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Measuring the heat capacity in a Bose-Einstein condensation using global variables
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Phase transitions are well understood and generally followed by the behavior of the associated thermodynamic
quantities, such as in the case of the λ-point superfluid transition of liquid He, which is observed in its heat
capacity. In the case of a trapped Bose-Einstein condensate, the heat capacity cannot be directly measured. In
this work, we present a technique capable of determining the global heat capacity from the density distribution
of a weakly interacting gas trapped in an inhomogeneous potential. This approach represents an alternative to
models based on the local density approximation. By defining a pair of global conjugate variables, we determine
the total internal energy and its temperature derivative, the heat capacity. We then apply the technique to a
trapped 87Rb BEC, and a λ-type transition dependent on the atom number is observed, and the deviations from
the noninteracting, ideal gas case are discussed. Finally, we discuss the chances of using this method to study the
heat capacity at T → 0.
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I. INTRODUCTION

The heat capacity is one of the fundamental quantities
containing information about the nature of a given phase
transition. The remarkable discontinuity in the heat capacity
near the superfluid transition (λ point), observed in liquid He,
was considered one of the most important properties to be well
understood, and the quest to understand it brought theoretical
proof that Bose-Einstein condensation (BEC) does take place
in a liquid such as the superfluid He, please see Refs. [1,2],
and the references therein.

Even before the experimental observation of a BEC in
trapped dilute gases [3–5], predictions of the heat capacity
in such systems were made [6], and soon after its realization
a measurement was performed by means of the kinetic energy
of the expanded cloud [7]. In the two last decades there
were many theoretical papers discussing this topic [8–12],
but quite few experimental studies have investigated the heat
capacity behavior in trapped gases. The lack of reliable
methods to measure the total internal energy of these ultracold
samples explain such discrepancy. Recently, the interest in
heat capacity measurements has come back, motivated by the
characterization of quantum degenerate gases at the unitary
limit, where a strong correlated system is studied [13].
The understanding of the behavior of a strong interacting
ensembles of quantum particles is a real challenge to the
modern physics [14,15].

The majority of the heat capacity measurements made in
trapped quantum degenerate gases have relied on local density
approximation (LDA) [13,16] theoretical models. However,
LDA is not valid when the correlation length is comparable
to the cloud typical sizes. In particular, in a standard BEC at
the critical temperature, there exists a finite shell, centered at
the critical points, within which LDA fails as discussed in
Ref. [17]. In addition, LDA is not valid when there are
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topological defects, such as vortices and vortex tangles, closely
spaced and spread over the cloud [18].

In this paper we introduce a technique to measure the global
heat capacity at “constant volume,” CV . We have applied this
newly developed approach, based on global thermodynamic
variables [19,20], instead of LDA. The technique was used
to measure CV across the BEC transition of a 87Rb BEC
confined in a harmonic magnetic trap. We start by presenting
the theoretical background of our method, followed by a short
description of the experimental setup, and finally we present
and discuss the main results.

II. GLOBAL VARIABLE ANALYSIS AND HEAT CAPACITY

In a recent publication [21], we studied the BEC transition
in a harmonically trapped 87Rb sample in terms of the new
global thermodynamic parameters introduced in Refs. [19,20].
We built a phase diagram split in two domain regions: (i) a
pure thermal gas; and (ii) a mixture of condensate and thermal
fractions. By considering a collection of global variables
(N,T ,V), whereV = 1/ω3 is defined as the volume parameter,
and ω = (ωxωyωz)

1
3 is the geometric mean of the trapping

frequencies, we defined �(N,T ,V) as the pressure parameter,
which corresponds to the hydrostatic pressure of the system.
In fact, � is the conjugate variable to V , i.e.,

� = −
(

∂F

∂V

)
N,T

(1)

for the Helmholtz free energy F = F (N,T ,V). In this context,
� is obtained as [19,20]

� = 2

3V

∫
n(�r)

1

2
m( �ω · �r)2 d3r, (2)

which can be determined by knowing the number density
distribution n(�r) and the confining harmonic frequencies
ω = (ωxωyωz)

1
3 . It is important to stress that Eq. (2) is valid

in the thermodynamic limit N → ∞ and V → ∞ (ω → 0),
which means that (i) finite number effects are not taken into

1050-2947/2014/90(4)/043640(5) 043640-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.043640


R. F. SHIOZAKI et al. PHYSICAL REVIEW A 90, 043640 (2014)

account, and (ii) �ω must be much smaller than any other
energy scale. Also it is worth noting that Eq. (2) is written for
a harmonic trapping potential, but the method is general and
may be applied to an arbitrary shaped trap potential [20].

As a function of the global extensive parameter V and
its intensive conjugate �, one can show that the internal
energy of a harmonically trapped thermal cloud and pure
BEC are, respectively [22], Uth = 3�V and U0 = 5

2�V . These
expressions can be found starting from the virial theorem. The
first is the expected result for a noninteracting gas held in a
three-dimensional (3D) harmonic oscillator potential. And the
second results from a contact interaction potential combined
with the Thomas-Fermi approximation. Therefore it is valid to
separate the thermal and condensed fractions to determine the
total internal energy

U = 3�thV + 5
2�0V = 3�V − 1

2�0V, (3)

where the total pressure parameter is also considered as the
sum of the two components � = �th + �0. Then the heat
capacity, at constant volume parameter, can be written as CV =
( ∂U

∂T
)N,V . By assuming ∂�0

∂T
� ∂�

∂T
, the last term in Eq. (3) can

be neglected. In fact, this assumption is in very good agreement
with our experimental data where | ∂�0

∂T
/ ∂�

∂T
| < 0.1 even at

the lowest temperature values of T/Tc ≈ 0.1. Therefore, we
finally find that a good approximation is given by

CV = 3

ω3

(
∂�

∂T

)
N,ω

, (4)

meaning that the heat capacity can be directly determined
by measuring the equation of state �(N/V,T ) as shown in
Ref. [21].

Soon after the production of the first experimental BEC
by the JILA group, an attempt to map the heat capacity
was carried out, taking into account the balance between
the internal energy and the kinetic energy released during
the free fall [7]. In that paper, the overall scaled energy
per particle is obtained as a function of the temperature.
Above the critical temperature the linearity of the energy with
temperature indicates the Maxwell-Boltzmann classical limit.
The data around the critical temperature suggest a change in
the energy balance, indicating a jump in the heat capacity. The
value extracted from the data is lower than that expected for
an ideal gas, but in good agreement with that predicted by a
finite number corrected, ideal gas theory [8].

From the theoretical point of view, the heat capacity near the
phase transition has been derived using different approaches
[8–11] in the presence or the absence of interactions. For
particles confined in a harmonic potential, the calculations
presented similar results. In this work, we will use, as a
reference, the original calculation presented by the authors
of Ref. [6], that is, a Bose gas with a large number of particles
and negligible interactions. In this picture, the heat capacity CV
evolves presenting a λ-shaped curve across the BEC transition
for a harmonically trapped Bose gas. It displays a steep change
in the CV values, near the critical temperature. By defining
C−
V ≡ CV (T −

c ), C+
V ≡ CV (T +

c ), and �CV = C−
V − C+

V , the CV
peak value is found, just below the critical temperature, as
C−
V

NkB
= 12 ζ (4)

ζ (3) (≈10.8), and shall quickly change around Tc by
�CV
NkB

= 9 ζ (3)
ζ (2) (≈6.6) [6,8]. These theoretical results are general

and valid for arbitrary oscillator frequencies. The presence of
weak interactions would produce minor changes on CV very
near the critical temperature when compared to the ideal Bose
gas case, while keeping its overall shape [7,11,12].

The resemblance to the liquid 4He heat capacity, near the
λ point, is clear [23], as well as its rapid change around
Tc, in the limit of large N . This qualitative characteristic
was predicted by different theories whether considering finite
number effects [8,10] and interactions [11] or not [6]. However,
for an ideal Bose gas in the large number limit, the values
of C+

V , C−
V , and �CV scale linearly with the number of

atoms. In fact, the interactions are predicted to change the
CV behavior by rounding off the peak existing just below the
critical temperature, as discussed by Giorgini et al. [11].

III. EXPERIMENTAL DESCRIPTION,
RESULTS, AND DISCUSSION

The experimental system comprises a double magneto-
optical trap (MOT) and a quadrupole-Ioffe configuration
(QUIC) magnetic trap. Details about the system are described
in previous publications [24]. A combination of laser cooling
and RF-evaporative cooling allows to obtain a BEC containing
2–8 × 105 87Rb atoms. The trap frequencies are ωx = 2π ×
23 Hz for the weak axis, and ωy = ωz = 2π × 207 Hz for
the most confining directions. A full characterization of the
condensate is performed by first recording an absorption image
with a CCD camera, after 15 ms of free expansion. The data
were fitted using a bimodal atomic distribution (condensate
and thermal fractions as a sum of a Thomas-Fermi and a
Gaussian profiles, respectively), and we assume cylindrical
symmetry for the trapping potential to rebuild the complete 3D
distribution, i.e., the Gaussian widths and the Thomas-Fermi
radii, as well as the respective error values, which account for
deviations from both the ideal Gaussian assumption and the
Thomas-Fermi approximation.

The fittings also promptly provide the temperature values
and both the condensate and thermal number of atoms. Then
the in situ distribution is determined by assuming a ballistic
expansion of the thermal cloud, and then rescaling backwards
the characteristic parabolic shape of the BEC expansion, as
demonstrated in Refs. [25–27]. For the BEC fraction, simple
analytical expressions are known for an elongated cigar-shaped
trap [25]. Finally, the full 3D density distribution n(�r) is
inserted in Eq. (2), and the parameter � is obtained. Finite
temperature corrections to the Thomas-Fermi (TF) expansion
fits of our samples were neglected. We estimate that these
corrections would slightly change the value of �, on the order
of 1% or less.

The heat capacity is determined as follows. First, we derive
the equation of state � = �(N/V,T ) by taking data in a
constant volume trap potential (V constant). The acquired data
sets presenting similar number of atoms N are grouped. We
then plot isodensity parameter curves (i.e., curves at constant
density parameter N/V), � versus T , for different average
number of atoms 〈N〉, as shown in Fig. 1. Second, above Tc,
we take the data points presenting no measurable condensed
fractions and assume them as pure thermal clouds. Under
these conditions, the linear behavior of � versus T is well
known as a result of the dominant Gaussian distribution [19].
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FIG. 1. (Color online) Pressure parameter as a function of tem-
perature for three different averaged particle number 〈N〉. For
each 〈N〉, the crossing between a linear fitting for thermal points
(open symbols) and the interpolation or extrapolation of points
with measurable condensate fraction (solid symbols) determines the
critical point.

We fitted a line to the data above Tc, which, by means of
Eq. (4), directly yields the constant value for the heat capacity
expected for high temperatures. For the data below Tc, we
performed a numerical interpolation (extrapolation) over the
raw data and generated a set of extra points in between. Then,
we performed a numerical differentiation to determine the heat
capacity. Uncertainties in the derivative were determined from
different possible interpolations according to the uncertainties
in the values of �.

The evolution of the heat capacity as a function of the
reduced temperature is plotted in Fig. 2, for two different atom
numbers. From there, one may note the steep change in the
measured heat capacity near the critical temperature Tc. The
lines result from the direct application of Eqs. (10) and (14),
derived in Ref. [8], computing the heat capacity across Tc.
We did use the measured frequencies of our QUIC trap to
determine the typical level spacing �ω/kB ≈ 5 nK and the
zero point energy E0/kB ≈ 10 nK. The absolute values, as
well as the steep change in the heat capacity are expected
to be number dependent. The measured CV is in very good
agreement with the finite-N theory for BECs held in harmonic
traps [8], as shown in Fig. 2. Therefore, one may conclude that
the finite-N corrections, included in the theory [8], already
contain the essential features shown by our results.

The choice of testing the results with the noninteracting
model is based on the discussions presented by Giorgini
et al. [11]. They concluded that the inclusion of the two-
body interactions shall be more pronounced just in a small
temperature region, very near Tc. The end result would be a
rounded off curve joining the values just near Tc. It would
also be very interesting to carefully study the effects of the
two-body interactions in temperatures ranging from 0.8 to
1.0T/Tc (see Fig. 15 in Ref. [11]). In doing so, one would be
able to map the rounded off curve joining the two regimes. In

FIG. 2. (Color online) The heat capacity versus the reduced
temperature is plotted around the condensation temperature Tc for
two different atom numbers. The experimental points are extracted
from diagram of Fig. 1, via Eq. (4). The lines result from Eqs. (10)
and (14) [8], where N is the only adjustable parameter.

any case, we are confident that the method used here is reliable
and robust to treat the acquired experimental data, regardless
of the absolute accuracy achieved.

The heat capacity evolves, starting from zero, with increas-
ing values proportional to the third power of the reduced
temperature, that is, C−

V ∝ (T/T0)3, peaking around 0.9 and
0.98Tc. Very close to Tc a steep jump takes place while it goes
from C−

V to C+
V . Right above the critical temperature, a slow

decrease with the temperature is observed in C+
V . And, at high

temperatures, the heat capacity approaches the temperature-
independent behavior expected for the noninteracting Bose
gas 3kBN . This interesting general shape of the heat capacity
is accepted in the literature [7] as a property of a second-order
phase transition. Thus, the investigation of the heat capacity
steep change in a trapped gas, near Tc, is very significant to the
overall understanding of the phase transition itself, especially
for nonhomogeneous density distributions.

Figures 3(b) and 3(c) present CV as a function of the trapped
atoms number measured across Tc. In Fig. 3(a), the difference
�CV = CV (T −

c ) − CV (T +
c ) is plotted, measured just below

or above Tc. We observed a small departure from the linear
dependence as the number of trapped of atoms increases
[Fig. 3(a)]. We believe this might be related to the atomic
interactions. On the other hand, the behavior of the heat
capacity of a thermal gas (above Tc) is quite linear, in very
good agreement with the standard theoretical result: 3kB/N .

In Fig. 4, we plot the normalized heat capacity, CV/NkB ,
versus the reduced temperature, T/Tc for two different
averaged number of atoms, 〈N〉. For an ideal Bose gas,
in the limit of large number of atoms, the CV/NkB shows
the typical, 〈N〉-independent, curve (dashed blue line). The
weakly interacting BEC data deviates from the universal curve
in an intermediate range, below and the critical temperature.
We found that CV/NkB presents larger values for smaller 〈N〉,
in agreement with the theory [8,11]. The effect of downshifting
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FIG. 3. (Color online) Dependence of the heat capacity around
the critical temperature on the total number of atoms: (a) the �CV
jump, (b) CV (T −

c ), and (c) CV (T +
c ). Dashed line is the theoretical

result for a weakly interacting, large N , case and solid lines are only
eye guides.

FIG. 4. (Color online) The normalized heat capacity versus the
average number of atoms 〈N〉 as a function of reduced temperature
(T/Tc) for two different 〈N〉. Solid lines are interpolations of the
data. The blue dashed line is the theoretical curve for the finite-N
corrected, large N case.

the CV at large N may seem a bit surprising at first, but
according to the theoretical models presented on Refs. [8,11],
it comes from the finite-N correction. Indeed, the effect is
reversed since the CV correction for lower N results in larger
CV values due to the factor proportional to (T/Tc)2N−1/3

(see Eq. (10) in Ref. [8]). We believe that, close to the zero
temperature limit T → 0, it will be theoretically allowed for
the heat capacity to undergo an “energy gap” behavior [28],
which is beyond the scope of this work.

Our method of measuring � relies on the ability to
indirectly determine the in situ number density, after some
time of flight [21]. The data processing may introduce small
shifts in the absolute values, which would be important in a
more accurate study of CV/NkB at the low-temperature limit,
as well as near the critical temperature.

It is important to point out that the ability to directly acquire
the in situ number density would overcome the reconstruction
procedure innate limitations. Generally, it would be best to be
able to determine the 3D density distribution without relying
on any fitting. In addition, the interactions do not play any
role on limiting the global variables theory validity. Thus,
the experimental method here presented and discussed for
determining the heat capacity would certainly stand valid in
strongly interaction regimes [13].

IV. CONCLUSION

We have developed an alternative technique for determining
the global heat capacity of a nonhomogeneous, harmonically
trapped gas, which does not assume LDA. By using new
macroscopic conjugate variables (volume and pressure param-
eters), presented in recent publications [19,21], we were able to
determine both the internal energy and the heat capacity CV at
constant volume parameter. We have then successfully applied
this technique to measure the heat capacity across the BEC
transition of a 87Rb Bose gas. A steep CV curve was observed,
in the vicinity of the critical temperature Tc, in close similarity
to the λ point in liquid 4He [23]. Moreover, the evolution of CV
near Tc suggests an interplay of the mean-field interactions. We
point out three interesting phenomena to be studied in a narrow
temperature region, near Tc: (ii) its absolute value downshift;
(ii) the CV peak round off; and (iii) the larger values of the
normalized CV for lower N in a relatively broad temperature
range below Tc. It is important to remark that the second effect
was theoretically predicted, but not yet measured. The third is
shown in Fig. 4, which, to the best of our knowledge, stands as
the first reported experimental observation. Finally, we have
briefly discussed the relevance of measuring CV in trapped
BECs across the critical temperature, which, together with
the three phenomena above mentioned, may prompt further
investigation and future experiments.
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