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Coupling-length phase matching for nonlinear optical frequency conversion in parallel waveguides
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and Supélec, LMOPS, EA 4423, 57070 Metz, France
(Received 2 July 2014; published 13 October 2014)

We describe and analyze a quasi-phase-matching scheme for nonlinear optical frequency conversion where
the spatial modulation of mode intensity in coupled parallel waveguides provides the required modulation in the
generation of the frequency conversion signal, instead of a variation of any material parameter or propagation
constant. We analyze this coupling-length phase-matching (CLPM) scheme both for second-order frequency
conversion, such as second harmonic generation or difference-frequency generation, as well as for third-order
four-wave mixing processes, for which we consider the example of generating a longer wavelength by third-order
nonlinear mixing of two shorter wavelength waves. Numerous phase-matching conditions are identified in each
case. We show that the maximum photon conversion efficiencies reached after an optimum propagation length
are always higher than half those obtained for perfect phase matching in a single waveguide, with nearly 100%
photon conversion possible for several of the CLPM conditions we studied.
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I. INTRODUCTION

The phase-matched interaction of optical waves that is
required for efficient nonlinear optical frequency conversion
[1] can be achieved through a spatial modulation of the source
nonlinear optical polarization responsible for radiating the
generated wave. The most common implementation of such
a “quasi-phase-matching” scheme involves spatial changes
of the nonlinear optical response [1,2], as can be obtained,
for instance, by periodically poling ferroelectric nonlinear
crystals. Alternative approaches involve the modulation of
the geometry of a nonlinear waveguide in order to spatially
modulate the effective refractive index or the propagation
constant of the interacting waves [3–6].

An interesting but less known alternative for quasi-phase-
matching consists in modulating the intensities of the inter-
acting waves with individual spatial periodicities, as proposed
earlier for second harmonic generation in coupled waveguides
[7–10].

Such an intensity modulation can be easily obtained if the
interacting waves are made to travel along parallel waveguides
that allow the light to couple from one waveguide to the other.
Figure 1 shows a schematic representation of this idea. The
coupling lengths between the optical modes are then responsi-
ble for an effective coupling length phase-matching (CLPM)
process. The coupling constants between the waveguides play
the role of “coupling wave vectors” that can compensate
any mismatch between the sum of the wave vectors of the
fundamental waves and that of the generated wave. In the
present work we give a systematic treatment of CLPM in two
coupled parallel waveguides in the absence of any modulation
of linear or nonlinear optical properties. We extend previous
work [7–11] by developing a general framework for CLPM,
and we provide a large set of phase-matching conditions for
sum-frequency generation, difference-frequency generation,
and one case of frequency conversion via third-order nonlinear
optical effects. The latter is particularly interesting for use in

multicore fibers. In addition, we will also present an analysis
of the maximum photon-conversion efficiency that can be
reached after an optimum interaction length for the various
possible CLPM configurations.

Below we introduce the CLPM concept starting with
second-order frequency conversion. We discuss the phase-
matching conditions for the interaction of three waves with
different frequencies ω3 > ω2 > ω1, for application such as
optical parametric generation or the generation of a new
frequency from two strong pump waves. In particular, we
will discuss the CLPM conditions for sum-frequency genera-
tion [(SFG) ω3 = ω1 + ω2], difference-frequency generation
[(DFG) ω1 = ω3 − ω2], as well as second harmonic generation
[(SHG) ω3 = 2ω1 = 2ω2] as a special case. This is then
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FIG. 1. (Color online) Schematic diagram of the principle of
coupling-length phase-matching (CLPM). The two waveguides a and
b are assumed to be identical. The pump beams (at frequency ω1 and
ω2 in this example) are injected in waveguide a. The evanescent
coupling between the two waveguides causes the power of the
pump waves to oscillate between the two waveguides (schematically
represented in this sketch by the two lines meandering between
the two waveguides). Under the appropriate CLPM condition it is
possible to arrange for the signal wave at frequency ω3 that is
created by nonlinear optical interaction of the two pump waves to
grow constructively with propagation length, in both waveguides.
The qualitative depiction in this figure corresponds to the case of
sum-frequency generation (ω3 = ω1 + ω2) that will be presented later
in Fig. 2.
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followed by the derivation of the CLPM conditions for one
useful case of frequency conversion based on the third-
order nonlinear optical response: the generation of a longer
wavelength (infrared) radiation at a frequency ω1 = 2ω2 − ω3

from two shorter wavelength (visible or near infrared) waves at
frequencies ω2 and ω3. For each of the above CLPM processes
we give analytical expressions for the growth of the amplitude
of the generated wave in the undepleted pump regime. We also
discuss pump depletion, the corresponding saturation regime,
and the limits to the efficiency of nonlinear optical frequency
conversion when using CLPM.

We use the SI system throughout this work. We define scalar
complex amplitudes E(ω)(z) for waves traveling in the z direc-
tion in such a way that the optical electric field is given by the
real part of E(ω)(x,y,z,t) = E(ω)(z)u(ω)(x,y) exp[i(kz − ωt)],
where the normalized function u(ω) describes the transversal
field distribution (waveguide mode) at the frequency ω. While
in the ideal case all waves propagate in the fundamental TE or
TM waveguide mode, the treatment below holds also without
loss of generality if one or more waves are in a higher order
mode, which might be useful in some cases in order to limit
the phase mismatch.

The nonlinear optical response of matter is described by
second- and third-order susceptibilities [12]. As an example,
given waves with amplitudes E(ω1) and E(ω2) at a certain
coordinate in a nonlinear optical material, the second-order
nonlinear optical polarization that radiates a sum-frequency
wave has, at the same coordinate, the amplitude,

P
(ω3)
NL = ε0χ

(2)
eff E

(ω1)E(ω2), (1)

where ε0 is the electric constant and χ
(2)
eff (−ω3,ω2,ω1) is

the effective second-order susceptibility that depends on the
polarization of the interacting waves with respect to the third-
rank tensor of the second-order nonlinear optical susceptibility.
For the degenerate case of second harmonic generation (SHG)
one has

P
(2ω)
NL = 1

2ε0χ
(2)
eff [E(ω)]2. (2)

The third-order nonlinear optical polarization responsible
for the third-order difference-frequency process we are inter-
ested in is

P
(ω1)
NL = 3

4ε0χ
(3)
eff [E(ω2)]2E(ω3)∗, (3)

where the superscript asterisk stands for complex conjugation
and χ

(3)
eff (−ω1,ω2,ω2, − ω3) is the effective third-order suscep-

tibility.

II. COUPLED WAVE ANALYSIS

We consider the case of three waves at frequencies ω1, ω2,
and ω3 = ω1 + ω2 interacting with each other via the second-
order nonlinear optical susceptibility. The interaction occurs
within two waveguides that are identical and parallel to each
other. We describe waveguide modes with complex amplitudes
E(a,ωi )(z) and E(b,ωi )(z) that propagate in waveguide a and
waveguide b and can couple from one waveguide to the other.
We also introduce the amplitudes

A
(a,b)
i (z) =

√
ni

ωi

E(a,b,ωi )(z), (4)

where ni is the effective refractive index for a wave with
frequency ωi . These amplitudes are proportional to the square
root of the photon flux in waveguides a and b, respectively.
Later we will present graphs of the evolution of these
amplitudes as the interacting waves propagate, which will
allow one to directly visualize the photon flux and to easily
evaluate conversion efficiencies based on photon numbers.
This is useful because such photon conversion efficiencies
are independent of the specific frequencies ω1, ω2, and ω3 of
the three interacting waves.

The three coupled wave equations for the evolution of the
mode amplitudes in waveguide a, expressed in terms of the
amplitudes A

(a)
i and A

(b)
i , are

∂

∂z
A

(a)
3 = idA

(a)
1 A

(a)
2 e−i�k z + iκ3A

(b)
3 , (5)

∂

∂z
A

(a)
2 = idA

(a)
3 A

(a)
1

∗
ei�k z + iκ2A

(b)
2 , (6)

∂

∂z
A

(a)
1 = idA

(a)
3 A

(a)
2

∗
ei�k z + iκ1A

(b)
1 . (7)

Three equivalent equations hold for waveguide b. They can
be obtained by permuting the superscripts (a) and (b) in
each of the above equations. Here, �k = k3 − k2 − k1 is
the wave-vector mismatch of the longitudinal propagation
constants of the modes at the three wavelengths. The quantities
κi = κ(ωi) are constants describing the coupling of the given
wave between the two waveguides [13]. We do not allow the
κi to depend on the wave amplitudes, a possible higher order
correction that we neglect in the present work. In the above
equations, the effective nonlinear optical coupling constant
between the interacting waves is given by

d = χ
(2)
eff

c

√
ω1ω2ω3

n1n2n3
S, (8)

and depends on the effective nonlinear optical susceptibility
χ

(2)
eff introduced above and on the overlap integral S between

the waveguide modes for each frequency,

S =
∫∫ +∞

−∞
u(ω1)(x,y)u(ω2)(x,y)u(ω3)(x,y)f (x,y)dxdy, (9)

where f (x,y) is a function that describes the region where
the nonlinearity is active (|f (x,y)| � 1) and the u(ωi )(x,y)
describe the transverse mode profile of the interacting waves.
We recall that the degenerate limit of Eqs. (5)–(7) that
corresponds to second harmonic generation is obtained by
substituting ω1 = ω2 = ω and ω3 = 2ω in the coupled-wave
equations while at the same time using a nonlinear optical
constant d/2, i.e., half that obtained by doing the same
substitution in (8). This corresponds to the degeneracy factor
of one-half that must appear in (2) when there is only one
distinguishable input wave for SHG.

A. Sum-frequency generation

The case of sum-frequency generation is obtained when
wave 3 has zero amplitude for z = 0 and energy is transferred
to it from the two other waves. We find an analytical
solution under the “undepleted pump approximation,” where
we assume that the conversion efficiency remains small, so
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that the two “pump” waves are not depleted by the nonlinear
optical interaction. We also assume that the two pump waves,
with amplitudes A1,0 and A2,0, are both injected in waveguide a

at z = 0, as shown in Fig. 1. This corresponds to the easiest and
most likely practical experimental implementation. Injection
of both waves in both waveguides is possible in principle,
but this would require one to control the relative phase of
the injected waves at each wavelength because the overall
effect will depend on this phase. Under the above conditions,
Eqs. (6) and (7) for the two pump waves can be solved in
a straightforward way to obtain A

(a)
i (z) = Ai,0 cos(κiz) and

A
(b)
i (z) = iAi,0 sin(κiz) (i = 1,2). Inserting these expressions

into (5) for each waveguide leads to the coupled equations
that describe the amplitude A3(z) in waveguides a and b.
Conversion of trigonometric functions to exponential notation
delivers

∂

∂z
A

(a)
3 = id

4
[ei(κ1+κ2)z + ei(κ1−κ2)z + e−i(κ1−κ2)z

+ e−i(κ1+κ2)z]e−i�kzA1,0A2,0 + iκ3A
(b)
3 , (10)

∂

∂z
A

(b)
3 = id

4
[ei(κ1+κ2)z − ei(κ1−κ2)z − e−i(κ1−κ2)z

+ e−i(κ1+κ2)z]e−i�kzA1,0A2,0 + iκ3A
(a)
3 . (11)

These equations can be solved by taking the derivative with
respect to z of the first equation, and substituting the second
equation to obtain an equation for A

(a)
3 (z) that contains a sum

over several exponential factors, multiplied by different linear
combinations of the coupling constants and �k. After some
lengthy algebra one obtains an analytical expression for the
amplitude of the sum-frequency wave in waveguide a that can
be written as

A
(a)
3 (z) = d

4
A1,0A2,0 ξSF(z). (12)

This can be rewritten in terms of the electric fields by
substituting (4) and (8), to obtain

E(a,ω3)(z) = χ
(2)
eff S ω3

4cn3
E

(a,ω1)
0 E

(a,ω2)
0 ξSF(z). (13)

The complex function ξSF(z) describes the growth with
propagation length of the generated sum-frequency wave and
is given by

ξSF(z) = 2(κ3 − �k)e−iκ3z

K1K3
− 2(κ3 + �k)eiκ3z

K2K4

+ e−i(κ3−K1)z

K1
+ ei(κ3+K2)z

K2

− e−i(κ3+K3)z

K3
− ei(κ3−K4)z

K4
, (14)

with

K1 = κ1 − κ2 + κ3 − �k, (15)

K2 = κ1 + κ2 − κ3 − �k, (16)

K3 = κ1 − κ2 − κ3 + �k, (17)

K4 = κ1 + κ2 + κ3 + �k. (18)

Equation (14) has several interesting properties. The first
thing to note is that it is a sum of six terms with different
oscillatory behavior. In general, such a sum will not lead
to a constructive buildup of A

(a)
3 (z) for growing z. This is

the normal case in a non-phase-matched situation. However,
when one of the constants Ki (i = 1, . . . ,4) approaches zero,
then (for general values of the coupling constants) exactly
two of the six terms in (14) diverge, dominating over the
others. Interestingly, their divergence is such that their sum
always remains finite at finite distances. The result of taking
the limit of one Ki → 0 for large z is that the other four terms
remain bounded while the sum of the two diverging terms
grows linearly with z. The conditions Ki = 0 (i = 1, . . . ,4)
give therefore four coupling-length phase-matching (CLPM)
conditions that for a general choice of coupling constants
always result, for large propagation distances, in A

(a)
3 (z) →

izdA1,0A2,0 exp(±iκ3z)/4, where the negative sign in the
exponent belongs to K1 = 0 and K3 = 0, and the positive sign
belongs to K2 = 0 and K4 = 0 (these four CLPM conditions
are listed in the first four rows of Table I). An example of
a SFG process is shown in Fig. 2, which plots the growth
of the sum-frequency signal for the case where the CLPM

TABLE I. CLPM Conditions for SFG and DFG in two coupled waveguides. The CLPM column lists which of the Ki verify the Ki = 0
condition and the resulting phase-matching conditions are summarized in the following column. The initial growth in the undepleted regime of
the sum-frequency (difference-frequency) amplitude of the wave at ω3 (ω1) in the limit where z → ∞ is given by Eq. (13) [Eq. (19)], with the
factor ξSF(z) of Eq. (14) [ξDF(z) of Eq. (20)] tending to the propagation distance z multiplied by the values given in the third and fifth columns.
The quantities ηSF

max and ηDF
max give the maximum photon-conversion efficiencies in the depleted regime for each CLPM condition. Condition 9

corresponds to conventional phase matching in a single waveguide (�k = 0).

CLPM rule Effective condition lim
z→∞

(ξSF/z) ηSF
max(%) lim

z→∞
(ξDF/z) ηDF

max(%)

1 K1 = 0 �k = +κ1 − κ2 + κ3 ie−iκ3z ∼50 ie−iκ1z ∼50
2 K2 = 0 �k = +κ1 + κ2 − κ3 ieiκ3z ∼50 ie−iκ1z ∼50
3 K3 = 0 �k = −κ1 + κ2 + κ3 ie−iκ3z ∼50 ieiκ1z ∼50
4 K4 = 0 �k = −κ1 − κ2 − κ3 ieiκ3z ∼50 ieiκ1z ∼50
5 K1 = K2 = 0 �k = κ1, κ2 = κ3 2i cos(κ3z) ∼50 2ie−iκ1z ∼100
6 K1 = K3 = 0 �k = κ3, κ1 = κ2 2ie−iκ3z ∼100 2i cos(κ1z) ∼50
7 K2 = K3 = 0 �k = κ2, κ1 = κ3 2i cos(κ3z) ∼50 2i cos(κ1z) ∼100
8 K1 = K2 = K3 = 0 �k = κ1 = κ2 = κ3 3i cos(κ3z) + sin(κ3z) ∼86 3i cos(κ1z) + sin(κ1z) ∼98
9 K1 = K2 = K3 = K4 = 0 �k = κ1 = κ2 = κ3 = 0 4i 100 4i 100
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FIG. 2. (Color online) Spatial evolution of the absolute values of
the wave amplitudes in the case of SFG under the CLPM condition
K2 = 0 in parallel waveguides of length L. All solid curves are
obtained in the pump depletion regime by a numerical solution
of Eqs. (5)–(7) and the corresponding equations for waveguide b.
Panels (a) and (b) give the amplitudes, in waveguide a, of the
pump waves at frequency ω1 and ω2, respectively. The generated
sum-frequency wave amplitude is shown for both waveguides in
(c) and (d), respectively. The amplitudes are normalized to Ã =
|A(a)

1,0A
(a)
2,0|

1/2
and the nonlinearity constant used for the plots is

given by Ld = 2/Ã, with L the length of the waveguide. The other
parameters are κ1L = 160, κ2L = 80, κ3L = 40, and �kL = 200.
The nondepleted analytical solution (12) corresponds to the initial
part at short distances and is given explicitly in (c) as a dotted black
curve.

condition K2 = κ1 + κ2 − κ3 − �k = 0 is valid. The curves
are obtained in the pump depletion regime by numerically
solving Eqs. (5)–(7) together with the corresponding equations
for waveguide b. The initial linear growth of the envelope of
the wave at frequency ω3 seen in Figs. 2(c) and 2(d) reflects
the analytical solution (13) valid in the undepleted pump
regime. It can be seen that this analytical solution describes the
conversion process very well in the weak conversion regime.
As a rule of thumb, a departure from the analytic behavior
approximately takes place for propagation distances exceeding
the point where roughly 20% of the maximum convertible
photons have been frequency converted. This is true for most
CLPM configurations discussed in this work. We note also that
in the case depicted in Fig. 2 both waveguides carry essentially
the same sum-frequency intensity. This is no longer the case for

some other interesting CLPM conditions that we will discuss
later.

In summary, for a general choice of coupling constants a
CLPM condition Ki = 0 causes two of the six terms in (14)
to become dominant and to combine constructively to give a
signal wave intensity that grows quadratically with distance.
The effective nonlinearity that describes this growth in each
waveguide is χ

(2)
eff /4, which is smaller than the 2χ

(2)
eff /π one gets

for conventional quasi-phase-matching in a single waveguide
through the periodic inversion of the sign of the nonlinearity.
However, as seen in Figs. 2(c) and 2(d), in the above CLPM
cases both waveguides carry the same power, and therefore
the total sum-frequency power has to be multiplied by two, as
discussed in more detail later.

Table I gives the various CLPM cases that are obtained
under the condition that all coupling constants κi between
the two waveguides are positive. For each case, we give the
limiting value at large z for the complex amplitude of the
signal wave. The four simplest phase-matching conditions
discussed above correspond to lines 1–4 in Table I. It must
be noted that these conditions remain valid if one or two of
the coupling constants κi vanish. For instance, the condition
in line 2 keeps its validity if �k = κ1 + κ2 and κ3 = 0, which
gives lim

z→∞(ξSF/z) = i and lim
z→∞(ξDF/z) = ie−iκ1z. The latter

limit will be discussed below in connection with the case of
difference-frequency generation.

Since evanescent coupling is expected to be stronger at
the longer than at the shorter wavelengths, one may expect
in general that κ3 < κ2 < κ1. Among the CLPM conditions
1–4, the second one (K2 = 0) appears therefore as the easier
to implement because the coupling constants κ1 and κ2 sum
up with the same sign to compensate for larger �k’s. The
CLPM condition 4 is interesting when �k is negative, which
may be the case for nonlinear processes involving polarization
conversion.

We now discuss the effect of having more than one
vanishing constant Ki in (14). The corresponding CLPM
conditions are given in rows 5–8 of Table I. In these cases
more than two of the six terms in (14) become resonant
and the solution for A

(a)
3 (z) can display additional interesting

behaviors. As an example, the interference between terms
with different exponential factors in (14) can lead to a signal
amplitude that, while still growing linearly with distance, is
accompanied by rapid oscillation of the intensity between
the two waveguides. This is, for example, the case when
κ2 = κ3, which for κ1 = �k leads to both K1 = 0 and K2 = 0
(row 5 in Table I), and to the interference of four terms in
(14). As shown in Fig. 3, this results in an amplitude of
the growing sum-frequency wave that is modulated by an
oscillatory term 2 cos(κ3z). This is completely different from
the case depicted in Fig. 2, where the generated wave grew
hand-in-hand in both waveguides. In contrast, for the case of
Fig. 3, the generated wave intensity oscillates between the two
waveguides, synchronously with the pump wave at ω2. The
same result is obtained in the symmetric case where κ1 = κ3

and κ2 = �k (row 7). On the other hand, the choice κ1 = κ2

and κ3 = �k, which corresponds to K1 = 0 and K3 = 0 (row
6), leads to constructive interference of three terms in (14)
that all oscillate in phase, and generates a SFG amplitude
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FIG. 3. (Color online) Spatial evolution of the absolute values of
the SFG wave amplitudes under the CLPM condition K1 = K2 = 0
(row 5 in Table I) in parallel waveguides of length L. The curves
are obtained as in Fig. 2 and for the same nonlinearity. Panels (a)
and (b) give the amplitudes, in waveguide a, of the pump waves
at frequency ω1 and ω2, respectively. The generated sum-frequency
wave amplitude is shown for both waveguides in (c) and (d),
respectively. The solid curves are all in the pump depletion regime.
The black dotted curve in (c) corresponds to the analytic undepleted

regime according to (12) and (14). For these plots Ã = |A(a)
1,0A

(a)
2,0|

1/2
,

�kL = κ1L = 200, κ2L = κ3L = 60, and LdÃ = 2.

that grows as A
(a)
3 (z) = zdA1A2 exp(−iκ3z)/2. It is interesting

to note that in this last case it is the two pump waves that
have the same coupling constants and oscillate synchronously
between the two waveguides. Because of this, both pump
waves keep oscillating between the two waveguides while they
are depleted in amplitude and create sum-frequency waves
that grow hand-in-hand in both waveguides, a process that
can go on until both pump waves are almost depleted to zero
and almost complete 100% conversion of the fundamental
photons to the sum-frequency wave is reached. This is the same
behavior observed for the case of SHG, where the best CLPM
phase-matching condition will be discussed below (first row of
Table II). In contrast, for the case of row 5 in Table I (depicted
in Fig. 3), the two pump waves have different coupling
constants, their oscillation between the two waveguides is not
synchronized, and the maximum photon conversion efficiency
is limited to 50% (fourth column of Table I). Please see later
for a further discussion of photon-conversion efficiencies.

For completeness, Table I lists all possible CLPM situa-
tions, including those that may at first sight seem impossible
to realize because they require several coupling constants to
be equal to each other. However, one can envisage devices
where the oscillation of two of the interacting waves between
the two waveguides remains essentially synchronized over the
available length of the waveguides, which would then corre-
spond to an effective κi = κj situation. Also, the derived cases
with an extra condition κi = 0 for one or more of the coupling
constants can be experimentally approximated if the length of
the waveguides is less than the corresponding coupling length.
We note that the CLPM condition listed in line 8 of Table I
corresponds to a fully degenerate case and we do not expect it
to ever become important in practice. It gives rise to an oscil-
latory phenomenon where the sum-frequency amplitude in a
waveguide still grows linearly with propagation distance z but
rapidly oscillates (with spatial frequency 2κ3) by ±50% around
its growing mean value. Finally, it has to be noted that the last
condition in row 9 of Table I, even though it arises naturally
from our formalism, is not a CLPM condition in the strict sense.
It corresponds to the limiting case of perfect conventional
phase matching in a single waveguide, with no coupling to the
other waveguide for any of the interacting waves.

B. Second harmonic generation

Second harmonic generation corresponds to the limit of
sum-frequency generation for ω1 = ω2 and κ1 = κ2 with the
effective nonlinear optical coupling constant (8) reduced by
a factor of two to take into account degeneracy factors. In
this limit K1 = −K3 = κ3 − �k and (14) becomes the sum
of five terms. The number of CLPM conditions is reduced,
and those that remain are listed in Table II. We first note
that the CLPM condition in line 2 has the same form as
the usual quasi-phase-matching condition with the coupling
constants playing the role of wave vectors. Nevertheless, the
most interesting condition is the one in the first row of the
table, which is valid for all values of κ1 �= κ3 and requires
tuning of only the coupling constant for the generated wave.
The corresponding growth of the second harmonic wave
amplitude is illustrated in Fig. 4 for two different values
of κ1, which only influences the small spatially transient
oscillations but not the general slope. The CLPM condition in
the first row leads to the most efficient frequency conversion
scheme. In this case the effective nonlinearity that describes
the second harmonic growth is χ

(3)
eff /2. This is the same

value obtained for bulk quasi-phase-matching when assuming
a sinusoidally modulated nonlinearity and leads to a signal
intensity four times larger than any other CLPM conditions
with nonoscillatory growth of the second harmonic wave.
It is interesting to note that, in the present case, the second
harmonic field amplitude at the output of each waveguide is
half the one that one would have for perfect phase matching in a
single waveguide of equal length, and therefore the intensity is
four times less. However, the waves out of the two waveguides,
each with an amplitude A = A(a) = A(b) can be coherently
combined into a single mode with amplitude (A(a) + A(b))/

√
2,

for instance, by an inverse Y junction (half Mach-Zehnder).
In this way one can ultimately obtain an intensity in a single
coherent output beam that is equal to the sum of the intensities
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TABLE II. CLPM conditions for SHG in two coupled waveguides. Lines are numbered in the same way as for Table I to allow for easy
comparison. The last column gives the maximum photon-conversion efficiency ηSH

max in the depleted regime.

CLPM rule Effective condition lim
z→∞

(ξSF/z) ηSH
max(%)

1,3,6 K1 = K3 = 0 �k = κ3 2ie−iκ3z ∼100
2 K2 = 0 �k = 2κ1 − κ3 ieiκ3z ∼50
4 K4 = 0 �k = −2κ1 − κ3 ieiκ3z ∼50
2′,4′ K2 or K4 = 0, κ3 = 0 �k = ±2κ1, κ3 = 0 i ∼50
5,7,8 K1 = K2 = K3 = 0 �k = κ1 = κ3 3i cos(κ3z) + sin(κ3z) ∼86

in the two waveguides. The total SHG power is then given by an
effective nonlinearity that is one-half that achieved for exact
phase matching. This is better than the factor 4/π2 ≈ 0.41
achievable by conventional quasi-phase-matching using a
periodical square-wave modulation of the nonlinearity. The
possibility of coherently combining the modes in the two
waveguides exists for all CLPM scenarios discussed in this
work and would be useful for all cases where the generated
waves grow in both waveguides. As an example, coherent
combination of the generated modes could be employed for
the case depicted in Fig. 2—where the generated waves
grows hand-in-hand in both waveguides—while it would be
unnecessary for the case shown in in Fig. 3—where the
generated wave oscillates between the two waveguides and can
thus be fully accessed at the end of one of the two waveguides.

Going back to Table II, we would like to mention that the
conditions 2′ and 4′ of the fourth row are not pure CLPM
conditions, since they have been expanded by the additional
rule requiring κ3 = 0. We have added them explicitly here
since this case can be easily understood in terms of conven-
tional quasi-phase-matching where the second harmonic wave
stays in one waveguide while the nonlinear polarization that
generates it is modulated by the fundamental wave oscillating
between the two waveguides. It is a less interesting case than
the one discussed above because it is only valid when the

x
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FIG. 4. (Color online) Growth of the second-harmonic signal
amplitude for the optimum CLPM condition (first line of Table II)
and for the same effective nonlinearity (Ld = 2/|A(a)

1,0|) as in Figs. 2
and 3. Both curves are for �kL = κ3L = 40; the solid red curve is
for κ1L(= κ2L) = 120, and the dotted blue curve is for κ1L = 70.
The general growth behavior is independent of κ1, which only affects
the small oscillations shown enlarged in the inset.

second harmonic has zero coupling between the waveguides,
which may be too stringent a requirement. As soon as there
is some coupling of the second harmonic wave, then this
condition goes over smoothly to the condition in line 2 that we
already discussed above. The CLPM condition in row 4 would
be interesting in case of anomalous dispersion or birefringence
such that �k < 0, corresponding to the case where the
effective refractive index for the second harmonic wave is
smaller than that for the fundamental wave. The last line in the
table is the degenerate case. As for SFG, this case leads to a
strong spatial oscillation in the generated signal wave.

C. Difference-frequency generation

We now consider the case of difference-frequency gener-
ation (DFG), where a wave is generated with a frequency
corresponding to the difference of the frequencies of two
interacting waves. In this case the coupled wave equations are
the same as Eqs. (5)–(7) but the initial condition is different.
We now start with the two waves ω3 and ω2 injected in one
waveguide, and solve for the z dependence of the wave at
the lower frequency ω1 = ω3 − ω2, which initially has zero
amplitude, in the undepleted pump approximation. Following
the same procedure described above for SFG one finds

E(a,ω1)(z) = χ
(2)
eff ω1

4cn1
E

(a,ω3)
0

[
E

(a,ω2)
0

]∗
ξDF(z), (19)

where

ξDF(z) = −2(κ1 − �k)e−iκ1z

K1K2
+ 2(κ1 + �k)eiκ1z

K3K4

+ e−i(κ1−K1)z

K1
+ e−i(κ1−K2)z

K2

− ei(κ1−K3)z

K3
− ei(κ1−K4)z

K4
. (20)

The values assumed by ξDF for the CLPM conditions
in the case of DFG are listed in the second-to-last column
of Table I. Note that in the SFG case the generated wave
oscillates fully between the two waveguides for line 5 but not
for line 6, while it is the other way around for DFG. This is
because we have chosen the wave at ω1 as the generated wave
for DFG. Again, the condition in line 2 (K2 = 0) appears as
the easiest to implement. Condition 5 leads to an optimum
conversion but might be achievable only if the wavelengths
ω3 and ω2 are fairly close to each other. The corresponding
evolution of the normalized wave amplitudes is illustrated
in Fig. 5. It is evident that in this case essentially all the
photons at the frequency ω3 can be ultimately converted to
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FIG. 5. (Color online) Spatial evolution of the absolute values of
the DFG wave amplitudes under the CLPM condition K1 = K2 = 0
(row 5 in Table I) in parallel waveguides of length L. The curves
are obtained as in Fig. 2 and for the same nonlinearity. Panels (a)
and (b) give the amplitudes, in waveguide a, of the pump waves at
frequency ω3 and ω2, respectively. The amplitude of the generated
difference-frequency wave is shown for both waveguides in (c) and
(d), respectively. The solid curves are all in the pump depletion
regime. The black dotted curve in (c) corresponds to the analytical
solution in the undepleted regime according to Eqs. (19) and (20). For
these plots Ã ≡ |A(a)

3,0A
(a)
2,0|1/2, �kL = κ1L = 200, κ2L = κ3L = 60,

and LdÃ = 2.

photons at frequency ω1, distributed equally between the two
waveguides, which leads to a maximum photon-conversion
efficiency of ∼100% (see the discussion of conversion
efficiency later in this article). The undepleted solution given
by (19) and (20) is still satisfactory up to about half the
distance at which full depletion of the pump occurs.

We conclude this discussion of second-order effects by not-
ing that, while we have only explicitly treated the cases of SFG
and DFG, the CLPM conditions in Table I are valid in general
for any second-order three-wave interaction, and they can also
be used to realize phase-matched optical parametric generation
or optical parametric amplification in two coupled waveguides.

D. Frequency down-conversion by third-order nonlinear optics

We now analyze the use of a third-order nonlinear optical
material to generate a longer wavelength wave by the third-
order interaction of two waves with shorter wavelengths. Here,
two waves at frequencies ω3 > ω2 generate a wave at fre-

quency ω1 = 2ω2 − ω3 through the third-order susceptibility
χ (3)(−ω1,ω2,ω2, − ω3). The third-order polarization created
by such a process is given by (3) and, in the same notation that
we used above, the coupled-wave equations that describe the
third-order interaction between these three waves are

∂

∂z
A

(a)
3 = iχA

(a)
1

∗[
A

(a)
2

]2
e−i�k z + iκ3A

(b)
3 , (21)

∂

∂z
A

(a)
2 = 2 iχA

(a)
1 A

(a)
2

∗
A

(a)
3 ei�k z + iκ2A

(b)
2 , (22)

∂

∂z
A

(a)
1 = iχ

[
A

(a)
2

]2
A

(a)
3

∗
e−i�k z + iκ1A

(b)
1 , (23)

where �k = k3 − 2k2 + k1 is the wave-vector mismatch,

χ = 3

8

χ
(3)
eff

c

√
ω1ω

2
2ω3

n1n
2
2n3

S (24)

is the effective nonlinear optical coupling constant for this
third-order interaction, and S is an overlap integral similar
to (9) but involving one additional term. For the process
of interest here, the wave at frequency ω1 is initially zero
and grows because of energy transfer from the other two
waves. We again assume that the energy in the two pump
waves is initially injected in one waveguide, and follow the
same procedure outlined earlier for the case of second-order
nonlinearities to find the z dependence of the signal wave in the
undepleted pump approximation. The two coupled equations
for the amplitudes A

(a)
1 and A

(b)
1 are

∂

∂z
A

(a)
1 = iχ

8
e−i(2κ2+κ3)z(ei2κ2z + 1)2(ei2κ3z + 1)

× e−i�kzA2
2,0A3,0 + iκ1A

(b)
1 , (25)

∂

∂z
A

(b)
1 = − iχ

8
e−i(2κ2+κ3)z(ei2κ2z − 1)2(ei2κ3z − 1)

× e−i�kzA2
2,0A3,0 + iκ1A

(a)
1 , (26)

where sine and cosine functions have again been expressed in
exponential form. The solution for A

(a)
1 (z) is

A
(a)
1 (z) = χ

8
A2

2,0A
∗
3,0 ξ (3)(z). (27)

After substituting (4) and (24) one finds

E(a,ω1)(z) = 3χ
(3)
eff ω1

64cn1

[
E

(a,ω2)
0

]2[
E

(a,ω3)
0

]∗
ξ (3)(z), (28)

with

ξ (3)(z) = κ2
1 − 2κ2

2 + κ1κ3 + (2κ1 + κ3)�k + �k2

K1K3K5
4eiκ1z

− κ2
1 − 2κ2

2 + κ1κ3 − (2κ1 + κ3)�k + �k2

K2K4K6
4e−iκ1z

− 2ei(κ1−K1)z

K1
+ 2e−i(κ1−K2)z

K2

− ei(κ1−K3)z

K3
+ e−i(κ1−K4)z

K4

− ei(κ1−K5)z

K5
+ e−i(κ1−K6)z

K6
, (29)
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and

K1 = κ1 − κ3 + �k, (30)

K2 = κ1 − κ3 − �k, (31)

K3 = κ1 − 2κ2 + κ3 + �k, (32)

K4 = κ1 − 2κ2 + κ3 − �k, (33)

K5 = κ1 + 2κ2 + κ3 + �k, (34)

K6 = κ1 + 2κ2 + κ3 − �k. (35)

Here we see that the third-order interaction can be de-
scribed with the exact same methodology we followed for
the second-order interaction. The CLPM conditions for the
third-order interaction are obtained from Ki = 0, i = 1, . . . ,6
as well as a combination of these cases. Again one finds
several possibilities. This time, though, the situation is more
symmetric and in view of this symmetry it is convenient to
collect the above quantities pairwise by defining

Kα = κ1 − κ3 ± �k, (36)

Kβ = κ1 − 2κ2 + κ3 ± �k, (37)

Kγ = κ1 + 2κ2 + κ3 ± �k. (38)

Inspection of Eq. (29) delivers the CLPM conditions summa-
rized in Table III, which are expressed using these quantities.
Note that a condition such as Kα = 0 means that either K1 = 0
or K2 = 0, but not both. Table III shows that the meaning
of all CLPM conditions can be essentially summarized as
κ1 − κ3 = ±�k and κ1 ± 2κ2 + κ3 = ±�k, which are the
cases listed in rows 1–3, corresponding to the conditions when
exactly two terms in (29) are dominant. The CLPM conditions
in rows 4–6 can all be derived from those in rows 1–3 in special
cases where some of the coupling constants are degenerate or
equal to zero. Note that adding a third equality in the first
column (Kα = 0,Kβ = 0,Kγ = 0) does not lead to any more
CLPM conditions in addition to those already listed in the
table. Also, as was the case for the second-order processes, the
condition in row 7 is not a true CLPM condition because it
corresponds to conventional exact phase matching in a single
waveguide.

Among the CLPM conditions listed in Table III, the one
in the first line, involving K1 or K2, is the most generally

interesting. It is independent of the coupling constant for the ω2

wave and delivers a steady growth of the amplitude of the signal
wave with distance to reach a photon-conversion efficiency of
∼100% at an appropriate propagation length (see next section
for a discussion of photon-conversion efficiencies). Figure 6
visualizes this situation for the case where K2 = 0. Again,
the analytical solution according to (28) and (29) for the
undepleted case follows well the exact numerical solution until
pump depletion starts becoming significant.

The other primary CLPM conditions (lines 2 and 3 of
Table III) depend on all three coupling constants and deliver
less signal intensity. The degenerate limiting cases for κ3 =
κ2 = 0 or κ1 = κ2 = 0 given in row 5 deliver the best efficien-
cies. While the case κ1 = κ2 = 0 does not appear practically
realistic, the one requiring κ3 = κ2 = 0 is conceivable. In fact,
for a large difference in wavelength between short-wavelength
pump waves at ω3 and ω2 and long-wavelength signal wave
at ω1 one could achieve the limit κ1 � κ2,κ3, which may
make the coupling length for the two short-wavelength pump
waves longer than the waveguide length necessary to generate
sufficient signal power. Finally, we note that the only solution
for this example where the generated wave oscillates between
the waveguides is the one for the second case of row 4
in Table III. However, also in this case the related CLPM
condition is unlikely to be realized in practice as it requires the
equality of the coupling constants for two potentially rather
distant wavelengths.

III. ADDITIONAL DISCUSSION

In addition to the derivations of CLPM conditions and
effective nonlinearity that we presented in the previous
sections, the nature of the CLPM process also necessitates
a deeper discussion of the ultimate efficiency of the nonlinear
optical frequency conversion at longer propagation lengths, for
which pump depletion occurs. This is important because a full
analysis based on the coupled-wave equations [Eqs. (5)–(7)] in
the two parallel waveguides shows that not all CLPM condi-
tions allow one to reach the maximum possible conversion
efficiency just by increasing the interaction length. As an
example, consider the SFG process shown in Fig. 2: The two
pump waves clearly trend towards a situation where half of

TABLE III. CLPM conditions for a third-order interaction generating a wave ω1 = 2ω2 − ω3 in two coupled waveguides. The maximum
photon-conversion efficiency η(3)

max in the depleted regime is also given.

CLPM rule Effective condition lim
z→∞

[ξ (3)/z] η(3)
max(%)

1 Kα = 0 ∓�k = κ1 − κ3 2ie±iκ1z ∼100

2 Kβ = 0 ∓�k = κ1 − 2κ2 + κ3 ie±iκ1z ∼50

3 Kγ = 0 ∓�k = κ1 + 2κ2 + κ3 ie±iκ1z ∼50

4 Kα = Kβ = 0

{±�k = −κ1 + κ2, κ2 = κ3

±�k = κ2 − κ3, κ1 = κ2

3ie±iκ1z

ie∓iκ1z + 2i cos(κ1z)
∼80
∼86

5 Kα = Kγ = 0

{±�k = κ1, κ2 = κ3 = 0
±�k = κ3, κ1 = κ2 = 0

4ie∓iκ1z

4i

∼100
∼100

6 Kβ = Kγ = 0

{±�k = κ1 + κ3, κ2 = 0
±�k = 2κ2, κ1 = κ3 = 0

2ie∓iκ1z

2i

∼100
∼50

7 Several �k = κ1 = κ2 = κ3 = 0 8i 100
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FIG. 6. (Color online) Spatial evolution of the amplitudes of
the interacting waves for third-order frequency down-conversion,
ω1 = 2ω2 − ω3 under CLPM condition K2 = 0 (row 1 in Table III)
in parallel waveguides of length L. Panels (a) and (b) give the
amplitudes, in waveguide a, of the pump waves at frequency ω3

and ω2, respectively. The generated wave amplitude at the frequency
ω1 is shown for both waveguides in (c) and (d), respectively. The
solid curves are all in the pump depletion regime. The black dotted
curve in (c) corresponds to the analytical solution from (28) and
(29) in the undepleted regime. For these plots Ã ≡ (|A(a)

3,0||A(a)
2,0|2)1/3,

�kL = 200, κ1L = 240, κ2L = 60, κ3L = 40, and LχÃ2 = 2. The
curves are normalized to the initial amplitude of the wave ω3 injected
in waveguide a.

each normalized amplitude (one-quarter of the initial number
of photons) is left in each one of the two waveguides. At
this point, only 50% of the initial number of photons is in
the sum-frequency wave, and by extending the calculations to
longer propagation lengths we have seen that after this ∼50%
conversion state is reached, further propagation leads to the
full re-creation of the two pump waves accompanied by the
depletion of the generated sum-frequency wave. This imposes
a maximum of ∼50% on the photon-conversion efficiency of
this process, a maximum that is not apparent from the CLPM
solution in the nondepleted wave approximation. In this section
we present the definitions of photon-conversion efficiency that
we reported in the previous tables, and discuss the maximum
efficiencies that can be reached in every CLPM configuration.

It is useful to first discuss the case of SHG. In an ideal
case of conventional phase matching in a single waveguide,
obtained, for example, using birefringence or the modulation
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FIG. 7. (Color online) Periodic behavior of second-harmonic
generation in the pump depletion regime. (a) Dependence of the
photon-conversion efficiency ηSH on propagation distance under the
CLPM condition in the first line of Table II (�k = κ3). (b) Evolution
of the corresponding total normalized pump wave photon intensity,
where Iω(z) ∝ |A(a)

1 (z)|2 + |A(b)
1 (z)|2 and Iω(z = 0) ∝ |A(a)

1 (0)|2. The
inset in (b) shows the photon intensity of the fundamental wave in each
individual waveguide around the point of maximum pump depletion.
The parameters are as in Fig. 4, �kL0 = κ3L0 = 40, κ1L0 = 120,
and L0d = 2/|A(a)

1,0|.

of the nonlinearity, the classical theory for SHG predicts
that 100% conversion efficiency is approached asymptotically
with propagation length following a tanh2 functional form
[1,12] and that ultimately only the second harmonic wave
remains. This corresponds to a photon-conversion efficiency
ηSH = 100%. In addition, the classical theory does not predict
any nonlinear back-conversion to the fundamental frequency
after this state has been reached, because the direction of
energy flow between the two interacting waves is determined
only by their respective phase shifts, which do not change
during propagation.

Figure 7 shows the propagation length dependence of
the photon-conversion efficiency, ηSH, for SHG in parallel
waveguides using the first CLPM case listed in Table II. In
this case, ηSH reaches essentially 100%, like in the case of an
individual uncoupled waveguide, or bulk crystal under perfect
phase matching, but a small portion of the fundamental wave
is left over. As propagation continues, the fundamental wave
is recreated again in full, depleting the SH wave back to zero,
and then the process starts again, creating the periodic behavior
shown in the figure, which is not predicted for standard phase-
matched SHG. It is interesting to note that the oscillations
observed for CLPM in coupled waveguides are similar—
even though they have a completely different origin—to the
behavior predicted by a quantum mechanical analysis of SHG
[14], where vacuum fluctuations and spontaneous emission
processes produce an accumulated phase shift between the
interacting waves that ultimately leads to the reversal of the
direction of energy flow between the two waves.

The periodic modulation of the frequency conversion
efficiency observed in the CLPM case [Fig. 7(a)] is due to the
fact that CLPM phase matching is achieved by compensating
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the phase differences accumulated during propagation in a
waveguide with the phase differences accumulated because
of the fields oscillating between the two waveguides, which
makes the process also dependent on the distribution of
field amplitudes between the two waveguides. While the
analytical results we presented earlier show that the CLPM
conditions correspond to complete phase matching, pump
depletion can lead to a power distribution between the two
waveguides that does not support further conversion. Often,
this state is characterized by a pump wave becoming equally
distributed between the two waveguides. For the SHG example
discussed above, this has a negligible effect on the maximum
photon-conversion efficiency; but when the maximal ηSH ∼
100% is reached, there is still a small remnant fundamental
wave amplitude oscillating between the two waveguides. With
further propagation, this remnant wave then seeds a reverse
conversion process 2ω − ω → ω, which is also phase matched
and is described by the same CLPM condition and coupled
wave equations that lead to SHG conversion in the first
place. The (phase-matched) reverse process then “explodes,”
recreating the fundamental with almost 100% efficiency, and
the whole cycle repeats.

We find that all the CLPM phase-matching processes
studied in this work exhibit a periodic modulation of the
photon-conversion efficiency in the depleted pump regime;
in some cases the maximum efficiency observed is very close
to the ideal case for a given nonlinear optical process, in some
other cases it is not. To characterize the effectiveness of the
CLPM process we defined a photon-conversion efficiency for
all frequency conversion processes we considered. In all cases,
our initial condition was the practically interesting one of all
pump waves injected in one of the two waveguides, with
the generated wave starting at zero amplitude. We defined
the photon-conversion efficiencies as the number of photons
created in the generated wave (summing those found in each
waveguide) divided by the number of photons ideally expected
for 100% conversion in each nonlinear process. The maximum
photon-conversion efficiencies for SHG (ηSH

max), SFG (ηSF
max),

DFG (ηDF
max), and for third-order frequency down-conversion

(η(3)
max), are given for each CLPM condition in Tables I–III. In

some cases, an effective conversion efficiency of nearly 100%
is reached, similar to the case of SHG discussed above; in other
cases the maximum conversion efficiency is limited to ∼50%.
Tables I–III show that for every one of the CLPM conversion
processes one can reach at least 50% photon-conversion
efficiency and that at least one CLPM condition with nearly
100% conversion exists for each type of nonlinear interaction.

We mentioned one example when the maximum conversion
efficiency is 50% at the beginning of this section: It is the
SFG case presented in Fig. 2, where the maximum conversion
state is characterized by half of the fundamental photons
being distributed equally between the two waveguides and is
followed by a return to the initial condition and a subsequent
periodic modulation with propagation distance. The same
behavior is observed for all of the CLPM conditions in the first
four rows of Table I. The period of the oscillation in conversion
efficiency is similar for all cases, and depends essentially only
on the effective nonlinearity, varying little with the value of
the coupling constants. Another example is DFG, also using
any of the CLPM conditions in the first four rows of Table I.

In DFG, a pump photon at ω3 is annihilated to create a photon
at ω2 and one at the difference frequency ω1. A DFG process
reaches 100% photon-conversion efficiency once the pump
at ω3 has been fully depleted (and the pump at ω2 has been
correspondingly amplified). This is possible for DFG using the
CLPM condition in row 5 of Table I, a case that we depicted
in Fig. 5. But for the CLPM conditions in the first four rows of
Table I, the pump wave at ω3 can only be depleted down to half
its initial amplitude in each waveguide. This corresponds to
half the initial number of photons at ω3 still surviving, equally
distributed between the two waveguides, giving a maximum
photon-conversion efficiency of 50%. From this analysis we
can in general say that for some CLPM conditions half the
photons from a pump wave get “trapped” in an equidistributed
state between the two waveguides, and cannot be converted
anymore. Once this situation with equal pump power in both
waveguides has been reached, the direction of energy flow
changes sign, causing the pump power to “rebound” (going
back to the initial state of full oscillation between the two
waveguides) while the generated wave is depleted again.

The cases where the maximum conversion efficiency has
been given as ∼86%, ∼80% or ∼98% are in general character-
ized by a complex spatial dynamics, and the photon-conversion
efficiencies provided in the tables are the value observed for
the first maximum in conversion efficiency. For instance, for all
cases with ηmax ∼ 86% there is a spatially transient maximum
of the conversion efficiency, followed by a damped oscillation
towards a quasi-steady-state with ∼50% efficiency, all this
being followed by the reversed conversion process that finally
makes the evolution of the amplitudes with propagation length,
as in general expected for CLPM, periodic.

We conclude this section with a note on what we think are
the most promising situations in which CLPM schemes could
be effectively employed.

The second-order CLPM processes seem particularly at-
tractive for frequency conversion applications in isotropic
materials that possess large optical nonlinearities, but for
which birefringent phase matching cannot be applied and
conventional quasi-phase-matching methods are difficult. As
an example we mention gallium arsenide (GaAs), which
has a large nonlinearity and a wide transparency range,
making it very attractive for mid-IR coherent sources (e.g.,
with generated wavelengths in the atmospheric transmission
windows). While relevant efforts to engineer quasi-phase-
matching in GaAs have been ongoing—starting from diffusion
bonding of periodically orientation-reversed thin wafers [15]
and more recently followed by directly grown orientation-
patterned crystals [16–20]—the use of the CLPM processes
discussed in this work represents a valid alternative that can
be easily realized by simply creating two parallel waveguides
using well-established methods. CLPM would then enable,
e.g., difference-frequency generation between wavelengths of
1.5 and 2.1 μm to deliver radiation near 5.25 μm, while a
source at ∼10 μm could be built by difference-frequency
generation between 2.5 μm and 2 μm. For GaAs, this last
example is associated with a phase mismatch of the order of
�k ≈ 75 mm−1, for which one can achieve CLPM in parallel
waveguides by, e.g., a K2 = 0 process using coupling constants
of the same order of magnitude. Such values are well under
reach for waveguides based on GaAs/AlGaAs technology
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[10]. Another intriguing possibility is that of designing two
waveguides that are not exactly parallel, so that the coupling
coefficients, and therefore the wavelength at which CLPM
is achieved, vary over the length of the waveguides. This
may lead to a wavelength converter that, working over large
bandwidths, can support tunable laser sources.

The third-order DFG process we presented could be
naturally implemented in dual-core fibers. Microstructured and
photonic bandgap fibers also offer an attractive playground
both for controlling the optical modes at different wavelengths
and for tuning the coupling constants between the cores, while
at the same time providing large interaction lengths. Depend-
ing on the application, silica fibers as well as chalcogenide
fibers or other oxide fibers could be used. Again, no periodic
modulation of the fiber properties are required to implement
CLPM; it is sufficient to design two appropriately spaced cores.
Then, depending on the transparency range of the fiber material
it would be possible to use the 2ω2 − ω3 → ω1 CLPM process
to combine two near-infrared laser sources to obtain longer
wavelength radiation. As an example, mixing the outputs of a
1550-nm fiber laser and of a 1064-nm Nd:YAG laser would
deliver radiation near 2.85 μm, or combining the output of a
960-nm laser diode that pumps an erbium fiber laser with the

output of the fiber laser itself would produce a wavelength of
4 μm. Further in the infrared, mixing of 2.1 μm and 1.2 or
1.3 μm would deliver a source at 8.4 or 5.5 μm, and so on.

IV. CONCLUSIONS

We presented an in-depth discussion of how it is possible
to obtain an effective quasi-phase-matched nonlinear optical
three-wave interaction process in two parallel, coupled waveg-
uides without any spatial modulation of linear or nonlinear
optical properties along the propagation length. We called this
effect coupling-length phase matching and demonstrated that
it works for any second-order nonlinear optical interaction,
from second harmonic generation to parametric processes,
and also for third-order nonlinear optical interactions. We
derived all the CLPM conditions for second-order nonlinear
optical frequency conversion and for third-order difference-
frequency generation based on a 2ω2 − ω3 → ω1 process, and
we determined the effective optical nonlinearity for all of them,
as well as the corresponding maximum photon-conversion
efficiency, which was found to vary between 50% and 100%,
depending on the CLPM configuration.
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