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Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering
in optomechanics
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We demonstrate a complete, probabilistic quantum dynamical simulation of the standard nonlinear Hamiltonian
of optomechanics, including decoherence at finite temperatures. Robust entanglement of a photonic pulse with a
mechanical oscillator is predicted. Our exact quantum simulations use the positive-P technique, are scalable to
large Hilbert spaces, and give excellent agreement with recent experiments. We predict the required conditions
for the next stage in this research. Strong quantum steering between the photonic and mechanical systems is
possible, depending on thermal occupation. This is more viable in optical than in electromechanical experiments.
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I. INTRODUCTION

Optomechanical oscillators provide fundamental tests of
mesoscopic quantum mechanics and have potential technolog-
ical applications for ultrasensitive measurement. Impressive
success in cooling optomechanical systems near their ground
state has been reported [1–4], with demonstrations of a number
of quantum mechanical effects for mesoscopic systems [5–8],
including the observation of entanglement of a microwave field
with a mechanical oscillator, in an elegant electromechanical
experiment [9]. This was predicted theoretically [10–12] and
involves pulsed inputs [12,13].

The next outstanding goal is to observe the nonlocal
quantum correlations known as EPR steering, as predicted by
Einstein, Podolsky, and Rosen in their famous EPR paradox
[14–16], for mesoscopic massive objects. Such a realization
would be a precursor to experiments that directly probe the
macroscopic reality of an object [17,18]. It is of fundamental
interest not only whether an optical field can entangle with a
massive oscillator but also whether the two systems can show
these strange directional “spooky action-at-a-distance” [19]
effects that Schrödinger called “steering” [20–22].

Here we carry out a scalable, probabilistic quantum
simulation of the standard nonlinear optomechanical model,
in a regime allowing entanglement and EPR steering of
the mechanical oscillator. This fully elucidates the quantum
mechanical interplay between entanglement generation and
thermal decoherence. We study the dynamical generation
of correlations between the oscillator and an output pulse
for realistic parameters. In our simulations we utilize the
exact positive-P (+P ) phase-space method [23], which has
a positive probability distribution for all quantum states. Our
work passes the barrier set by Olsen et al. for their pendular
cavity quantum simulation [24]. This used the +P method
but with a different noise model, and with high temperatures
that do not allow entanglement. Other earlier optomechanical
calculations make assumptions ranging from linearization [10]
to adiabatic approximations [12], or both.

A limitation in current optomechanics experiments is that
long interaction times lead to increased decoherence, owing to
a coupling to the environment at relatively high temperature.
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It was recently proposed that this could be overcome by
creating and verifying entanglement with pulses of light on
fast time scales [12,13]. This was an adiabatic, linearized study
[25]. The authors showed that entanglement is feasible, pro-
vided Qf � kmTbath/h, where Tbath is the temperature of the
environment, f is the frequency of mechanical oscillator, and
Q is the cavity quality. By comparison, we can treat arbitrary
pulse shapes, the method is exact rather than linearized, and
we use optimized entanglement and EPR measures. We also
compare our results with the truncated Wigner (tW) method
[26], valid for large photon-numbers [27]. Both methods agree
with the recent entanglement observations at JILA [9].

The +P technique, used in other parametric simulations
[28,29], has no approximations apart from those of the
standard model [30]. It gives accurate results for realistic
experimental parameters. Compared to direct diagonalization
[31] or quantum trajectory approaches [32], the method readily
scales to large Hilbert spaces [33] and is especially useful for
low-order correlations [34]. Neither approximations [35] nor
new hardware [36] are required. Such methods have potential
for treating a new class of multimode optomechanical devices
[37]. This allows a quantitative understanding of the validity
of previous methods and predictions of new effects.

Our results validate some earlier predictions for the sim-
plified model in Refs. [12,38]. They are useful for addressing
EPR-steering experiments in optomechanics. While entangle-
ment of pulse and oscillator is robust, without requiring a
low-temperature reservoir, thermal noise can prevent steering
of the mechanical system when it is thermally excited.
This is a fundamentally asymmetric manifestation of nonlo-
cality [38,39], beautifully illustrated by the oscillator-pulse
system.

The paper is organized as follows. Section II gives
our model and simulation equations. Section III presents
approximate analytic results, and Sec. IV summarizes the
entanglement and EPR-steering criteria. Section V presents
our exact quantum simulation results, with Sec. VI giving the
conclusions.

II. HAMILTONIAN AND OPERATOR EQUATIONS

We consider a single-mode optomechanical Fabry-Perot
cavity with coherent pumping and damping. A diagram is
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FIG. 1. (Color online) Two light pulses enter the cavity and
interact with the mirror via radiation pressure. A first blue-detuned
pulse entangles, while a second red-detuned pulse gives a readout.

shown in Fig. 1. We treat the regime of low temperatures
and low mechanical damping, where quantum effects are
observable. To generate entanglement and EPR steering,
a blue-detuned pulse is used to entangle the mechanical
oscillator with the output field. To verify entanglement, a
second red-detuned pulse is coupled to the cavity-oscillator
system to give a readout of the mechanical oscillator position.

A. Optomechanical Hamiltonian

The standard, single-mode optomechanical model is used
[30,40]. The Hamiltonian includes the energy of the mechani-
cal oscillator mode at ωm, an input at ωl , and the optical mode
energy at angular frequency ωo = ωl + δ. We transform to an
interaction picture in which the time evolution of the cavity
operators at the laser frequency is removed. This subtracts the
term ωlâ

†â, together with corresponding time dependences,
leaving

Ĥ /� = δâ†â + ωmb̂†b̂ + χâ†â(b̂ + b̂†)

+ iE(t)(â† − â) + Ĥr . (2.1)

The first terms give the energy of the optical cavity field
and the mechanical oscillator, while the third term is the
optomechanical interaction, where χ is the coupling due
to radiation pressure. The fourth term is the coupling to
the coherent input E(t), and Ĥr describes the coupling to
dissipative reservoirs.

We define k = [b,r] ≡ [blue, red] for the entangling and
readout pulses, respectively. Following the strategy employed
in Ref. [9], we first model the input of a blue-detuned laser
pulse of duration τ . Thus, the cavity is initially resonant with
the lower (Stokes) sideband of the input so that ωo = ωl + δb,
where δb = −ωm. This enhances nonlinear generation of
entanglement between a reflected output mode Âout

b and the
fundamental mode of the mechanical oscillator b̂. We have
simulated the correlations induced between the entangling
pulse and the mechanical oscillator during this process.

After a short delay time τdel, a red-detuned pulse of duration
τ with the opposite detuning δr = ωm is input, transferring the
mechanical oscillator state to the corresponding output field
Âout

r [12] as described below. The laser driving strength for the
kth input pulse is E(t) = E0ε(t) = √

2γoNkε(t). Here Nk is
the pulse photon number, and each envelope function ε(t) is

normalized so that
∫ τ 1

k

τ 0
k

dt |ε(t)|2 = 1, where τ 0
k and τ 1

k are the

start and end times of the kth pulse.

B. Master equation

This is a driven open system, and hence the density matrix
must be calculated as the solution of a master equation. The
master equation for the reduced density operator is valid [41]
for regimes of Markovian behavior and weak damping, so that
for γj � ωj

dρ̂

dt
= − i

�
[H,ρ̂] +

∑
j

γj n̄j (2â
†
j ρ̂âj − âj â

†
j ρ̂ − ρ̂âj â

†
j )

+
∑

j

γj (n̄j + 1)(2âj ρ̂â
†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ). (2.2)

Here γo and γm are the optical decay rate and mechanical
dissipation rate, while n̄j are the reservoir thermal occupations.
Also, â = (â1,â2) = (â,b̂), with j = 1,2 ∼ o,m indexing the
optical and mechanical modes respectively.

There are often several distinct types of dissipation in
experiments. Here we introduce two types of cavity loss,
γo = γext + γint, where γext represents the output coupling
through the mirrors to external propagating modes, while γint

represents all other types of cavity losses. This distinction is
necessary since only the part of the cavity loss that is externally
coupled can result in operationally measurable entanglement.
We note that Olsen et al. used a different, high-temperature
master equation in their instructive simulations [24], which
are for the strongly dissipative regime of low frequencies and
high temperatures typical of gravity-wave detectors.

The master equation used here is equivalent to the following
quantum Langevin equation:

˙̂a = E(t) − (iδk + γo) â − iχâ(b̂ + b̂†) +
√

2γoâ
in,

˙̂b = − (iωm + γm) b̂ − iχâ†â +
√

2γmb̂in, (2.3)

âout =
√

2γextâ − âin
ext,

where âin and b̂in are the input quantum noise amplitudes from
the optical and mechanical reservoirs. Here âout describes the
cavity output field mode, using standard input-output theory
[42], and 〈âout†(t)âout(t)〉 = 	̄out is the mean output flux in
photons per second. The input-output relations involve only
external damping and noise, which leads to an output coupling
efficiency, ηo = γext/γo. There are two different quantum
Langevin terms, since while âin is coupled to the internal
dynamics, there is also an orthogonal noise term âin

⊥ that only
couples to the output, as in a beam splitter:

âin =
√

1 − ηoâ
in
int + √

ηoâ
in
ext,

(2.4)
âin

⊥ = √
ηoâ

in
int −

√
1 − ηoâ

in
ext.

The input reservoirs are assumed thermal and have correlations
given approximately in the Markovian or wide-band noise limit
by ideal noise sources with〈

â
in†
i (t)âj

in(t ′)
〉 = n̄i,thδij δ(t − t ′),

(2.5)〈
âi

in(t)âin†
j (t ′)

〉 = [1 + n̄i,th]δij δ(t − t ′).

To study output field correlations, we use a temporal mode
decomposition to generate single-mode output operators with
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bosonic commutation relations. These are

Âin
k =

∫ τm

0
dtuin

k (t)âin(t), (2.6)

with similar output mode definitions having in → out. Here
τm is the maximum interaction time, and the temporal input
and output modes uk(t) have the normalization∫ τm

0
dtu∗

k(t)uj (t) = δkj . (2.7)

These operators commute with each other, apart from the
bosonic commutation relations within the same mode. They
also commute with system operators at later times, such as
the mechanical oscillator position b̂ after an entanglement
experiment [42].

However, both the quantum Langevin equations and the
master equation are intractable without approximations, due to
the large size of the Hilbert space combined with the nonlinear
terms in the operator equations.

C. Phase-space equations

We now introduce an exact quantum simulation method
that allows us to calculate dynamical behavior without
approximations. This will be used to predict entanglement
and EPR steering. As described elsewhere [23], we use
standard operator identities in both normally ordered and
symmetrically ordered phase-space distributions to transcribe
the master equation (2.2) into c-number probabilistic phase
space equations. These have features similar to phonon-photon
coupling equations found in optical fiber simulations [27], as
well as in earlier parametric oscillator simulations [28,29].

These methods allow dynamical quantum simulations of
any optomechanical experiment of this type and can readily be
generalized to many modes. As an example, in the following
sections we analyze pulsed entanglement experiments where
the entanglement between the mechanical oscillator and the
first (blue-detuned) pulse is generated by the nonlinear inter-
actions of the first pulse. The mechanical oscillator position
is read out by the second pulse. This entanglement is then
verified by measurements made on the first and second pulses.

1. Positive-P representation

First we use the positive-P representation [23], which
gives a positive phase-space representation for any quantum
state. This method uses a dimension-doubling approach in
order to obtain a probabilistic distribution with a positive-
definite diffusion. The transformation requires an assumption
of vanishing boundary terms for the phase-space distribution
[43]. Such terms are exponentially small for realistic open
system parameter values, which we have verified from the low
variances of our numerical results.

There are six independent complex phase-space variables
(α,α+,β,β+,αout,αout+) for the cavity mode, the oscillator
mode, and the output mode. These represent the operators
(â,â†,b̂,b̂†,âout,âout†) respectively via a normally ordered cor-
respondence, with 〈α+α〉S = 〈â†â〉, 〈β+β〉S = 〈b̂†b̂〉, where
〈.〉S is a stochastic and 〈.〉 is a quantum average. After deriving
the Fokker-Planck equation [44], one obtains an equivalent set

of complex Itô stochastic equations:

dα = {E(t) − [iδk + iχ (β + β+) + γo]α}dt + dW1,

dβ = [−(iωm + γm)β − iχαα+]dt + dW2,

dα+ = {E∗(t) + [iδk + iχ (β + β+) − γo]α+}dt + dW+
1 ,

dβ+ = [(iωm − γm)β+ + iχαα+]dt + dW+
2 ,

dαout =
√

2γextdα − dαin
ext,

dαout+ =
√

2γextdα+ − dα+in
ext . (2.8)

The Gaussian noises dWi are due to both internal nonlinearities
and thermal noise inputs, so that dWi = dW

χ

i + dW th
i , where

dW th
1 =

√
2γintdαin

int +
√

2γextdαin
ext,

(2.9)
dW th

2 =
√

2γmdβ in .

Here we need to treat the two types of cavity noise separately.
In all cases the nonvanishing stochastic thermal correlations
are 〈

dαin
k dαin+

l

〉
S

= n̄k,thδkldt, (2.10)

where k,l = 0,1,2 ∼ int,ext,m, and n̄k,th are the mean heat
bath occupations. Here we use the notation dαin

m ≡ dβ in. In
addition, the positive-P method includes quantum noise due
to interactions, with correlations〈

dW
χ

i dW
χ

j

〉
S

= −iδi,3−jχαdt,
(2.11)〈

dW
χ+
i dW

χ+
j

〉
S

= iδi,3−jχα+dt .

Input-output mode c-number representations are defined in
a similar way to the corresponding operator quantities, as

Ain
k =

∫ τm

0
dtuin

k (t)αin(t) . (2.12)

The equations have analytic solutions via stochastic diagram
methods [45] and also allow exact probabilistic quantum
simulations via an ensemble of trajectories, which can be
integrated numerically [46].

2. Wigner representation

Another approach that is simpler—but approximate—is the
truncated Wigner distribution [26], which is a symmetrically
ordered representation. Here there are three independent
complex phase-space variables (α,β,αout). These represent the
operators via asymmetrically ordered correspondence, with
〈α∗α〉S = 〈â†â + 1/2〉, 〈β∗β〉S = 〈b̂†b̂ + 1/2〉. After truncat-
ing derivatives higher than second order in the Fokker-Planck
equation (valid at large photon number), we obtain

dα = {E(t) − [iδk + iχ (β + β∗) + γo]α}dt + dW th
1 ,

dβ = [−(iωm + γm)β − iχ |α|2]dt + dW th
2 , (2.13)

dαout =
√

2γextdα − dαin
ext .

Here the thermal Gaussian noise correlations are as given
in Eq (2.9), except that they now correspond to symmetric
ordering of the reservoir operators, with correlations〈

dαin
i dαin∗

j

〉
S

= (n̄i,th + 1/2)δij dt . (2.14)
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Input-output mode c-number representations are defined as
in Eq (2.12). The stochastic correlations for these quantities
are equivalent to symmetrically ordered operator products.
These equations also imply that 〈|α|2〉S = 〈n̂ + 1/2〉 = 1/2
when there is no driving or coupling. Although approximate,
this method is simple. It provides a rigorous justification for the
methods used to analyze recent electromechanics experiments
[9], but has fewer restrictions than this adiabatic approach.

III. ADIABATIC LINEARIZED MODEL

In the special case of linearized, adiabatic pulses, Hofer
et al. [12] have shown how to describe optomechanical
entanglement using an approximate Hamiltonian. In this
subsection we review their approach. It is useful to start with
an adiabatic Hamiltonian [10] that illustrates the physics. This
approximation is not used in the exact simulations described
later, but it demonstrates the source of the entanglement and
read-out couplings.

A. Adiabatic Hamiltonian

In the adiabatic limit of large detuning, the mean intracavity
field is dominated by external driving and damping, so that

〈 ˙̂a〉 ≈ E(t) − (iδk + γo) 〈â〉 , (3.1)

which has the steady-state solution

〈â〉 = ᾱk ≈ E

iδk + γo

. (3.2)

We now examine the small fluctuations around the steady
state, by introducing δâ = â − 〈â〉. The derivation of this
transformation is well known [10,12]. Expanding the Hamilto-
nian to first order in the interactions of these small fluctuations,
and defining the adiabatic coupling gk,a = iχᾱk , gives the
adiabatic interaction Hamiltonian at large detunings:

Ĥa/� ≈ i(g∗
k,aδâ − gk,aδâ

†)(b̂ + b̂†) . (3.3)

Next, it is convenient to use operators in a frame rotating
with δk , defined as âr ≡ δâeiδk t , b̂r = b̂eiωmt , and employ the
rotating-wave approximation to focus on quasiresonant terms.
There are two limits of interest here:
(1) Blue-detuned
First, consider the blue-detuned case of δb = −ωm, with |δb| �
γo. The resonant interaction terms are given by the squeezing
and entanglement Hamiltonian:

Ĥa/� = i(g∗
k,aâ

r b̂r − gk,aâ
r†b̂r†) . (3.4)

(2) Red-detuned
In the red-detuned case of δb = ωm, the resonant interaction
terms are given by the beam-splitter Hamiltonian:

Ĥa/� = i
(
g∗

k,aâ
r b̂r† − gk,aâ

r†b̂r
)

. (3.5)

A normalized output mode in the rotating frame is obtained
using the standard cavity input-output relations [42] given in
Eq (2.3), together with a mode function designed to match the
gain characteristics of the cavity [12]. To achieve this, define

input-output mode functions as

uin
k (t) =

√
1

Nk (τ )
eiδk t±Rin

k (t), (3.6)

where Rin
k (t) = ∫ t

0 Gin
k (t ′)dt ′ and the normalization is

N in
k (τ ) = ∫ τ+τ 0

k

τ 0
k

e2Rin
k (t)dt . There are similar expressions with

in → out , making four modes in all. The optomechanical gain
is Gk(t) = ±|gk,a|2/γo = ±χ2E(t)2/γo(δ2

k + γ 2
o ). For output

modes there is a positive sign for the first (blue-detuned) pulse
and negative for the second (red-detuned) pulse. These signs
are reversed for the input modes. Since we only are interested
in fluctuations, we consistently drop the mean value part of the
input-output mode operators.

There is a characteristic phase of eiφb = −gb,a/|gb,a| for
entanglement and eiφr = gr,a/|gr,a| for readout, where from
Eq. (3.2), we see that φk = tan−1(γ0/δk) in both cases. This
means that the phases for entanglement and readout have equal
magnitudes and opposite signs.

B. Linearized entanglement generation

In the ideal linearized model, including an adiabatic approx-
imation, the Heisenberg equations resulting from considering
only the squeezing or entanglement Hamiltonian, Eq. (3.4),
are

˙̂ar = −γoâ
r − gb,ab̂

r† +
√

2γoâ
r,in,

(3.7)
˙̂br = −gb,aâ

r†.

This has an adiabatic solution, provided γoτ � 1:

âr = − gb,a

γo

b̂r† +
√

2

γo

âr,in,

(3.8)

b̂r = eGt b̂r (0) − gb,a

√
2

γo

eGt

∫ τ

0
ds e−Gsâr,in(s),

where we have defined G = Gout
b = |gb,a|2/γo as the blue-

detuned entanglement gain.
In the rotating frame, with rectangular-shaped pulses and

temporal light modes defined in Eq. (3.6), we obtain

Âin =
√

2G

1 − e−2Gτ

∫ τ

0
dt e−Gt âr,in(t),

Âin
⊥ =

√
2G

e2Gτ − 1

∫ τ

0
dt eGt â

r,in
⊥ (t), (3.9)

Âout =
√

2G

e2Gτ − 1

∫ τ

0
dt eGt âr,out(t).

This leads to the input-output relations

Âout = √
η0[eGτ Âin + eiφb

√
e2Gτ − 1B̂ in†] +

√
1 − η0Â

in
⊥,

B̂out = eGτ B̂ in + eiφb

√
e2Gτ − 1Âin† , (3.10)

where B̂ in ≡ b̂r (0) and B̂out ≡ b̂r (τ ). If η0 = 1, then in the
limit of R = Gτ � 1, we get the relations Âout = eR(Âin +
eiφb B̂ in†), B̂out = eR(B̂ in + eiφb Âin†).
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C. Linearized readout procedure

Analogously to the calculation above, but using the
beam-splitter interaction Hamiltonian (3.5), one obtains the
Heisenberg equations for the red-detuned case:

˙̂ar = −γoâ
r − gr,ab̂

r† +
√

2γoâ
r,in,

(3.11)
˙̂br = g∗

r,ab̂
r .

Introducing the readout gain, G′ = Gout
r = |gr,a|2/γo, gives the

adiabatic solution

âr = −gr,a

γo

b̂r +
√

2

γo

âr,in,

(3.12)

b̂r = e−G′t b̂r (0) − g∗
r,a

√
2

γo

e−G′t
∫ t

0
ds eG′s âr,in(s) .

The temporal light modes of Eq. (3.6) now become

Âin
r =

√
2G′

e2Gτ − 1

∫ τ+τ r
0

τ r
0

eG′t âr,indt,

Âin
⊥ =

√
2G′

1 − e−2G′τ

∫ τ+τ r
0

τ r
0

dt e−G′t â
r,in
⊥ (t), (3.13)

Âout
r =

√
2G′

1 − e−2Gτ

∫ τ+τ r
0

τ r
0

e−G′t âr,outdt .

This results in the input-output relation

Âout
r = √

ηo

[ − eiφr

√
ηo(1 − e−2G′τ )B̂ in

r + e−G′τ Âin
r

]
+

√
1 − ηoÂ

in
⊥r , (3.14)

where B̂ in
r ≡ B̂out gives the initial operator for the mechanical

oscillator, which is now entangled by the previous interaction,
and Âout

r and Âin
r give the output and input red-detuned pulses.

The coupling is such that in the large gain limit R′ ≡ G′τ � 1,
with η0 = 1, the red-detuned output pulse Âout

r gives a readout
of the initial amplitude B̂ in

r of the mechanical oscillator after
entanglement.

This is an idealized picture which helps to explain intu-
itively why these experiments can be regarded as quantum
measurements of the oscillator position. In the quantum
simulations carried out here, we include a full multimode
analysis of all output fields, including losses and without
adiabatic or single-mode approximations.

IV. ENTANGLEMENT AND EPR-STEERING MEASURES

To signify entanglement and EPR steering, it is convenient
to consider quadrature measurements. The entangling and
readout pulse output field quadratures are given by

X̂θ
k = 1

2 [e−iθ Âk(τ ) + eiθ Â
†
k(τ )], (4.1)

respectively. We denote P̂ θ
k = X̂

θ+π/2
k , with the angle dropped

when θ = 0. We see from the previous section that that for large
gain Âr

out → −eiφr B̂ in
r . For the full entanglement protocol,

consisting of a blue-detuned entanglement pulse followed by
a red-detuned readout pulse, in the limit R � 1 as well as R′ �
1, this yields X̂b + X̂

φb+φr
r → 0 and P̂b − P̂

φb+φr
r → 0, where

X̂b (P̂b) and X̂r (P̂r ) mean the quadratures corresponding to
the output field of the first (blue-detuned) and the second (red-
detuned) pulse, respectively. Hence, the final quadrature of the
mechanical oscillator

X̂ϕ
m(τ ) = 1

2 [e−iϕ b̂r (τ ) + eiϕb̂r†(τ )] (4.2)

is transferred to the red-detuned output pulse quadrature, X̂θ
r ,

with a sign change.
This leads to measurable entanglement and EPR cor-

relations between the red- and blue-detuned output field
quadratures. In the numerical calculations, we optimize the
phase choice θ for best entanglement, as is also done
experimentally. We calculate both the correlations of the
mechanical oscillator with the entangling blue-detuned pulse,
and also the correlations between the two outputs, as measured
in current experiments.

A. Entanglement measures

We next consider how to signify entanglement between the
reflected entangling field X̂θ

b and either the mechanical quadra-
ture X̂θ

m or the readout pulse X̂θ
r . For clarity, we generally write

X̂θ
m in the following criteria, although we also simulate results

with a readout pulse X̂θ
r , as measured in current experiments.

There are numerous possible entanglement measures.

1. Product criteria

The most robust measures are the product signatures first
introduced for EPR steering [15] and applied to entanglement
by Tan [47]. The most general inequalities of this type include
a measurement gain g. Entanglement is verified if [38,48]

�
p
ent = 4�

(
X̂m − gX̂θ

b

)
�

(
P̂m + gP̂θ

b

)
(1 + g2)

< 1, (4.3)

where we introduce the notation (�x̂)2 ≡ 〈x̂2〉 − 〈x̂〉2,
〈x̂,ŷ〉 = 〈x̂ŷ〉 − 〈x̂〉〈ŷ〉, and take ϕ = 0. Here g represents real
gains used in postprocessing the data. The gain g and phase θ

is optimized numerically in some of our simulations, but not
all, to show the effect of the optimization.

We assume for simplicity the same gain value for both
variances. For example, if we only optimize the gain, then
from minimizing �

p
ent, one obtains

g = 1

2a
[−b +

√
b2 − 4ac], (4.4)

where c = 〈X̂m,X̂b〉 = −a and b = (�X̂b)2 − (�X̂m)2.
For dealing with the red-detuned readout pulse, we replace

X̂m by −X̂r , and P̂m by −P̂r , as motivated in the previous
section, giving the criterion

�
p
ent = �(X̂r + gX̂b)�(P̂r − gP̂b)

(1 + g2)/4
< 1. (4.5)

2. Additive criteria

A weaker additive criterion can be obtained from this,
which is

�a
ent = �2(X̂m − gX̂b) + �2(P̂m + gP̂b)

(1 + g2)/2
< 1 , (4.6)
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(a)

(b)

(c)

FIG. 2. (Color online) Various entanglement signatures are plot-
ted vs R. Plots (a), (b), and (c) show the simulation results and
approximate adiabatic predictions for the optomechanical experiment
described in Sec. V B, with an initial and heat bath temperature of
T = 500 mK. Plot (a) shows the additive criterion �a

entwhere the gain
factor is fixed at g = 1, with the solid line representing the simulation
results and the dotted line the adiabatic prediction. Plot (b) shows the
product criterion �

p
ent where the gain factor g is chosen optimally to

minimize �
p
ent, but the relative phase is fixed at θ = 0. Here again

the solid line represents the simulation results and the dotted line
the approximate adiabatic prediction. The black curve shows the
simulation result for the product criterion �

p
ent, where both g and θ

are chosen optimally. Plot (c) shows the optimal phase angle θ that
corresponds to the black curve.

where g can again be chosen optimally. The choice g = 1 is
not always optimal but leads to one of the most widely used
entanglement criteria [25]:

�a
ent = [�(X̂m − X̂b)]2 + [�(P̂m + P̂b)]2 < 1 . (4.7)

The difference is that �
p
ent < 1 is a more robust entanglement

signature. This detects entanglement that the weaker criterion
of �a

ent < 1 is unable to detect. As described above, for
dealing with the red-detuned readout pulse, we replace X̂m

by −X̂r , and P̂m by −P̂r . We use the more robust product
signatures in our numerical results, except for comparison to
electromechanical experiments where the additive criterion
with g = 1 was used to process the data.

Using the input-output relations of the linearized adiabatic
model, one obtains after some algebra a theoretical adiabatic
prediction for Eq. (4.7) of

�a
ent,ad = (n̄b,0 + 1)(eR −

√
e2R − 1)2. (4.8)

However, this simplified picture neglects inefficiencies, as
well as the thermal noise added to the mechanical oscillator as
it interacts with its thermal reservoir.

3. Comparisons of entanglement criteria

Figure 2 shows a comparison of the product and additive
entanglement criteria for the conditions of an optomechanical
experiment described in Sec. V B, with a bath temperature
chosen as T = 500 mK. One can see that the gain-optimized
product criterion is more robust than the additive criterion
where g = 1 has been fixed; that is, it is more sensitive to
the presence of entanglement. This can be seen in both the
adiabatic predictions and the full simulation results.

This graph also shows how the accuracy of the adiabatic
model changes with pump strength. While there is good
agreement between the simulation results for �a

ent and �
p
ent

and the adiabatic predictions for small values of R; that is,
for a small pump strength, the simulation results diverge from
their theoretical predictions for higher pump strengths. The
entanglement signatures begin to deteriorate from a value of
R ≈ 1 for �a

ent and R ≈ 0.8 for �
p
ent.

Surprisingly, the phase- and gain-optimized product crite-
rion is in very good agreement with the adiabatic prediction
for �

p
ent, even though the adiabatic prediction assumes that

θ = ϕ = 0, which in fact are not the optimal parameters.
The third subgraph of Fig. 2 shows the optimal phase angle

that corresponds to the black curve. The phase shift of �ϕ ≈
−0.075 is as expected from the adiabatic prediction, as it is
approximately equal to −γo/ωm = −0.0703.

B. EPR-steering criteria

The more demanding EPR-steering paradox is established
through violation of the Reid-EPR inequality [15,16]. This
tests whether an inferred Heisenberg uncertainty relation is
violated under the assumptions of local realism (LR). The
paradox is directional, so that one obtains different criteria
depending on the direction of inference. If one infers the
oscillator position from the blue readout, then the paradox
occurs if

Em|b = 4�infX̂m�infP̂m

= 4�
(
X̂m − gX̂θ

b

)
�

(
P̂m + gP̂ θ

b

)
< 1. (4.9)

Here �infX̂m, �infP̂m are the inferred uncertainties, and
the optimal gain is given as g = 〈X̂m,X̂b〉/(�X̂b)2 =
−〈P̂m,P̂b〉/(�P̂b)2, owing to the symmetries of this prob-
lem. For a Reid-EPR paradox achieved by condition (4.9),
measurements on the pulse system enable “steering” of the
mechanical oscillator m [21,22]. This criterion with optimal
gx , gp is necessary and sufficient for EPR steering in two-mode
Gaussian systems [15,21].

A thermal barrier exists for this paradox. Figure 6 shows
that the mechanical oscillator is steerable by the optical pulse
system when r > r0, where a minimum strength r0 of the gain
parameter required, for a given nb,0. A thermal barrier means
that a threshold level of pulse-oscillator interaction is required
for a given thermal occupation nb,0 of the oscillator.

An EPR paradox can be shown the other way, by the
criterion

Eb|m = 4�
(
X̂b − gX̂φ

m

)
�

(
P̂b + gP̂ φ

m

)
< 1. (4.10)
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We similarly modify the EPR-steering criteria when observing
two correlated optical outputs, replacing X̂m by −X̂r , and P̂m

by −P̂r .

V. QUANTUM SIMULATIONS

We assume the input state of both light fields and the
mirror to be a thermal state with mean excitation number n̄k,0,
so that �X̂k(0) = �P̂k(0) = √

n̄k,0/2 + 1/4. Our quantum
simulations fully model both the blue- and red-detuned pulses,
without linearization or adiabatic assumptions. Plots of the
results of our full simulations with the red-detuned output pulse
are shown together with comparisons to idealized mechanical
oscillator measurements.

A. Electromechanical experiment

In the pioneering electromechanical experiment carried
out recently by Palomaki et al. [9], an inductor-capacitor
(LC) resonator that interacts with an external microwave field
was coupled to a mechanical oscillator. This corresponds to
the usual optomechanical experiments, except with an LC
resonator replacing the optical cavity and a microwave field
replacing to the laser driving field. We give our simulation
results for this case first. The good agreement with experi-
mental measurements verifies our quantum simulations. This
also indicates some of the limitations of the experiment, due
to noise and inefficiency issues.

1. Electromechanical parameters

We simulated the recent microwave experiment leading to
quantum entanglement, using the published parameter values
[9] and the reported quantum efficiency of η = 0.2. The
electromechanical (microwave) experimental parameters are
ωm/2π = 10.34 MHz for the mechanical oscillator frequency,
χ0/2π = 200 Hz for the coupling constant between LC res-
onator and mechanical oscillator, γint/2π = 30 kHz for the in-
ternal LC resonator dissipation rate, γext/2π = 150 kHz for the
external LC resonator dissipation rate, γm/2π = 17.5 Hz for
the mechanical oscillator dissipation rate, τb = τr = 35.5 μs
for the pulse duration of both the blue- and red-detuned pulse,
and τdel = 10 μs for the delay time between the two pulses.
The experimental paper quoted intensity decay rates, while we
consistently use amplitude decay rates to quantify dissipation.

In the electromechanical experiments, the mechanical
oscillator was precooled so that the initial phonon occupation
number was n̄m,0 = 0.5 ± 0.1. The LC resonator experienced
excess technical noise, giving initial variances of n̄o,0 =
0.12 ± 0.02. During the time of the experiment, the mechan-
ical oscillator was in contact with a heat bath at 19 mK, so
that n̄m,th = 37.8. There was an initial wait period of 15 μs,
during which time we calculate there was a preheating from the
heat bath to an occupation number of n̄m,0 = 0.62 ± 0.1. An
additional electromagnetic noise of n̄o,th = 0.12 ± 0.02, the
same as found initially, was present in both the internal and
external input reservoirs of the LC resonator. This additional
noise and corresponding relaxation makes for a substantial
difference with the optomechanical situation. It is caused by
the typically higher technical noises found with microwave
sources, as compared with optical laser sources of radiation.

FIG. 3. (Color online) Predicted entanglement signatures vs
pump strength �b for the microwave experiment of Ref. [9], using
their notation. The black curve gives the additive entanglement
signature �a

ent at g = 1. This shows good agreement with the
experimental data and also excellent agreement with a linearized
calculation in Ref. [9], except for small differences at large �b. The
circles are experimental values for �a

ent. The red dotted line gives the
result of the phase- and gain-optimized product signature, �

p
ent.

The quantum efficiency of the detector was experimentally
measured as η = 0.20 ± 0.01. The pump strength of the
transfer pulse was fixed at �r/2π = 11 kHz while the pump
strength of the entanglement pulse was varied over a range of
�b/2π = 0 . . . 18 kHz. These pump strengths were defined as
intensity gains or losses, so that in our notation Gk = ±�k/2.

2. Entanglement simulation results

The results of the simulations are compared to experiment
in Fig. 3. This used an additive entanglement criterion with
unit gain (g = 1), and a relative phase adjusted to optimize the
correlations.

To simplify comparisons, we use the notation and entan-
glement signatures used in the experiment. The definition for
the pump strength given in the experimental paper was

�k = 2χ2n̄k,ind

γo

, (5.1)

where n̄k,ind is the number of coherently induced photons in
the cavity under adiabatic conditions, i.e.,

n̄k,ind = 〈|α|2〉∞ ≈ E2

δ2 + γ 2
o

. (5.2)

Using the relationship E2
k τk = 2γextNk , which gives the pump

amplitude Ek in terms of the total number of external pump
photons Nk , we conclude that the experimental parameters
�r, �b can be expressed in terms of the earlier definitions as

�k = 4χ2ηoNk(
ω2

m + γ 2
o

)
τk

, (5.3)

where k = [r,b], and γo = γext + γint denotes the total dissipa-
tion rate for the LC resonator. For comparison purposes, our
amplitude gain Gk is therefore given by

Gk = ±�k/2. (5.4)

In summary, the figure gives a comparison of the exact
simulations vs experimental results for electromechanical
pulse entanglement at microwave frequencies. We obtain good
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FIG. 4. (Color online) EPR steering versus entanglement pump
strength �b, for the electromechanical conditions used in Fig. 3,
except with η = 0.9. Dashed lines indicate the result of using optical
readouts; solid lines assume direct oscillator measurements. The
predictions are for the electromechanical microwave experiment.
Although we assume a higher efficiency, the upper curves show how
the noisy readout process degrades EPR steering in the output fields.
The lower curves assume a direct, low-noise readout of the oscillator
position is obtained through some other technique.

agreement between the simulation and the experimental data
of Palomaki et al. [9]. These results are also in agreement
with linearized calculations [9], thus verifying that these
approximations are valid. However, the exact simulations can
also be used in nonlinear regimes where linearization will fail.

3. EPR-steering violations

It is known that EPR steering is not possible when the
efficiency reduces below 0.5 for the steering (pulse) system
[49]. As a result, the microwave experimental parameters
are less favorable for EPR steering owing to low quantum
efficiencies of η ≈ 0.2. For this reason, we assume a higher
efficiency of η = 0.9 in these EPR calculations. After all,
detector efficiency is a moving target, and much higher
efficiencies may occur in future.

Even with higher efficiency, however, our simulation
reveals no steering for external measurements using the noise
parameters of this experiment (inset of Fig. 4), due to the high
input noise levels in the measuring pulse inputs. Experiments
with lower input noise levels are necessary for EPR-steering
observation.

B. Optomechanical experiment

In the optomechanical simulations, we choose typical
parameters that correspond to recent optomechanical exper-
iments. The highest temperatures we simulate are 4 K. This is
lower than in some reported data, although this temperature
appears to be in the currently accessible range. We calculate

FIG. 5. (Color online) The entanglement signature �
p
ent is plotted

vs R, for an initial mechanical occupation number n̄m,0 = 0.7 and two
values of heat bath occupation n̄m,th = 0.7 (lower), 22.1 (upper) for
the oscillator corresponding to temperatures T = 200 mK and 4 K.
The optical cavity bath is assumed a vacuum, i.e., n̄o,0 = n̄o,th = 0.
The solid lines give the oscillator entanglement; the dotted lines give
results of the probe measurements.

the robust product entanglement measure �
p
ent, with optimal

gain and phase.

1. Si optomechanical crystal structures

Parameters are reported in Ref. [2], with ωm/2π =
3.7 GHz, Qm = ωm/γm = 105, γm/2π = 37 KHz, γo/2π =
0.26 GHz, and χ0/2π = 910 KHz. We choose the photon
number for the red transfer pulse as Nr = 24.6 × 106, corre-
sponding to a readout gain of R′ = 3, while for the first pulse
a photon number up to Nb = 8.2 × 106 is used, corresponding
to an entanglement gain R = 1. Both pulses have a duration
of τ = 0.04 μs, and the delay time is set to τdel = 0.008 μs.
We assumed γint = 0—i.e., perfect output coupling—but we
include an imperfect detector efficiency of η = 0.9 for optical
detectors. In practice, η should be regarded as including all
types of detection losses, including optical coupling losses.

Results for square pulses are presented here, although a
variety of pulse shapes ranging from square waves to Gaus-
sians gave strong entanglement and steering. Two different
heat bath temperatures were chosen for comparison purposes:
either with a cold reservoir at Tbath = 200 mK, or a “warm”
reservoir of Tbath = 4K. In both cases, the initial mechanical
occupation number was chosen as n̄m,0 = 0.7, corresponding
to an initial precooled oscillator temperature of 200 mK. In the
case of these optical simulations, we note that dW in

ext = dW in
o ,

since we assumed there were no internal loss mechanisms, and
the optical thermal occupation is assumed to be negligible.

2. Entanglement results

The resulting predictions for entanglement in the case of
the optomechanical parameters are plotted in Fig. 5, where
the solid lines indicate results for idealized measurements
on the mechanical oscillator, and dotted lines the expected
operational measurements using a readout pulse.

Using these entanglement signatures, we have simulated
the robust asymmetric EPR entanglement recently predicted
in Ref. [38], but without approximations. A graph of the
predicted quantum entanglement at low and high temperature
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(a)

(b)

FIG. 6. (Color online) EPR steering vs entanglement gain param-
eter R, for the optomechanical conditions used in Fig. 5. Dashed
lines indicate the result of using optical readouts, solid lines assume
direct oscillator measurements. The lower black curves are for
Tbath = 200 mK (n̄m,th = 0.7); the upper red (gray) curves are for
Tbath = 4K (n̄m,th = 22.1). (a) EPR steering of the mechanical system
m is possible if Em|b < 1. (b) EPR steering of the optical system is
possible if Eb|m < 1. For both bath temperatures, two-way steering
becomes possible once a threshold R > R0 is reached.

is shown in Fig. 5 for two experimental scenarios. These
calculations simulate the parameter regime of experiments on
Si optomechanical crystal structures [2].

Further, we are able to establish the validity of the lineariza-
tion assumptions, and agreement between the exact positive-
P representation and the approximate Wigner method, for
both optical and microwave experimental parameter values.
Our investigation tells us that nonlinear quantum noise and
deviation between exact positive P and approximate methods
come into play only for stronger couplings, with χ0 ∼ γo.

The physical interpretation of the results of Fig. 5 is
that for any given initial mechanical oscillator occupation
number n̄m,0, we can always obtain entanglement for R =∫ t

0 G(t ′)dt ′ > 0, provided one uses the asymmetric criteria
(4.3) and selects an optimal choice of both phase θ and gain
factor g (4.4). This means we can in principle detect entan-
glement in the presence of thermal mechanical decoherence,
without the need to use laser cooling to reduce the value of
n̄m,0. Figure 5 indicates entanglement at a temperature Tbath =
4 K (n̄m,th = 22.1), provided the oscillator is precooled to
T0 = 200 mK (nm,0 ∼ 0.7). This is sensitive to the occupation
number n̄m,th of the mechanical heat bath but is more robust
to thermal effects than using the symmetric criterion in Ref.
[12].

3. EPR-steering results

Predictions for optomechanical EPR-steering experiments
are presented in Fig. 6. The efficiency assumed here is
η = 0.9. Generally, these simulations have more favorable

conditions for EPR steering, due to the relatively lower thermal
occupations for optical inputs as compared to microwave
inputs, even assuming the same temperatures. A thermal
barrier can still exists for this paradox however.

The results show that the mechanical oscillator is steerable
by the optical pulse system when R > R0, where a minimum
strength R0 of the gain parameter required for a given n̄m,0. A
thermal barrier means that a threshold level of pulse-oscillator
interaction is required for a given initial thermal occupation
n̄m,0 of the mechanical oscillator.

An EPR paradox can also be shown the other way, in which
we steer the photons, not the massive oscillator, by the criterion

Eb|m = 4�
(
X̂b − gX̂φ

m

)
�

(
P̂b + gP̂ φ

m

)
< 1. (5.5)

Figure 4 shows that this is possible for any value of initial
oscillator noise n̄m,0, and for any gain. There is no equivalent
thermal barrier for the optical pulse “steered” by measurements
made on the mechanical system, if the entangling pulse is not
thermally excited. We also find that Eb|m is less sensitive to
mechanical decoherence. This is because we can select optimal
gain values g to reduce the effect of the initial thermal noises
n̄m,0 and the mechanical heat bath n̄m,th. The graphed results
also calculate the externally measured criteria, Eb|r and Er|b,
using pulse-probe methods, with reduced correlations.

C. Numerical methods

A semi-implicit interaction picture stochastic integration
method was used [46], with 8 × 105 trajectories for positive-P
simulations, up to 2 × 105 for the truncated Wigner simula-
tions, and 104 total time steps. The two different phase-space
methods gave identical results for these parameter values,
apart from typical sampling errors with relative errors in the
mean of up to ±0.01, and hence only one line is plotted for
both methods. Truncation errors due to the finite time step
were verified to be less than the sampling errors. To minimize
software or hardware errors, independent computer codes were
written and tested in different languages (C++ and SCILAB) and
with different computer hardware, both using double precision
floating point. These gave identical results in all cases tested.

VI. SUMMARY

Optomechanics presents a challenge for exact quantum
simulations. It combines a range of occupation numbers
and time scales with nonequilibrium and nonlinear open
system quantum dynamics. These results demonstrate that
the positive-P representation approach can give a useful first
principles simulation of the standard model in the quantum
regime [30]. For the parameters simulated here, the truncated
Wigner approach is also reliable and simple to implement. This
method needs to be verified by the more precise positive-P
simulations for strong couplings. To the extent we can make
comparisons, our results also verify previous analyses using
adiabatic techniques.

These simulation techniques can be readily scaled up
to study multipartite systems with many oscillator modes
[37], strong interactions, and nonadiabatic behavior. Our
main result in this work illustrates a fundamental physical
principle: inferred changes to a massive system as a result of
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measurement at a distant site will be inhibited by thermal
noise. We note that the reverse type of inference is not
inhibited, which is typical of the directional property of
EPR-steering inference. It suggests that the mechanism for the
apparent directional property of quantum measurement could
be fundamentally related to noise sources. Direct observation
of two-way EPR inference for a massive system is therefore
an important next goal in nanomechanics.
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APPENDIX: EFFECT OF LOSSES AND INEFFICIENCIES

In the detection of either optical or microwave fields, we
assume that external detection is carried out with finite effi-
ciency η. Unless stated otherwise, optical detection efficiencies
are assumed to be at η = 0.9, while microwave photons are
assumed detected with η = 0.2, as reported experimentally.

In order to take this into account, we use a simple model,
in which detector inefficiency is modeled as a beam splitter
that allows only some of the incident photons to reach
the detector. For consistency, one must include a vacuum
input so that commutation relations are still valid. This
gives

âd
k = √

ηâk +
√

1 − ηâv
k ,

where âd means the detected amplitude, âv means the vacuum
amplitude that is input to the beam splitter, and k = [b,r] as
previously. As the inefficiency terms are often combined with
gain terms, because these effects compensate each other, we
define � ≡ (1 − η)(1 + g2).

This model yields for the detected quadratures

X̂d
k = √

ηX̂k +
√

1 − ηX̂v
k ,

P̂ d
k = √

ηP̂k +
√

1 − ηP̂ v
k .

The variance terms corresponding to differences of quadra-
tures in two beams now become

σ 2 = 〈(
X̂d

r − gX̂d
b

)
2
〉

= �

4
+ η〈(X̂r − gX̂b)2〉 .

1. Entanglement criteria

For the additive entanglement criterion at unit gain, the
inclusion of detector inefficiency in the calculation gives
entanglement if �a

ent < 1 , where

�a
ent = (1 − η) + η{�2(X̂r + X̂b) + �2(P̂r − P̂b)}.

Including gain, the product criterion indicates entangle-
ment, if �

p
ent < 1, where

�
p
ent = (1 − η)

[
1 + 16η2 �2(X̂r + gX̂b)�2(P̂r − gP̂b)

�2

+ 4η
[�(X̂r + gX̂b)]2 + [�(P̂r − gP̂b)]2

�

] 1
2

.

2. EPR-steering criteria

Similarly, the measured EPR-steering criteria including
detection inefficiency become E2

r|b < 1 where

E2
r|b = �2 + 16η2�2(X̂r + gX̂b)�2(P̂r − gP̂b) +

+ 4η�[�2(X̂r + gX̂b) + �2(P̂r − gP̂b)]

and r ↔ b for the other steering direction. We note that this
is much harder to satisfy when η < 1 than in the perfect
efficiency case. The physical reason is simply that the injection
of uncorrelated vacuum noise through the inefficient detection
process tends to reduce the strong correlation required to
observe an EPR paradox in these experiments.
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