
PHYSICAL REVIEW A 90, 043820 (2014)

Parametric control in coupled fermionic oscillators
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A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties,
in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent
reduced density operator for the system and the associated P function. The density operator for fermionic fields
as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999)] thus can be
shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart.
In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
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I. INTRODUCTION

Two modes of harmonic oscillators, which are parametri-
cally coupled, form the basic paradigm for the treatment of
parametric amplification over the decades [1–3]. The model
and several of its variants have been extensively used to
describe several physical situations in quantum optics and
laser physics, such as the coherent Raman effect, Brillouin
scattering, frequency splitting of light beams in nonlinear
media, low-noise amplifier in the radio-frequency region, and
so on [4–10]. We begin with an inquiry on the fermionic
counterpart of the model, i.e., a fermionic oscillator coupled
parametrically to another fermionic oscillator. However, since
fermions obey the Pauli exclusion principle, the fermionic
oscillator cannot accommodate an infinite number of lev-
els [11]. It therefore follows that if two interacting modes
of harmonic oscillators are replaced by fermionic oscillators,
the thermal behavior will differ quite significantly due to
severe restriction on the possibility for thermal excitation in
the latter. These differences leading to a distinctive behavior
of the amplification with respect to the traditional parametric
amplifier have been elucidated by several authors in a
completely different context in condensed-matter physics,
particularly in connection with quantum coherence in the
presence of dissipation [12–15]. Enormous progress has been
achieved in quantum mesoscopic physics [16,17] in the last 15
years, and the close correspondence between fermionic modes
and qubit systems [18] has resulted in significant progress in
quantum amplification and the control of quantum coherent
media [19,20]. This advancement in the field of digital and
analog devices [16–20] has been the motivation for the study
of parametrically coupled fermionic oscillators as undertaken
in this present work.

The method we use as a basis of our analysis is the
density operator expansion in terms of coherent states with
quasiprobability functions as weight factors. The scheme is
well adopted for the treatments of bosonic fields [10,21–23];
an extension of the scheme to fermionic fields, however, is not
straightforward. The reason, as noted by Schwinger in the early
1950s [24], is the anticommuting properties of the fermionic
operators for which the eigenvalues are anticommuting Grass-
mann numbers. In order to overcome this difficulty, Cahill
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and Glauber [25] have used Grassmann variables [26] to show
that in spite of substantial mathematical differences, many
close parallels can be established between fermionic fields and
more familiar bosonic fields. This, in particular, indicates that
the density operator and P representation for the boson have
interesting fermionic analogs and thus allow us to calculate a
broad range of correlation functions using a grand canonical
density operator for fermionic fields, which can be measured
in experiments involving the counting of fermions [27]. In the
last few years, several investigations of fermionic systems have
been carried out by adopting Grassmann variables. Among
them are the counting of fermions in strongly correlated sys-
tems [27], the non-Markovian stochastic Schrödinger equation
for open quantum systems [28], the study of decoherence and
dissipation in fermionic bath [29], and the characterization of
qubit quantum channels [20], to name just a few [30].

The basic development, as outlined above [25], is primarily
centered around the equilibrium density operator for fermionic
fields. In this paper, we look for the time development of the
density operator and its corresponding P representation. The
present analysis reveals that the quantum statistical mean and
the variance of the number of quanta for a particular mode
possess the same structure as those of bosonic fields. As for
experimentally relevant quantities, explicit expressions are
obtained for the mean and variance for a variety of initial
states of the system. Specifically, we have explored the
possibility of vacuum amplification, trapping, and control
over the quantum states of the system.

The layout of the paper is as follows: In Sec. II, we introduce
the model and the dynamical equations of motion for the oper-
ators. The basic aspects of Grassmann algebra and the reduced
density operator for the fermionic field are reviewed in Sec. III
in order to make the presentation self-contained. In Sec. IV,
we have considered the statistical description of the mean
and variance for a single mode of the system, and important
physical situations such as vacuum amplification, trapping, and
quantum control are discussed in greater detail. Possible appli-
cations for experimental realizations of the theoretical scheme
are discussed in Sec. V. The paper is concluded in Sec. VI.

II. PARAMETRICALLY COUPLED
FERMIONIC OSCILLATORS

A. The model

We begin by introducing the dynamical behavior of a single
mode of a fermionic field in terms of a fermionic oscillator.
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This is analogous to the way one introduces a harmonic
oscillator to represent a traditional bosonic or electromagnetic
field. The Hamiltonian of a fermionic oscillator with frequency
ω0 is given by [11]

ĤF = �ω0â
†
F âF , (2.1)

where the annihilation (âF ) and creation (â†
F ) operators satisfy

the anticommutation relations

{âF ,â
†
F } = 1, (2.2)

{âF ,âF } = 0, {â†
F ,â

†
F } = 0, (2.3)

instead of commutation relations obeyed by bosonic operators.
These anticommutation relations [Eqs. (2.2) and (2.3)] have the
immediate consequence that fermions obey the Pauli exclusion
principle as well as Fermi-Dirac statistics. We may define
â
†
F âF as the number operator N̂F which satisfies the eigenvalue

equation N̂F |n〉 = n|n〉, with eigenvalues n = 0 and 1. Thus,
in contrast to the harmonic oscillator, the Hilbert space of
the fermionic oscillator is two dimensional. The state with
no quantum is denoted by |0〉 and fulfills N̂F |0〉 = 0, while
the state with one quantum, which is expressed as |1〉, satisfies
N̂F |1〉 = |1〉. Furthermore, we should keep in mind that a state
is physical if it remains invariant under 2π rotation about any
axis. For fermions, since the odd quantum state (|1〉) changes
by a phase factor of −1 under 2π rotations, only the vacuum
or the zero quantum state fulfills the invariance criterion.

Now we assume two such fermionic oscillators (A and B)
are coupled by a parameter which oscillates at a frequency ω

equal to the sum of the frequencies ωa and ωb of the individual
modes so that they undergo a closely coupled forced oscillation
and we have

ω = ωa + ωb. (2.4)

The uncoupled A and B modes have the dynamical behavior of
fermionic oscillators which are described by the annihilation
(â and b̂) and creation (â† and b̂†) operators, respectively.
These operators obey the following relations:

{â,â†} = {b̂,b̂†} = 1, (2.5)

{â,b̂} = {â,b̂†} = 0. (2.6)

The Hamiltonian for these two coupled modes may be
described by

Ĥ = �ωaâ
†â + �ωbb̂

†b̂ − �κ[â†b̂†e−iωt + âb̂eiωt ], (2.7)

where κ is the coupling constant. The form of the Hamiltonian
describes only the behavior of the two modes which are
resonantly coupled, while the nonresonant coupling to other
modes is ruled out. The external “pump” field, which oscillates
at a frequency equal to the sum of the frequencies of the two
modes, has been assumed strong enough to be described in
classical terms. Lastly, the model is free from any kind of
dissipation and the coupled oscillation it describes therefore
continues indefinitely without quenching.

The Hamiltonian [Eq. (2.7)] may be useful in describing
quantum synchronization in mesoscopic or nanoscale devices
where two coupled qubits are driven by an ac signal with
a frequency in resonance with interlevel transitions of the
system [20]. Such coupled qubits also can act as a quantum

controlling device where one qubit is used to control the state
of the other qubit via dynamical coupling [19]. Again, several
single and coupled two-qubit systems have been proposed
recently as a quantum amplifier to amplify the weak signal at
the nanoscale level [16–20]. Further, the close correspondence
between the isomorphic Hilbert space associated with m-
fermionic modes (Fock space) and the m-qubit space allows
us to propose that the two-state fermionic oscillator could be
a very promising candidate in understanding the behavior of
such new quantum devices [18].

We now examine that the Hamiltonian is invariant under
the group of transformation defined by

Ĵ−1(θ )Ĥ Ĵ (θ ) = Ĥ , (2.8)

where the unitary operator Ĵ (θ ) is given by

Ĵ (θ ) = eiθ[â†â−b̂†b̂]. (2.9)

The Hamiltonian remains unchanged under the transformation
â → âeiθ and b̂ → b̂e−iθ generated by the relations

Ĵ−1(θ )âĴ (θ ) = âeiθ , (2.10)

Ĵ−1(θ )b̂Ĵ (θ ) = b̂e−iθ . (2.11)

This implies that Ĥ commutes with the generator of the group,
i.e.,

[â†â − b̂†b̂,Ĥ ] = 0. (2.12)

Equation (2.12), in other words, indicates that the generator is
a constant of motion, so that we can write

â†(t)â(t) − b̂†(t)b̂(t) = â†(0)â(0) − b̂†(0)b̂(0) = M̂ (2.13)

or

N̂a(t) − N̂b(t) = N̂a(0) − N̂b(0) = M̂. (2.14)

Here, we define M̂ as a time-independent operator. The above
relation specifies a conservation law between the number of
quanta present in the A and B modes.

B. Dynamical equations of motion

With the help of Eqs. (2.5) and (2.6), Heisenberg equations
of motion for the operators may be written down in the
following form:

˙̂a(t) = −iωaâ(t) + iκ[1 − 2â†(t)â(t)]b̂†(t)e−iωt , (2.15)
˙̂b†(t) = iωbb̂

†(t) − iκâ(t)[1 − 2b̂†(t)b̂(t)]eiωt , (2.16)

and the adjoint of Eqs. (2.15) and (2.16). The second term of
Eqs. (2.15) and (2.16) contains nonlinear terms which make
the equations apparently complicated for an exact solution.
To proceed further, we make use of the relation (2.13), which
simplifies Eqs. (2.15) and (2.16) into a linear set of equations
as follows:

˙̂a(t) = −iωaâ(t) − iκ(1 + 2M̂)b̂†(t)e−iωt , (2.17)
˙̂b†(t) = iωbb̂

†(t) − iκâ(t)(1 + 2M̂)eiωt , (2.18)

together with their adjoint equations. The exact solution to
the coupled Eqs. (2.17) and (2.18) may be obtained in the
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following form:

â(t) = â(0)Ĉa(t) + b̂†(0)Ŝa(t), (2.19)

b̂†(t) = b̂†(0)Ĉ∗
b (t) + â(0)Ŝ∗

b (t). (2.20)

Here we have defined the operator functions by the following
expressions:

Ĉa(t) ≡ e−iωa t cos �̂t,

Ŝa(t) ≡ −ie−iωa t sin �̂t,
(2.21)

Ĉ∗
b (t) ≡ eiωbt cos �̂t,

Ŝ∗
b (t) ≡ ieiωbt sin �̂t,

where �̂ refers to the frequency operator �̂ = κ(1 + 2M̂).
To get a better insight into the way the number of quanta in a

particular mode changes with time, we consider a second-order
rate equation involving the occupation number of the A and
B modes. With the help of Eqs. (2.19) and (2.20) and the
relation (2.4), the second-order time derivative of â†(t)â(t)
can be expressed as

d2

dt2
{â†(t)â(t)} = 2κ2(1 + 2M̂)2[1 − â†(t)â(t) − b̂†(t)b̂(t)]

= 2κ2(1 + 2M̂)2[1 − N̂a(t) − N̂b(t)].

(2.22)

We now make use of the conservation law [Eq. (2.13) or
Eq. (2.14)] to eliminate N̂b(t) from Eq. (2.22). The rate
equation of the operator N̂a(t) for the A mode therefore reduces
to

d2

dt2
N̂a(t) = 2κ2(1 + 2M̂)2[(1 + M̂) − 2N̂a(t)]. (2.23)

The solution of Eq. (2.23) for N̂a(t) in terms of initial values
of N̂a(0), ˙̂Na(0) takes the form of

N̂a(t) =
˙̂Na(0)

2�̂
sin 2�̂t +

[
N̂a(0) − 1

2
(1 + M̂)

]
cos 2�̂t

+ 1

2
(1 + M̂). (2.24)

A similar solution with the sign of M̂ reversed also holds
for the operator N̂b(t) of the B mode. An explicit use of
the solutions to these equations may be applied to find out
various time-dependent expectation values or moments of the
respective field modes. However, approaches based on density
operator formalism offer a more compact way of evaluating
such averages, which have been well known for bosonic fields
for a long time [2,10,21–23].

Particularly in this connection, in the following section
we find it convenient to construct a reduced form of a time-
dependent density operator for either one of the two modes.
The fermionic density operator may also be expressed as a
statistical mixture of pure coherent states of the corresponding
mode and a suitable weight factor, P function [25]. We
have shown that this representation may be a good source
of insight as it describes the quantum states in particular.
Although the method and several of its variants have been
used extensively for bosonic fields and form the basis for

understanding the phase space of electromagnetic fields of
parametric amplifiers [2,10,23], a straightforward extension of
the scheme to its fermionic counterpart is difficult. The main
reason, as pointed out by Schwinger [24], is the anticommuting
nature of fermionic field operators for which the eigenvalues
must be anticommuting numbers. In what follows, in the next
section we first briefly review the relevant parts of the algebra
of anticommuting numbers [11,26] for the density operator
of fermionic fields as developed by Cahill and Glauber [25]
and, in the process, explicit solutions of the reduced form
of the density operator and its corresponding P-distribution
functions are obtained for a variety of initial states. A major
interest of the present work is therefore the determination of
the P representation in a dynamical context and exploitation
of its usefulness for fermionic modes.

III. DENSITY OPERATOR AND P REPRESENTATION FOR
THE A MODE

A. Fermionic density operator

In the spirit of quasiprobability functions for bosonic fields,
Cahill and Glauber have shown that the P function has its
interesting counterpart for fermionic fields and, analogous to
bosonic fields, the density operator ρ̂ can be expanded in terms
of the coherent-state dyadic [25],

ρ̂ =
∫

d2αP (α,α∗)|α〉〈−α|. (3.1)

The fermionic coherent state |α〉 also acts as an eigenstate
of the annihilation operator â similar to its bosonic counter-
part [21],

â|α〉 = α|α〉, (3.2)

with an eigenvalue α. Since fermionic operators anticom-
mute with each other, their eigenvalues are anticommuting
numbers [11,26]. They satisfy very unusual properties; for
example, let {αi}, i = 1,2, . . . ,n, represent a set of generators
which obeys anticommuting properties,

αiαj + αjαi ≡ {αi,αj } = 0 ∀i,j. (3.3)

Equation (3.3), in particular, implies that for any given i,
α2

i = 0. This, in other words, implies that for fermionic fields,
the vacuum state is the only physically realizable eigenstate
of the annihilation operator â [Eq. (3.2)] with eigenvalue
zero. However, it is possible to define such eigenstate |α〉
[Eq. (3.2)] in a formal way so that they can be used for the
same analytical purposes as are made in the case of bosonic
fields. The essential difference between the ordinary variables
and Grassmann variables has far-reaching consequences as,
for example, integration is identical to differentiation for
Grassmann variables [26]. They also anticommute with their
fermionic operators,

{αi,â} = 0, {αi,â
†} = 0. (3.4)

The adjoint of the coherent state |α〉 obeys the relation 〈α|â† =
〈α|α∗, where α∗ is the complex conjugate of α. We should keep
in mind that α and α∗ are independent numbers and satisfy

αα∗ + α∗α ≡ {α,α∗} = 0. (3.5)
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The inner product of coherent states obeys

〈α|β〉 = exp
[
α∗β − 1

2 (α∗α + β∗β)
]
. (3.6)

Although the coherent states lack orthogonality, they do form
a complete set of states with the completeness relation,∫

d2α|α〉〈α| = I. (3.7)

In Eqs. (3.1) and (3.7), we are typically concerned with
integration over pairs of anticommuting variables α and α∗,
and for such pairs we confine ourselves to a typical notation,∫

d2α =
∫

dα∗dα. (3.8)

At this point, we want to make an important note. It is worth
pointing out that the minus sign in Eq. (3.1) results from
our convention that we have chosen d2α as dα∗dα. If we
had chosen the differential d2α as dαdα∗, the sign would
have been positive [29]. Finally, for a system described by
the density operator ρ̂, one may also define the characteristic
function χ (η,η∗) of Grassmann arguments η and η∗ as the
mean value [25],

χ (η,η∗) = Tr[ρ̂ exp(ηâ† − âη∗)], (3.9)

and the Fourier transform of Eq. (3.9) gives the P function.

B. Reduced density operator for the A mode

Now to evaluate statistical averages of time-dependent
operators in the Heisenberg picture, for example â(t) and
b̂†(t), we must make explicit use of the solutions given by
Eqs. (2.19) and (2.20). The Schrödinger picture, on the other
hand, offers a more compact way of evaluating such averages
as it combines the dynamical part with the statistical part by
describing the total system Hamiltonian [Eq. (2.7)] in terms of
a time-dependent density operator ρ̂(t). The density operator in
the Schrödinger picture is like a state vector and thus becomes
a time-dependent quantity. However, the Schrödinger density
operator ρ̂(t) is related to the time-independent Heisenberg
density operator ρ̂ for fermionic fields [Eq. (3.1)], as developed
by Cahill and Glauber [25], by the relation

ρ̂(t) = Û (t)ρ̂Û−1(t), (3.10)

where Û (t) refers to the unitary time translation operator that
connects the Heisenberg and Schrödinger pictures of equation
of motion of the system. The formal solution of Heisenberg
operators â(t) and b̂†(t) [Eqs. (2.19) and (2.20)] is therefore
given in terms of their initial conditions as follows:

â(t) = Û−1(t)â(0)Û (t) ≡ Û−1(t)âÛ (t), (3.11)

b̂†(t) = Û−1(t)b̂†(0)Û (t) ≡ Û−1(t)b̂†Û (t). (3.12)

Since the two representations coincide at t = 0, we denote the
initial values of the operators as

â(0) ≡ â and b̂†(0) ≡ b̂†, (3.13)

and from now on we will adhere to this notation for all future
purposes. Carrying out the trace over the B mode, the time-
dependent reduced density operator for the A mode may be

given by

ρ̂A(t) = TrB[ρ̂(t)], (3.14)

where ρ̂(t) is the total density operator for the system and TrB
denotes the trace over the initial states of the B mode. The
mean value of an arbitrary operator (Â) for the A mode can be
calculated as

Tr[ρ̂(t)Â] = Tr[ρ̂Â(t)] = TrATrB[ρ̂(t)Â]

= TrA[ρ̂A(t)Â], (3.15)

with the help of the relations (3.10) and (3.11).
In order to evaluate the P function for the A mode, we have

to introduce the time-dependent form of the normally ordered
characteristic function χN (η,η∗,t) for the A mode, which is
given by

χN (η,η∗,t) = TrA[ρ̂A(t) exp(ηâ†) exp(−âη∗)] (3.16)

= Tr[ρ̂(t) exp(ηâ†) exp(−âη∗)]. (3.17)

According to Eq. (3.16), the function χN (η,η∗,t) is defined in
terms of the reduced density operator ρ̂A(t) by an expansion
analogous to the definition of the ordinary characteristic
function χ (η,η∗) [Eq. (3.9)], with the exponential written
in normally ordered form. In deriving Eq. (3.17) from
Eq. (3.16), we have used the relation (3.14). It may be worth
emphasizing at this point that special care must be taken to
the ordering of all fermionic quantities, i.e., both the operators
and the anticommuting numbers. Apart from these ordering
prescriptions, we can easily verify that Eq. (3.17) looks very
similar to their bosonic characteristic function. By further
substitution of Eq. (3.10) for ρ̂(t) and making use of the cyclic
property of the traces of products, Eq. (3.17) may be rewritten
as

χN (η,η∗,t) = Tr[ρ̂Û−1(t) exp(ηâ†) exp(−âη∗)Û (t)].

(3.18)

Now, using Eq. (3.11) and its adjoint, we can write

χN (η,η∗,t) = Tr{ρ̂ exp[ηâ†(t)] exp[−â(t)η∗]}. (3.19)

Equation (3.19) expresses χN (η,η∗,t) in terms of the initial
density operator ρ̂ for the joint system of the A and B modes,
and the time-dependent operator â(t) and its adjoint. From
Eq. (3.19), a formal solution of χN (η,η∗,t) may be calculated
by using the solution of Eq. (2.19) and its adjoint.

Now to obtain P representation for the A mode at time t ,
the reduced density operator ρ̂A(t) should be expressed in the
following form [29]:

ρ̂A(t) =
∫

d2αP (α,α∗,t)|α〉〈−α|. (3.20)

From Eqs. (3.19) and (3.20), it is evident that P (α,α∗,t) may
be calculated as the Fourier transform of the characteristic
function χN (η,η∗,t) as

P (α,α∗,t) =
∫

d2η exp(αη∗ − ηα∗)χN (η,η∗,t). (3.21)

So, the characteristic function χN (η,η∗,t) obtained from
Eq. (3.19), in turn, gives P (α,α∗,t) and thereby the form of
the reduced density operator ρ̂A(t). Equations (3.19)–(3.21)
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together with Eq. (3.15) form the basis of our analysis in the
next section for a variety of initial preparations of the system.

IV. STATISTICAL DESCRIPTION OF THE A MODE

A. Mean and variance; parametric amplification

Now it is straightforward to calculate the expectation value
and variance of the number of quanta present in the A mode
for a variety of initial states using Eqs. (2.19) and (3.15). We
are particularly interested in the situation when both the A
and B modes are initially in pure coherent states. Then the
initial state of the system may be taken as |α0,β0〉, where α0

and β0 are the Grassmann amplitudes of the A and B modes,
respectively. For such initial state, the mean value of â(t) is
given by

α(t) = Tr{ρ̂â(t)}
= 〈α0,β0|âĈa(t) + b̂†Ŝa(t)|α0,β0〉
= α0Ca(t) + β∗

0 Sa(t), (4.1)

where Ca(t) and Sa(t) are, respectively, the c-number functions
corresponding to the operator functions Ĉa(t) and Ŝa(t) as

Ca(t) ≡ e−iωat cos �t, (4.2)

Sa(t) ≡ −ie−iωa t sin �t, (4.3)

with an effective frequency � = κ(1 + 2M). Equation (4.1)
for α(t) with Grassmann field amplitudes α0 and β∗

0 has the
same form as those of bosonic fields with complex mode
amplitudes. Similarly, the variance of the quanta for the A
mode can be calculated as

var = 〈α0,β0|[â†(t) − α∗(t)][â(t) − α(t)]|α0,β0〉
= ∣∣S2

a (t)
∣∣ = sin2 �t. (4.4)

It is evident from Eq. (4.4) that the variance of the
Grassmann field amplitudes exhibits amplification followed by
deamplification for fermionic fields, which is in sharp contrast
with exponential enhancement for bosonic or electromagnetic
fields with complex field amplitudes [1–3]; see Fig. 1.
However, it is clear from Eq. (4.4) and from Fig. 1 that the
state which evolves from an initially coherent state does not
retain its coherent character for all times.

At this point, let us make a few remarks on fermionic
field amplitudes (or Grassmann amplitudes) in the physical
context [29]. Since the Grassmann variables obey the anti-
commutation relation, one may conclude that they do not bear
any classical analogy. This may lead to a misunderstanding and
requires further clarification. To be classically measurable, a
field amplitude has to be strong enough. It is only possible
when a large number of particles are accommodated in the
same state so that the fields get summed up coherently.
Thus, for a field amplitude to be classically measurable,
the particles have to obey Bose-Einstein statistics, e.g., light
quanta are bosons because strong electromagnetic fields can
be produced and measured classically. On the other hand,
for fermionic fields obeying Fermi-Dirac statistics, quantities
which are only bilinear in field variables â and â† can be
measured classically. The mean number of quanta in Eq. (4.1)
is linear in â and â† and hence linear in Grassmann variables,
represents the “amplitude” of the fermionic field mode, and

0 30 60 90
0.0

0.5

1.0
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r o

r <
n(

t)>

time (a.u.)

(i) 0= 0=0
(ii) <n>=<m>=0

FIG. 1. Variance of the number of the quanta present in the A
mode is plotted against time (in arbitrary units). This is identical to
the mean number of quanta 〈n(t)〉 of the A mode for α0 = β0 = 0,
which corresponds to the vacuum amplification [case (i)]. It also
happens for a chaotic mixture [Eq. (4.23)] with 〈n〉 = 〈m〉 = 0 [case
(ii)]. For both of the plots (i) and (ii), we have used the parameter
� = 0.01.

is not an experimentally relevant quantity. The variance of
quanta present in the A mode, on the other hand, is bilinear
in Grassmann amplitudes, which makes it experimentally
measurable.

B. P representation of the A mode; trapping and
quantum control

1. Initial coherent state

In the previous section, we have considered the case in
which the joint system of the A and B modes is initially
described by the pure coherent state |α0,β0〉. Evaluating the
variance of the amplitudes of the Grassmann field for the A
mode, we have shown that such state does not remain coherent
for all times. In this section, we consider initial coherent state
|α0,β0〉 with greater detail to solve for the P representation in
order to obtain a better description for the A mode.

Now the initial density operator for the joint system in this
case is given by

ρ̂ = |α0,β0〉〈α0,β0|. (4.5)

To evaluate χN (η,η∗,t) for the A mode, we write the exponen-
tials of the normal ordered form of Eq. (3.19) as follows:

exp[ηâ†(t)] exp[−â(t)η∗]

= exp[ηâ†(t) − â(t)η∗] exp(η∗η/2). (4.6)

Equation (4.6) follows from the well-known Baker-Hausdroff
operator identity, which holds whenever [[Â,B̂],Â] =
[[Â,B̂],B̂] = 0 [2,25]. Equation (3.19), together with
Eqs. (4.5) and (4.6), may then be cast into

χN (η,η∗,t) = exp(−ηη∗/2)〈α0,β0| exp{η[â†Ĉ∗
a (t) + b̂Ŝ∗

a (t)]

− [âĈa(t) + b̂†Ŝa(t)]η∗}|α0,β0〉. (4.7)
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In deriving Eq. (4.7) with the rules of anticommuting Grass-
mann numbers [Eq. (3.5)], we have used Eq. (2.19) for â(t)
and adjoint of Eq. (2.19). From Eq. (4.7), after appropriate
rearrangement, we find

χN (η,η∗,t) = exp

{
−ηη∗

2
[1 − |Ca(t)|2 + |Sa(t)|2]

}

×〈α0,β0| exp[ηâ†Ĉ∗
a (t) − b̂†η∗Ŝa(t)]

× exp[−âη∗Ĉa(t) + ηb̂Ŝ∗
a (t)]|α0,β0〉 (4.8)

= exp[−ηη∗|Sa(t)|2 + ηα∗
0C

∗
a (t) − β∗

0 η∗Sa(t)

−α0η
∗Ca(t) + ηβ0S

∗
a (t)] (4.9)

= exp[−ηη∗|Sa(t)|2 + ηα∗(t) − η∗α(t)],

(4.10)

where α(t) is given by Eq. (4.1) and α∗(t) refers to its complex
conjugate.

Substituting Eq. (4.10) for χN (η,η∗,t) into Eq. (3.21), we
find out that P (α,α∗,t) is given by the complex Fourier integral
in Grassmann variables,

P (α,α∗,t) =
∫

d2η exp{−ηη∗|Sa(t)|2 − η[α∗ − α∗(t)]

+ [α − α(t)]η∗}. (4.11)

This integral may be evaluated with the help of Fourier
transform of a Gaussian function in Grassmann variables,
which is defined by [11,26]∫

d2η exp[ληη∗ + αη∗ − ηα∗] = λ exp

(
αα∗

λ

)
, (4.12)

where λ is an arbitrary complex number. Making use of the
above identity, we find out from Eq. (4.11) that P (α,α∗,t)
takes the form

P (α,α∗,t) = −|Sa(t)|2 exp

{
− [α − α(t)][α∗ − α∗(t)]

|Sa(t)|2
}

.

(4.13)

The function P (α,α∗,t) for the A mode is thus a Gaussian
function in the complex Grassmann plane about the mean value
α(t) and α∗(t). The variance of the distribution is |Sa(t)|2 =
sin2 �t , which was also obtained from the solution of the
operator equations of motion [Eq. (4.3)].

The minus sign in front of Eq. (4.13) may appear surprising
since their bosonic counterparts are, in general, positive in
character [25,29]. The Hermiticity of ρ̂ and condition of Trρ̂ =
1, however, implies that the P (α,α∗,t) satisfy∫

d2αP (α,α∗,t) = 1. (4.14)

Equation (4.14) implies P has some characteristics of a
probability distribution. But the nonorthogonality of the
projection operators |α〉〈α| [Eq. (3.6)] makes it impossible to
interpret the function P (α,α∗,t) as a probability density. For
the bosonic case, however, it becomes a probability density
in an asymptotic sense, but no such correspondence can be
made for its fermionic counterpart. We can, at best, think of
the function P simply as a weight factor in an expansion of this
sort. No physical measurement is possible which corresponds

to the function P. The physical constraint such as positive
definiteness imposed on the density operator may lead to
P functions which may freely take negative values even for
a perfectly well-behaved density operator [25,29]. However,
the fermionic P representation has major advantages over
the bosonic P representation because of the conspicuous
properties of the Grassman calculus. Since the integration
is identical to differentiation for Grassmann algebra, the
fermionic P function is not affected by the mathematical
limitations that somewhat restrict the use of bosonic P

representation [25] to calculate statistical averages of various
normally ordered operators.

2. Initial vacuum state

Equation (4.13) has been derived for the initial coherent
state |α0,β0〉. If the initial state is chosen to be α0 = β0 = 0,
then it corresponds to the absence of any quanta in the
system or the system is free from any initial excitation. Even
then, a field is generated due to vacuum fluctuation, and
the corresponding P (α,α∗,t) function is obtained by setting
α(t) = α∗(t) = 0 as

P (α,α∗,t) = −|Sa(t)|2 exp

[
− αα∗

|Sa(t)|2
]

. (4.15)

This function also describes a chaotic mixture with variance
|Sa(t)|2 [Eq. (4.23)]. Since α(t) = α∗(t) = 0, the variance is
equal to the mean number of quanta present in the mode, i.e.,

〈n(t)〉 = |Sa(t)|2 = sin2 �t. (4.16)

In Fig. 1, we have shown that the variance is identical to
the mean number of quanta 〈n(t)〉 present in the A mode for
α0 = β0 = 0 [case (i)]. This happens also for a chaotic mixture
[Eq. (4.23)] with 〈n〉 = 〈m〉 = 0 [case (ii)], as illustrated in
Fig. 1.

Following Cahill and Glauber, it may be shown that a
density operator with a Gaussian P representation may be
written in the n-fermionic states with characteristic thermal
distribution. The density operator ρ̂A(t) may then be given
by [25]

ρ̂A(t) = [1 − 〈n(t)〉]
[ 〈n(t)〉

1 − 〈n(t)〉
]â†â

. (4.17)

For the case of vacuum fluctuation, ρ̂A(t) may be formally
given by substituting 〈n(t)〉 with |Sa(t)|2,

ρ̂A(t) = |Ca(t)|2
[ |Sa(t)|2
|Ca(t)|2

]â†â

= |Ca(t)|2 exp

[
â†â ln

{ |Sa(t)|2
|Ca(t)|2

}]
. (4.18)

3. Initial thermal or chaotic state

The cases in which one of the modes in a chaotically mixed
state (e.g., thermal equilibrium distribution) are important
from a practical point of view [2]. We start with when
both of the modes are of independent chaotic mixtures and
in the process examine situations of particular interest that
characterize population trapping and coherent control of
particular modes.
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Now, if the initial states of the A and B modes are
independent chaotic mixtures with mean quantum number 〈n〉
and 〈m〉, respectively, the initial density operator for the system
may be written in the form

ρ̂c =
∫

d2α0d
2β0Pc(α0,α

∗
0 ; β0,β

∗
0 )|α0,β0〉〈α0,β0|, (4.19)

where

Pc(α0,α
∗
0 ; β0,β

∗
0 ) = 〈n〉〈m〉 exp

[
−α0α

∗
0

〈n〉 − β0β
∗
0

〈m〉
]

. (4.20)

The function Pc(α,α∗,t) may then be obtained by taking an
average of Eq. (4.9) over the weight function Pc(α0,α

∗
0 ; β0,β

∗
0 ).

We then have

χN,c(η,η∗,t) =
∫

d2α0d
2β0

× exp[−ηη∗|Sa(t)|2 + ηα∗
0C

∗
a (t) − β∗

0 η∗Sa(t)

−α0η
∗Ca(t) + ηβ0S

∗
a (t)]

×Pc(α0,α
∗
0 ; β0,β

∗
0 ). (4.21)

By substituting the Gaussian form of Pc(α0,α
∗
0 ; β0,β

∗
0 ) given

by Eq. (4.20) into this expression and performing the integra-
tion with the help of identity relation (4.12), we obtain

χN,c(η,η∗,t) = e−ηη∗N(t), (4.22)

where

N (t) = 〈n〉|Ca(t)|2 + (1 − 〈m〉) |Sa(t)|2. (4.23)

The P (α,α∗,t) for the A mode is then evaluated as the Fourier
transform of χN,c(η,η∗,t) as

Pc(α,α∗,t) =
∫

d2ηe−ηη∗N(t)+αη∗−ηα∗

= −N (t) exp

[
− αα∗

N (t)

]
. (4.24)

The reduced operator ρ̂A,c(t) for the A mode thus corresponds
to a chaotic mixture with mean number N (t). For 〈n〉 = 〈m〉 =
0, the joint system is initially in the vacuum state, for which
N (t) = |Sa(t)|2. Equation (4.24) then becomes identical to
Eq. (4.15), as obtained earlier for vacuum amplification. The
effect of chaotic fields initially present in both the A and B
modes thus modifies the field strength of the A mode at time t ,
from |Sa(t)|2 to N (t). Equation (4.23) bears the characteristic
of fermionic nature of the model which carries important
consequences. In Fig. 2(a), we have plotted N (t) for nonzero
values of 〈n〉 and 〈m〉. From Fig. 2(a), it is obvious that one can
always prepare the initial states of the coupled modes so that
population in a given mode remains constant. The situation
is reminiscent of population trapping in quantum multilevel
systems [31]. In Fig. 2(b), for three sets of parameter values,
we have plotted the constant population for the A mode to stay
in its ground, excited, or superposed state. Thus the present
scheme may be applied as an efficient technique to control the
states of coupled qubit systems to store quantum information.

Finally, the choice of 〈n〉 = 0 implies that the initial state
of the A mode is the vacuum state |0〉A. The initial density
operator for the joint system, in this case, may be described by

ρ̂ = |0〉A A〈0| ρ̂B,〈m〉, (4.25)

0 30 60 90
0.1

0.2

0.31-<m>=

<n>=

N
(t)

time (a.u.)

<n> = 0.1
<m>= 0.7

(a)

0 30 60 90
0.0

0.5

1.0

N
(t)

time (a.u.)

 <n>=0.03, <m>=0.97
 <n>=0.97, <m>=0.03
 <n>=0.5,   <m>=0.5

(b)

FIG. 2. (Color online) Variation of the number of quanta N (t)
in the A mode with time (a.u.) is plotted when (a) the initial
states of the A and B modes are independent chaotic mixtures with
nonzero mean quantum number 〈n〉 and 〈m〉, respectively, and (b)
illustrates the population trapping in the ground (black), excited
(red), and superposed state (blue) for three sets of parameters 〈n〉 =
0.03, 〈m〉 = 0.97; 〈n〉 = 0.97, 〈m〉 = 0.03; and 〈n〉 = 0.5, 〈m〉 =
0.5. For both (a) and (b), we have used � = 0.01.

where the density operator for the chaotic B mode is

ρ̂B,〈m〉 = 〈m〉
∫

d2β0 exp

[
−β0β

∗
0

〈m〉
]

|β0〉〈β0|. (4.26)

The function P (α,α∗,t) which corresponds to the initial state
[Eq. (4.25)] may be obtained by substituting 〈n〉 = 0 in
Eqs. (4.23) and (4.24), and is given by the form

P (α,α∗,t) = − (1 − 〈m〉) |Sa(t)|2 exp

[
− αα∗

(1 − 〈m〉) |Sa(t)|2
]

.

(4.27)

The variance in this case may be illustrated by the same plot as
shown in Fig. 2(a), with the replacement of the mean quantum
number 〈n〉 = 0.
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V. POSSIBLE APPLICATIONS

We point out that our theoretical findings are well adopted
for the treatment of quantum optical experiments with atoms
which are fermionic in nature [32–35]. The fermionic atom
optics counterpart of parametric down-conversion with pho-
tons has been recently reported [36]. The dissociation of
40K2 molecules near magnetic Feshbach resonance reveals
an interesting twist as the constituent atoms in this case
obey fermionic statistics [37]. Based on a fermionic analog
of the squeezing Hamiltonian of standard quantum optics,
efforts have been made [36] to correlate the spatial correlation
measurement performed at JILA [37]. Their observations
correspond to our results, i.e., the average mode occupancy
of any one of the resonant modes undergoes oscillation
characteristic of fermionic statistics [36], which is in complete
contrast to exponential enhancement of the boson case [3]. To
set up the connection, we may note that one can generate
two-mode squeezed fermionic states [38] by applying a
two-mode squeezing operator Ŝ(ξ ) = exp(ξ â†b̂† − ξ ∗âb̂) with
real number ξ = reiφ , on the two-mode vacuum |0,0〉 as
|ξ 〉 = Ŝ(ξ )|0,0〉, â|0,0〉 = b̂|0,0〉 = 0 [25]. The squeezing
operator is unitary and resembles a unitary evolution operator
in quantum mechanics; therefore, Ŝ(ξ ) can be expressed as
Ŝ(ξ ) = exp(− i

�
Ĥ t) [39] where Ĥ = i�g(eiφâ†b̂† − e−iφ âb̂),

with gt = r . Clearly this Hamiltonian can be identified
as the Hamiltonian for the three-wave interaction term
�κ[â†b̂†e−iωt + H.c.] given by Eq. (2.7). It may be noted that in
experiment, the correlation measurements were made by using
absorption images after a time-of-flight expansion [40–42].
These detection techniques allow us to calculate full atom
counting distributions with spatial resolution and provide
an efficient way of detecting strongly correlated systems,
both in and out of thermal equilibrium [43]. Another area
of application is the mesoscopic systems which have been
proposed and implemented as parametric amplifiers [16–20].
A two-qubit coupled parametric amplifier can amplify a weak
signal about a hundredfold [20]. It has been achieved when
the two qubits are biased simultaneously by a weak signal and
a strong pump frequency. Harmonic mixing in two coupled
qubits can be used to control one driven qubit by applying
an additional ac signal to the other qubit. Such combined
coupled qubits can act as a quantum amplifier as well as
frequency shifter [19]. Advancement in such quantum qubit
systems together with the current investigation on fermionic
four-wave mixing [44] and association of fermionic atoms into
molecules [45,46] expand the paradigm of fermionic quantum

atom optics [47]. The present work sets up a general framework
in this context from a theoretical point of view.

VI. CONCLUSION

Based on a model of two fermionic oscillators which
are parametrically coupled to each other, we have explored
vacuum amplification, population trapping, and quantum
control over the quantum states of systems. The key elements
of our analysis are an expansion of the density operator for
fermionic fields in terms of Glauber representation or P

function and a reduced form of the time-dependent density
operator of a particular mode. Since fermionic operators
anticommute, it is necessary to work with anticommuting
numbers or Grassmann variables to calculate the statistical
properties of the coupled fermionic modes. We have shown
that the fermionic density operator and the P representation
may be used to calculate the statistical mean and the variance
of quanta which obey similar structures as their bosonic
counterpart. Although the anticommuting nature of Grassmann
variables precludes the possibility of interpreting the fermionic
field amplitude in physical terms, the variance or the mean
number of quanta for vacuum fluctuation can be interpreted
as experimentally relevant quantities. It is interesting to note
that vacuum amplification for a fermionic field possesses an
interesting bosonic analog. Explicit solutions are obtained for
the P representation for a variety of initial states of the modes
which facilitates the calculation of the mean number of quanta
in that given mode. The initial states considered are coherent
states with particular emphasis on vacuum amplification and
initial chaotic or thermal states. Thermal initial states provide
an interesting insight into the phenomena of quantum control
and population trapping for a single mode. Lastly, due to the
peculiar properties of the Grassmann algebra, the fermionic
P representation has the extra advantage over the bosonic
P distribution since it is not affected by the mathematical
limitations that sometimes restrict the use of bosonic P
function to calculate statistical averages. It is always possible to
calculate, therefore, the mean and correlation functions using
the fermionic P function by simple means.
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