementary excitation spectrum cor-
responding to Fig. 10 as a function of the system size N . The solid
and dash lines denote εa and εp , respectively.

Ĥ2 can be diagonalized as Eq. (28) via the Bogoliubov
transformation [see Eqs. (22)–(26)]. εa,p give the atomic and
photonic branches of elementary excitations according to their
values for N → 0 [15]. êa,p and ê

†
a,p are the corresponding

annihilation and creation operators.
Figure 12 displays a sample of two excitation branches

εa,p as a function of the system size N . For a system in the
normal phase, only the atomic branch of elementary excitation
εa , which is always equal to δR , exists while the photonic
excitation branch εp is invalid. Unlike the �-type system (see
Fig. 4), here both branches of excitation energies are valid
in the superradiant phase and εa,p go up as more atoms are
involved inside the cavity. Thus, the elementary excitation
spectrum strongly depends on the specific atomic structure.

Finally, we are aware that the occurrence of the superradiant
phase transition is accompanied by the symmetry breaking of
the global parity operator �̂. For the system in the normal
phase �̂ is expressed as �̂ = exp(iπ�̂), where �̂ = â†â +
Ĵz + N counts the total number of excitation quanta in the
system [27] and [Ĥ ,�̂] = 0, while the local parity operator
�̂2 = exp[iπ (ê†aêa + ê

†
pêp)] commutes with Ĥ2 obviously for

the system in the superradiant phase.

C. Dissipative atom-cavity system

Above, we focused on the collective coherent interaction
between an ensemble of atoms and an ideal optical resonator.
However, the atomic spontaneous emission and the cavity
loss are unavoidable in reality and it is necessary to consider
the influence of the dissipation on the collective atom-cavity
dynamics. Here we should note that, unlike the �-type atomic
system, the decay of the atomic polarization between the
|1〉 and |3〉 states cannot be ignored due to the unavoidable
spontaneous emission of atoms in the excited |2〉 and |3〉
states. Thus, the effect of the atomic spontaneous emission
is considered here.

Generally, there are many decay channels in the atomic
system. For the sake of simplicity, we introduce a decay rate
γ to describe the effective loss of the coherence between the
|1〉 and |3〉 states. This is valid when two detunings �c,p are
much larger than the polarization decay rates of two atomic
|1〉 − |2〉 and |2〉 − |3〉 transitions, for which the dynamics
related to the |2〉 state can still be adiabatically eliminated and
the spin-boson Hamiltonian (56) is valid in the dissipative case.
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In addition, we assume that only one of the cavity mirrors is
partially reflective and the resulting cavity damping rate is κ .

Following the same method in Refs. [30–33], one can find
the quantum Langevin equations of the intracavity field and
atomic operators:

d

dt
ĵx(t) = −γ

2
ĵx(t) + [

δR + ω1,x x̂
2
a (t) + ω1,y ŷ

2
a (t)

]
ĵy(t)

− 2gR {x̂a(t),ŷa(t)} ĵz(t) + f̂x(t), (67)

d

dt
ĵy(t) = −γ

2
ĵy(t) − [

δR + ω1,x x̂
2
a (t) + ω1,y ŷ

2
a (t)

]
ĵx(t)

− 2gR

[
x̂2

a (t) − ŷ2
a (t)

]
ĵz(t) + f̂y(t), (68)

d

dt
ĵz(t) = −γ

2
− γ ĵz(t) + 2gR

[
x̂2

a (t) − ŷ2
a (t)

]
ĵy(t)

+ 2gR {x̂a(t),ŷa(t)} ĵx(t) + f̂z(t), (69)

d

dt
x̂a(t) = −κ

2
x̂a(t) − [ω1,y ĵz(t) + 2gRĵx(t)]ŷa(t)

+ ω2,y ŷa(t) − 2gRx̂a(t)ĵy(t) + f̂κ,x(t), (70)

d

dt
ŷa(t) = −κ

2
ŷa(t) + [ω1,x ĵz(t) − 2gRĵx(t)]x̂a(t)

− ω2,x x̂a(t) + 2gRŷa(t)ĵy(t) + f̂κ,y(t), (71)

where the anticommutator

{x̂a(t),ŷa(t)} = x̂a(t)ŷa(t) + ŷa(t)x̂a(t). (72)

The definitions of operators ĵx,y,z(t), x̂a(t), and ŷa(t) are
same as those in the previous section. The above Heisenberg-
Langevin equations have the same structure,

d

dt
Ô(t) = AO(t) + f̂O(t), (73)

where AO(t) is the deterministic part of the equation
and f̂O(t) is the quantum noise operator, which
satisfies 〈f̂O(t)〉 = 0. Here, we list the nonvanishing
intercorrelations 〈f̂x(t)f̂x(t ′)〉 = γ

4N
δ(t − t ′), 〈f̂x(t)f̂y(t ′)〉 =

− iγ

4N
δ(t − t ′), 〈f̂x(t)f̂z(t ′)〉 = γ

2N
[〈ĵx(t)〉 − i〈ĵy(t)〉]δ(t − t ′),

〈f̂y(t)f̂x(t ′)〉 = iγ

4N
δ(t − t ′), 〈f̂y(t)f̂y(t ′)〉 = γ

4N
δ(t − t ′),

〈f̂κ,x(t)f̂κ,x(t ′)〉 = κ
4N

δ(t − t ′), 〈f̂y(t)f̂z(t ′)〉 = iγ

2N
[〈ĵx(t)〉 −

i〈ĵy(t)〉]δ(t − t ′), 〈f̂κ,y(t)f̂κ,y(t ′)〉 = κ
4N

δ(t − t ′), 〈f̂z(t)
f̂x(t ′)〉 = γ

2N
[〈ĵx(t)〉 + i〈ĵy(t)〉]δ(t − t ′), 〈f̂κ,x(t)f̂κ,y(t ′)〉 =

iκ
4N

δ(t − t ′), 〈f̂z(t)f̂y(t ′)〉 = − iγ

2N
[〈ĵx(t)〉 + i〈ĵy(t)〉]δ(t − t ′),

〈f̂κ,y(t)f̂κ,x(t ′)〉 = − iκ
4N

δ(t − t ′), and 〈f̂z(t)f̂z(t ′)〉 =
γ

N
(〈ĵz(t)〉 + 1

2 )δ(t − t ′). The above intercorrelation functions
can be written in a general form,

〈f̂μ(t)f̂ν(t)〉 = 2Dμ,νδ(t − t ′), (74)

where 2Dμ,ν is the diffusion coefficient in the fluctuation-
dissipation theorem.

1. Steady-state solutions

First, we consider the steady state of the atom-cavity sys-
tem. By introducing the c-number variables O(t) = 〈Ô(t)〉 and

neglecting quantum fluctuations 〈Ô1(t)Ô2(t)〉 ≈ O1(t)O2(t),
the quantum Langevin equations (67)–(71) can be converted
into a set of differential equations:

d

dt
jx(t) = −γ

2
jx(t) + [

δR + ω1,xx
2
a (t) + ω1,yy

2
a (t)

]
jy(t)

− 4gRxa(t)ya(t)jz(t), (75)

d

dt
jy(t) = −γ

2
jy(t) − [

δR + ω1,xx
2
a (t) + ω1,yy

2
a (t)

]
jx(t)

− 2gR

[
x2

a (t) − y2
a (t)

]
jz(t), (76)

d

dt
jz(t) = −γ

2
− γjz(t) + 2gR

[
x2

a (t) − y2
a (t)

]
jy(t)

+ 4gRxa(t)ya(t)jx(t), (77)

d

dt
xa(t) = −κ

2
xa(t) + [

ω2,y − ω1,yjz(t) − 2gRjx(t)
]
ya(t)

− 2gRxa(t)jy(t), (78)

d

dt
ya(t) = −κ

2
ya(t) − [ω2,x − ω1,xjz(t) + 2gRjx(t)]xa(t)

+ 2gRya(t)jy(t). (79)

Moreover, the above semiclassical equations conserve the
pseudoangular momentum j 2

x (t) + j 2
y (t) + j 2

z (t) = 1
4 .

The steady-state solutions for the mean values of the
intracavity field and atomic variables can be solved by setting
d
dt

O(t) = 0 in Eqs. (75)–(79). These solutions are denoted by
the subscript “o”. Directly deriving the analytical solutions
from the semiclassical equations is particularly difficult. Here
we exploit the numerical method to solve the steady states of
the composite system.

Figure 13 shows the dependence of the mean values of the
steady-state intracavity photons na = x2

a,o + y2
a,o and atomic

inversion nb = jz,o + 0.5 on γ and κ . As one can see, for a
fixed γ enlarging the cavity loss rate κ reduces both intracavity
field and atomic population in the spin-up |3〉 state since the
portion of photons produced via the degenerate parametric
down-conversion process escape the optical cavity without
interacting with atoms. In contrast, for a fixed κ , na is amplified
while nb goes down as γ is increased. This is because atoms
in |1〉 are hardly excited to |3〉 and atoms in |3〉 rapidly decay
back to |1〉 for a larger γ , which indicates the atoms rarely
interact with the optical resonator. As a consequence, more
photons accumulate inside the cavity and the intracavity field
is enhanced.

One can derive the threshold Nc of the superradiant phase
transition by numerically solving Eqs. (75)–(79). Figure 14
illustrates the dependence of Nc on the cavity loss rate κ for
several different atomic spontaneous emission rates γ . We find
that, unlike the �-type system (see Fig. 6), Nc goes up as κ

is increased for a fixed γ . This can be understood from the
difference between the collective atom-cavity interactions of
those two systems [see Eqs. (7) and (56)].

We assume that for the system being in a steady state there
is a small increase of the cavity loss rate κ . In this case,
more photons should be generated via the nonlinear parametric
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FIG. 13. (Color online) The steady-state na and nb as a function
of the effective decay rate γ and the cavity loss rate κ . The system
size is set at N = 2 × 103 and all the other parameters are the same
as those in Fig. 11.

oscillation so as to compensate for the increased loss of intra-
cavity field. This compensation process is strongly enhanced
due to the counter-rotating interaction terms in Hamiltonian
(3); i.e., the Raman transition of atoms from the spin-down
|2〉 state to the spin-up |1〉 state amplifies the intracavity field.
Thus, in the new steady state of the system, more atoms pop-
ulate in the spin-up state and more photons accumulate inside
the optical resonator for the �-type system. Further, the thresh-
old of the superradiant phase transition is reduced. However,
the situation is completely different for the ladder-type system,
where no counter-rotating atom-cavity interaction terms exist
in the Hamiltonian (56). Since the ladder-type atomic Raman
transition from the spin-down |1〉 state to the spin-up |3〉 state
always consumes the intracavity photons, the generation of the
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FIG. 14. (Color online) The threshold of the superradiant phase
transition as a function of the cavity loss rate κ for several different
decay rates γ . All the other parameters are the same as those in
Fig. 11.

intracavity photons via the nonlinear parametric oscillation is
strongly suppressed. As a result, the threshold Nc grows as κ is
increased.

Finally, we find that increasing the atomic spontaneous
emission rate γ raises the threshold of the phase transition.
Since atoms are hardly excited for a larger γ , more atoms
stay in the spin-down |1〉 state, which results in a higher
threshold. In addition, as shown in Fig. 14, the atomic
spontaneous emission mainly affects the threshold Nc for a
small κ .

2. Stability analysis

It is essential to consider the stability of the derived steady-
state solutions, for which we assume that the operator variable
Ô(t) can be presented as a sum of the dominant classical
term Oo and a small fluctuation δÔ(t), Ô(t) ≈ Oo + δÔ(t).
In this case, the quantum Langevin equations (67)–(71) can
be linearized and we obtain the following equations for the
fluctuations:

d

dt
δĵx(t) = −γ

2
δĵx(t) + (

δR + ω1,xx
2
a,o + ω1,yy

2
a,o

)
δĵy(t)

+ 2(ω1,xxa,ojy,o − 2gRya,ojz,o)δx̂a(t)

+ 2(ω1,yya,ojy,o − 2gRxa,ojz,o)δŷa(t)

− 4gRxa,oya,oδĵz(t) + f̂x(t), (80)

d

dt
δĵy(t) = −γ

2
δĵy(t) − (

δR + ω1,xx
2
a,o + ω1,yy

2
a,o

)
δĵx(t)

− 2(ω1,xxa,ojx,o + 2gRxa,ojz,o)δx̂a(t)

− 2(ω1,yya,ojx,o − 2gRya,ojz,o)δŷa(t)

− 2gR

(
x2

a,o − y2
a,o

)
δĵz(t) + f̂y(t), (81)

d

dt
δĵz(t) = −γ δĵz(t) + 4gRxa,oya,oδĵx(t) + 4gR(xa,ojy,o

+ ya,ojx,o)δx̂a(t) + 4gR(xa,ojx,o − ya,ojy,o)

× δŷa(t) + 2gR

(
x2

a,o − y2
a,o

)
δĵy(t) + f̂z(t),

(82)

d

dt
δx̂a(t) = −2gRya,oδĵx(t) − 2gRxa,oδĵy(t) − ω1,yya,oδĵz(t)

− (−ω2,y + ω1,yjz,o + 2gRjx,o)δŷa(t)

−
(κ

2
+ 2gRjy,o

)
δx̂a(t) + f̂κ,x(t), (83)

d

dt
δŷa(t) = −2gRxa,oδĵx(t) + 2gRya,oδĵy(t) + ω1,xxa,oδĵz(t)

− (ω2,x − ω1,xjz,o + 2gRjx,o)δx̂a(t)

−
(κ

2
− 2gRjy,o

)
δŷa(t) + f̂κ,y(t). (84)

We write the above linear equations in the matrix form d
dt

v̂(t) =
Mv̂(t) + f̂(t), where the column matrices

v̂(t) = (δĵx(t),δĵy(t),δĵz(t),δx̂a(t),δŷa(t))T ,

f̂(t) = (f̂x(t),f̂y(t),f̂z(t),f̂κ,x(t),f̂κ,y(t))T ,

043824-15



DESHUI YU AND SAM GENWAY PHYSICAL REVIEW A 90, 043824 (2014)

FIG. 15. (Color online) Steady-state solutions na,b, the corresponding decay rates Re(ε±
a ) and Re(ε±,0

p ), and the corresponding elementary-
excitation frequencies Im(ε±

a ) and Im(ε±,0
p ) as a function of the system size N . The critical point is localized at Nc ≈ 1.3 × 103. For all curves,

γ = 10g and κ = 50g and all the other parameters are the same as those in Fig. 11.

and M is a constant square matrix. Diagonalizing M gives
us five eigenvalues, which can be divided into two groups,
i.e., ε±

a associated with the atomic branch and the other three
ε±,0
p associated with the photonic branch according to the

values in the limit of N → 0. The stable steady-state solution
requires that all the real parts of ε±

a and ε±,0
p be negative,

i.e., Re(ε±
a ) < 0 and Re(ε±,0

p ) < 0. Additionally, the imaginary
parts Im(ε±

a,p) correspond to the excitation-energy shifts and
Im(ε0

p) is always zero. We can prove that as γ → 0 and
κ → 0, ε±

a,p are reduced to the elementary excitations εa,p in
the nondissipative system and ε0

p approaches zero. Thus, the
effects of the spontaneous emission of atoms and cavity loss
split the elementary excitations and induce the finite lifetimes
to the elementary excitations.

Figure 15 displays the dependence of different eigenvalues
on the atomic number N . As one can see, two atomic branch ex-
citations ε±

a have the same decay rate, i.e., Re(ε+
a ) = Re(ε−

a ),
which is equal to − γ

2 for N < Nc and approximately linearly
increases when N > Nc, and opposite energy shifts, i.e.,
Im(ε+

a ) = −Im(ε−
a ). For the photonic branch excitations, ε±

p

have the opposite excitation energies, i.e., Im(ε+
p ) = −Im(ε−

p ),
while the Im(ε0

p) is always zero. Finally, the real parts of
different photonic branch excitations are all negative, which
means the steady-state solutions na,b are stable.

3. Spectra of the output field

In the presence of cavity loss, vacuum fluctuations enter
the cavity and influence the collective coherent atom-cavity
interaction. In turn, the cavity loss offers access to monitor
the composite system properties via the light field leaking out
from the cavity mirror. According to the input-output theory,
the Hermitian amplitude operators for the cavity output field

are given by

x̂out(t) = √
κx̂a(t) − f̂κ,x(t)√

κ
, ŷout(t) = √

κŷa(t) − f̂κ,y(t)√
κ

.

For a system in the stationary state, the output-field variables
can be considered as a sum of the dominant value and a small
fluctuation operator:

δx̂out(t) = √
κδx̂a(t) − f̂κ,x(t)/

√
κ, (85)

δŷout(t) = √
κδŷa(t) − f̂κ,y(t)/

√
κ. (86)

As one can see, the noise of the cavity output field originates
from the intracavity fluctuations and the vacuum fluctuations
outside the cavity.

The fluctuation of the intracavity field can be derived from
the linear equations (80)–(84). It is convenient to convert this
set of differential equations into equations in the frequency
domain via the Fourier transform, Eqs. (52) and (53). For
simplicity, we use the same symbol for both members of a
Fourier-transform pair, which will be distinguished through
the time or frequency argument. Further, it is easy to obtain
the intercorrelations

〈f̂μ(ω)f̂ν(ω′)〉 = 2Dμ,νδ(ω + ω′). (87)

The homodyne spectra corresponding to the output-field
quadrature amplitudes are defined as

S0(ω) =
∫ +∞

−∞
〈δx̂out(t + τ )δx̂out(t)〉eiωτ dτ, (88)

Sπ
2
(ω) =

∫ +∞

−∞
〈δŷout(t + τ )δŷout(t)〉eiωτ dτ, (89)

where S0(ω) denotes the spectrum of output-field amplitude
fluctuations while Sπ

2
(ω) gives the phase-fluctuation spectrum.
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FIG. 16. (Color online) The output-field spectra of the amplitude and phase fluctuations S0, π
2

(ω) as a function of ω for different atomic
decay rates γ and cavity losses κ . For all curves, N = 2 × 103, at which the system is in the superradiant phase, and all the other parameters
are the same as those in Fig. 2.

Figure 16 shows S0(ω) and Sπ
2
(ω) for different γ and κ for a

system in the superradiant phase (N > Nc). In either spectrum,
there exist two pairs of spikes, where the outboard pair
corresponds to the atomic branch elementary excitations ε±

a

while the inboard pair denotes the photonic branch excitations
ε±
p . Another photonic branch ε0

p is hardly presented in the
spectra. From Fig. 16 we can obtain the following qualitative
conclusions.

(i) For a fixed γ , when κ is reduced to zero one obtains
four extremely narrow spikes in both spectra. In the amplitude
spectrum S0(ω), all spikes are higher than the shot-noise level
arising from the vacuum fluctuations, i.e., 1

4 . However, the
photonic branch pair in Sπ

2
(ω) are higher than 1

4 while the
atomic branch pair are lower than the shot-noise limit, which
indicates a squeezing in the phase fluctuations around the
photonic branch resonances.

(ii) For a larger cavity loss rate, the heights of two photonic
branch spikes in S0(ω) are suppressed while the atomic branch
peaks are dramatically enhanced. Contrarily, all four spikes
in the phase spectrum Sπ

2
(ω) are below the shot-noise level.

As κ is increased, the noise reduction on the photonic branch
resonances in Sπ

2
(ω) approaches 100%. Moreover, the widths

of spikes in either spectrum are broadened.
(iii) As κ is further enlarged, the energy shifts Im(ε±

a ) and
Im(ε±

p ) approach each other and the damping rates Re(ε±
a ) and

Re(ε±
p ) are very large. Consequently, two spikes on either side,

for example, ε+
a and ε+

p , overlap each other and form a huge
spike. The four-peaked spectrum becomes the doublet one.

(iv) For a fixed κ , the effect of enlarging γ is only to reduce
the heights of spikes in both two spectra and rarely changes
the spectral profiles.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we have investigated an atom-cavity system
combined with an intracavity laser-driven parametric down-
conversion. We considered two physical models with different
atomic structures, the three-level �-type and ladder-type
atomic configurations. In both composite systems, the intra-
cavity laser-driven parametric oscillation works as a photon
source and plays an important role in the collective atom-cavity
dynamics. In the limit of the far-detuned atom-light field
and atom-cavity interactions, both composite systems can be
simplified to an effective spin-boson model, where a large
number of two-level particles collectively interact with a
single-mode cavity, via the adiabatic approximation.

We further map this spin-boson model into a two-mode
boson model by employing the Holstein-Primakoff transfor-
mation. Based on the derived two-mode boson models, we
investigated the potential phase transition in different systems
to the second-order approximation in both nondissipative and
dissipative cases. In addition, we have discussed the features of
the light field leaking out of the optical resonator from aspects
of cavity output-field spectra. The cavity dissipation provides
us a way to monitor the collective atom-cavity dynamics and
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the critical behavior and different properties of the system via
various measurements on the output field.

In both composite systems, a superradiant phase transition
is found via enlarging the system size N . The behaviors of
the macroscopic occupation in the intracavity field (na) or the
angular momentum of a pseudospin ensemble (nb) versus N

in different composite systems are alike. When N is larger
than the critical system size Nc the intracavity photon number
na strongly increases and then gradually falls. In contrast, the
atomic excitation nb always goes up and is saturated finally
as N well exceeds Nc. This difference between the behaviors
of na and nb versus N can be interpreted from the fact of the
N -dependent collective atom-cavity interaction.

Despite similarities, those two composite systems display
some respective unique characteristics because of the different
atomic structures.

For the �-type atomic system:
(i) Due to the extra nonlinear parametric processes, the

counter-rotating wave interaction terms (âĴ− and â+Ĵ+),
which play a significantly important role in the usual Dicke
model [1], are presented in the spin-boson Hamiltonian [see
Eq. (7)].

(ii) In the nondissipative case, only the atomic branch of the
elementary excitation is valid in both normal and superradiant
phases while the photonic branch is invalid.

(iii) In experiment, two lower atomic |1〉 and |2〉 states can
be chosen as two ground-state hyperfine levels. In the limit of
far-detuned atom-light field and atom-cavity interactions, the
influence of the spontaneous emission of the upper atomic |3〉

state on the collective atom-cavity dynamics can be ignored.
Thus, only the effect of the cavity loss is needed to be
considered.

(iv) The behavior of the threshold Nc of the superradiant
phase transition versus the cavity loss rate κ is completely
different from the optical cavity QED system in Ref. [15]; i.e.,
Nc goes down as κ is increased.

For the ladder-type atomic system:
(i) No counter-rotating wave interaction terms exist in

the spin-boson model, but the atomic ensemble interacts
with a single-mode optical resonator via the two-photon
transition [see Eq. (56)]. In this case, the collective atom-cavity
interaction strength is enhanced by a factor of

√
N compared

with the �-type system, which significantly reduces the critical
system size Nc.

(ii) Since the spin-up |3〉 state in the spin-boson model
[see Eq. (56)] must be an excited atomic level, the influence
of the spontaneous emission of the |3〉 state on the collective
atom-cavity dynamics cannot be ignored. Thus, the effects of
both atomic spontaneous emission and cavity loss should be
considered.

(iii) Unlike the �-type system, the threshold Nc of the
superradiant phase transition goes up as the cavity loss rate is
increased.
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