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Validating simple dynamical simulations of the unitary Fermi gas
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We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local
density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary
equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below
the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear
responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear
dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long
as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of
the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no
normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and
crystallize as they do in the SLDA.
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The motion of cold Fermi superfluids under dynamical
stimuli has been of interest to a variety of research fields.
A classic example is the discovery of the Josephson effect
[1] in superconductors. Now it is possible to track the
motion of magnetic vortices in real time [2–5], and to ramp
the fermionic interaction in cold-atom experiments from
the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein
condensate (BEC) regimes [6]. Furthermore, by changing the
trapping potential, phenomena such as particle transport [7,8]
and cloud collision dynamics [9] have been quantitatively
measured. More recently, “heavy solitons” were observed
oscillating in elongated traps [10] with very long periods.
Many nuclear responses [11] and reaction processes [12] are
manifestations of collective dynamics of nucleons, and vortex
pinning and unpinning likely plays a role in generating glitches
in the spin down of neutron stars [13].

Despite this diverse interest, simulating fermionic quantum
hydrodynamics—even with simplified time-dependent density
functional theory (DFT) models—remains a computational
challenge, requiring world-class computing resources for even
relatively simple problems [14]. Direct simulation of many
macroscopic phenomena lies outside the realm of current
technology, so in this paper, we validate to what extent a
computationally simple model called the extended Thomas-
Fermi (ETF) model can characterize the dynamics of the
strongly interacting unitary Fermi gas (UFG). We find that
it performs well for low-frequency dynamics, and identify its
limitations. This validation played a crucial role in solving
the mystery of the “heavy solitons” observed in [10] where
the ETF was used to demonstrate the consistency of the
observations with vortex rings instead of solitons [15].

The computational problem is that most fermionic super-
fluid DFTs [of the Kohn-Sham variety such as the Bogoliubov–
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de Gennes (BdG) mean-field equations or Hartree-Fock-
Bogoliubov (HFB) equations] require evolving hundreds of
thousands of single-particle wave functions, occupying vast
amounts of memory. In contrast, the Gross-Pitaevskii equation
(GPE) [16,17] provides an attractive computational method
for studying bosonic superfluids where the superfluid is
represented by a single wave function for the condensed state.
The ETF model considered here has the same computational
simplicity, and thus can be applied to macroscopic systems.
We find that it performs well for low-frequency dynamics,
suggesting that it might provide the basis for a practical
method of simulating macroscopic volumes of fermionic
superfluids required to understand phenomena such as neutron
star glitches.

The UFG is a universal model for dilute Fermi gases
comprising two species of the same mass interacting with
a zero-range resonant attractive interaction of infinite s-wave
scattering length. It provides an ideal problem to benchmark
many-body techniques for several reasons: it has a simple and
universal equation of state (EOS) but remains highly nonper-
turbative with strong interactions, is directly realized in cold-
atom experiments [18], and provides a good approximation
for the dilute neutron matter [19] in the crusts of neutron stars.
This universal system is stable, and the absence of a length
scale for the interaction implies that the energy-density E(ρ) =
ξEFG(ρ) is characterized by the single universal dimensionless
coefficient ξ known as the Bertsch parameter [20]. [Here
EFG(ρ) = 3

5ρEF (ρ) is the energy density of the noninteracting
system with total density ρ = ρa + ρb = k3

F /3π2, EF (ρ) =
�

2k2
F /2m is the Fermi energy, and kF is the Fermi wave vector.]

Despite the simple form of the EOS, the system is strongly
interacting and admits no perturbative expansions. Significant
effort has been put into determining the Bertsch parameter ξ

over the past decade, and only recently has it been computed
[21–25], and measured [26–28] to high precision (see [29] for
a survey). The current best-fit value ξ = 0.3742(5) is obtained
by consistently fitting both quantum Monte Carlo (QMC) and
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experimental results [25] with a self-consistent fermionic DFT
called the superfluid local density approximation (SLDA).

The time-dependent generalization of the SLDA provides a
model for directly studying time-dependent phenomena in the
UFG (see [30] for a review). The SLDA includes pair-breaking
effects, the superfluid-normal transition, and finite-size (shell)
effects. Many different dynamical processes have been de-
scribed in [14], including vortex nucleation through stirring,
vortex-vortex interactions, and vortex ring formation. These
simulations, however, required supercomputing resources for
even modest physical volumes. The largest system studied
in [14] contained ∼500 particles represented by 70 000 wave
functions on a 32 × 32 × 192 lattice. To compare, typical cold-
atom experiments comprise some 105 particles [31], which
would severely tax current computational resources, even if
symmetries are utilized. Similarly, while the dynamics of a
single vortex in neutron matter may be within reach of cutting
edge computing [32], simulating multiple vortices separated
by several lattice lengths will require significantly more
resources. Thus, validating and generalizing computationally
more efficient methods such as the ETF model is critical for
scaling calculations up to macroscopic systems.

The ETF [33–35] is essentially a bosonic theory describing
dimers or Cooper pairs in the UFG with a single collective
condensate wave function that has been used to analyze the
expansion and breathing mode frequencies of cold-atomic
gases in a trap [33,36,37], their surface oscillations [38],
collisions of clouds of fermions [39], vortex generation [40],
vortex pinning [32], instabilities [41], and soliton dynamics
[42]. While the ETF has the same symmetries, and can be
tuned to have the same EOS as the full theory, one expects
poor behavior when excitations approach the pair-breaking
threshold set by the gap �ω > 2� ≈ EF . The only low-energy
degree of freedom—the superfluid phonon—exists in both
theories, and matching the EOSs ensures that the speed of
sound is the same. This ensures that the linear response for
small frequencies and momenta match, but we find good
agreement for small frequencies even at finite momenta
q ∼ kF , suggesting that the ETF could be a good description
of SLDA dynamics for slowly varying probes. Indeed, the
ETF seems to do a good job of describing bulk dynamics
in regimes where pair-breaking effects play a minor role,
but exhibits notable departures as one introduces excitations
near the pair-breaking threshold. We verify this behavior by
comparing with existing fermionic [14] simulations and find
certain diagnostics to check whether the bosonic simulation
can be expected to be a good description of the fermionic
problem.

Indeed, we find qualitative differences between ETF and
SLDA simulations when we produce excitations with fre-
quencies higher than the pair-breaking threshold and wave
vectors larger than the inverse particle separation. One way to
remove these high-wave-vector components in the ETF is to
average the order parameter over a region of size of the order of
the particle separation. This reduces the average amplitude of
the order parameter, an effect that is also seen in the SLDA.
This motivates us to compare the evolution of a integral of the
square of the order parameters (scaled so that the dimensions
are appropriate) in the two theories. If the integral does not
change significantly as a function of time we can expect the

ETF to be a reasonable description of the SLDA evolution.
This criterion should be seen as a quick heuristic check: a
more concrete analysis involves calculating the full spectrum
of fluctuations to check whether modes with frequencies above
2� and wave vectors greater than kF are occupied.

In Secs. I and II we review the SLDA and the ETF
models. We compare the linear response for time-independent
fluctuations in Sec. III and for dynamic fluctuations in Sec. IV.
In Sec. V we compare the ETF with SLDA dynamics for a
family of simulations where vortices are created and nonlinear
effects are important, and conclude in Sec. VI. We present a
discussion of the numerical implementation in Appendix A and
give some details of the simulation parameters in Appendix B.

I. THE SLDA

We start with a brief review of the SLDA DFT. Density
functional theory (DFT) is in principle an exact approach,
widely used in nuclear physics (see [43] for a review) and in
quantum chemistry to describe normal (i.e., non-superfluid)
systems. It provides a framework capable of assimilating
ab initio and experimental results into a computationally
tractable and predictive framework. The original Hohenberg-
Kohn formulation [44] proves the existence of an energy
functional E[ρ(x)] such that the density ρ0(x) and energy
E0 of the ground state of an interacting system in an external
potential V (x) can be found by minimizing

E0 = min
ρ(x)

(
EDFT[ρ(x)] +

∫
d3x V (x)ρ(x)

)
. (1)

Dynamics may be described by an extension commonly
referred to as the time-dependent density functional theory (we
will refer to it as DFT as well) [45] that describes the evolution
of the one-body number density in the presence of an arbitrary
one-body external field. As in the static case one can prove
the existence of a functional from which one can determine
the exact time-dependent number density for a given quantum
system [45]. Unfortunately, these theorems do not specify the
form of the functional EDFT[ρ(x)].

Instead, one must rely on physically motivated models and
benchmark them. To model the UFG, a simple form known
as the superfluid local density approximation (SLDA) [46]
has been successfully benchmarked against ab initio QMC
calculations [25]. It is a local functional of the density ρ and
two additional densities: a kinetic density τ (x) ∝ 〈∇ψ† · ∇ψ〉
(following the Kohn-Sham formulation [47]) which is required
to model finite-size (shell) effects, and an anomalous density
ν ∝ 〈ψψ〉 required to model pairing effects (see [25,30,48] for
a discussion). The resulting SLDA energy density functional

ESLDA = �
2

m

(α

2
τ + gν†ν

)
+ βEFG(ρ)

(2)

g−1 = ρ1/3

γ
− kc

2πα

has three dimensionless parameters: an inverse effective mass
α (that multiplies the kinetic density τ ), a self-energy β, and
a pairing parameter γ . (The anomalous density ν diverges
in the local approximation requiring regulation expressed
through a cutoff kc → ∞.) One typically solves the SLDA
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for homogeneous matter, expressing β and γ in terms of the
physically relevant Bertsch parameter ξ and the T = 0 pairing
gap η = �/EF . If the effective mass parameter α 	= 1, then
one must also introduce a term involving currents to restore
Galilean covariance that slightly complicates the numerical
implementation. For this reason, and since α ≈ 1, the SLDA
employed in practice typically sets α = 1 [14] and we shall
compare to these results in this paper.

To work with this DFT, one expresses τ , ρ, and ν in
terms of a set of single-particle orbitals that obey a set
of self-consistency equations similar to the BdG mean-field
equations

i�
∂

∂t

(
un(x,t)
vn(x,t)

)
=

(
K̂ + U �

−�∗ −K̂ − U

) (
un(x,t)
vn(x,t)

)
, (3)

where U [τ,ρ,ν] and �[τ,ρ,ν] are functions of the densities
obtained by minimizing (2). The computational difficulty is
that one must simultaneously evolve many single-particle wave
functions, (un,vn), and one eventually becomes limited by
memory (70 000 wave functions on a 32 × 32 × 192 grid
requires 200 GB for a single step).

We note that the SLDA reproduces the variational BdG
mean-field equations if one sets the effective mass to unity
α = 1, removes the self-energy β = 0, and tunes the pairing
interaction with the usual pseudopotential γ −1 = 0. This well-
studied approximation captures the same qualitative physics as
the SLDA, but does not provide a reliable quantitative picture
(the lack of a self-energy β = 0 for example incorrectly pre-
dicts a noninteracting polaron with zero binding energy). The
SLDA will reproduce this model if one fixes the parameters
α = 1, ξ = 0.5906 · · · , and η = 0.6864 · · · . Since this BdG
model has been widely studied, we include a comparison
between it and the ETF tuned to this “incorrect” value of ξ

along with the comparison to the SLDA.

II. THE ETF MODEL

In contrast, the Gross-Pitaevskii equation (GPE) [16,17]
commonly used to model bosonic superfluids requires stor-
ing and evolving only a single complex wave function ψ

representing the condensate, thereby allowing one to explore
significantly larger systems. To apply this approach to the UFG
we note that one can describe the BEC limit of strong attraction
as a Bose gas of dimers. Hence, we introduce �(x,t) as the
collective dimer wave function into a modified GPE [34,35]:

EETF[�] =
∫

d3x

(
�

2|∇�(x)|2
4m

+ V (x)ρ + g(ρ)

− �
2(1 − 4λ)

32m

(∇ρ)2

ρ

)
, (4a)

i�∂t�

2
= H� =

(
−�

2∇2

8m
+ V + g′(ρ)

+ �
2(1 − 4λ)

8m

∇2√ρ√
ρ

)
�, (4b)

ρ = 2|�|2,g(ρ) = ξEFG(ρ),g′(ρ) = ξEF (ρ). (4c)

The form of the coefficient of the term (∇ρ)2/ρ in Eq. (4a)
has been chosen so that in the absence of phase fluctuations
one gets back the form adopted in Ref. [35].

One should think of this as a GPE for the “dimer” Cooper
pairs. The bosonic dimers are described by the collective
wave function �(x,t) with the interpretation that |�|2 is
the dimer density; hence the total density ρ = 2|�|2 has a
factor of 2. Likewise, the bosonic mass mB = 2m is twice
the fermionic mass, accounting for the factor of 4m = 2mB in
the kinetic term. This picture becomes more accurate as the
dimers become more tightly bound toward the BEC regime
where a GPE description of the bosonic dimers is applicable.
Finally, whereas the GPE has a quartic self-interaction related
to the dimer-dimer scattering length, at unitarity we have
no scales, and so g(ρ) ∝ ρ5/3 is required on dimensional
grounds, reproducing the UFG EOS. The normalization of
the time-evolution equation ensures Galilean covariance.

This modified GPE corresponds to a class of DFTs known
as ETF models.1 In the absence of phase fluctuations, one
can show that the model (4) is equivalent to following local
Hohenberg-Kohn DFT [33–35]:

E[ρ] =
∫

d3x

(
λ�

2

8m

(∇ρ)2

ρ
+ V (x)ρ + ξEFG(ρ)

)
, (5)

which is the more common form for the ETF model. This
includes gradient corrections proportional to λ as originally
suggested by Weizsäcker [50] which includes both a direct
contribution from kinetic energy as well as a correction
proportional to 1 − 4λ that we shall neglect by setting λ = 1/4
as discussed below.

The ETF model reproduces the quantum hydrodynamics
equations [51] which describe the evolution of the density and
velocity fields ρ and v:

� =
√

ρ

2
e2iφ,v = �∇φ

m
= �∗i

←→∇ �

2m�†�
,

∂tρ + ∇ · (ρv) = 0, (6a)

− m∂tv = ∇
(

mv2

2
+ V (x) + ξEF (ρ) − λ

�
2

2m

∇2√ρ√
ρ

)
, (6b)

where �∗i
←→∇ � = (�∗i∇� − ∇�∗i�)/2. Note that (6b)

contains the “quantum pressure”: singularities in this term are
crucial for describing quantum phenomena such as vortices.

There has been much discussion in the literature
[34,35,52,53] about the value of the coefficient of the
Weizsäcker term. There are two special values: λ = 1/4
corresponds to the case where the quantum pressure arises
entirely through the kinetic energy, while for λ = 0 the
quantum pressure term in the equation cancels out (6b),
reducing the equations to classical hydrodynamics of an

1The Thomas-Fermi (TF) approximation to a fermionic DFT
corresponds to applying the homogeneous EOS at each point in
space, introducing the external potential V (x) as a spatially dependent
chemical potential. The “extension” here corresponds to including
gradients in the functional. The gradient terms included in (4)
represent the lowest-order expansion. See [49] for a discussion.
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irrotational and inviscid fluid. For λ = 1/4 one finds that the
condensate near the vortex core goes as (x + iy) [46] (where
x, y are the coordinates in the plane perpendicular to the vortex
with origin at the core) and better describes the dynamics of
colliding superfluids [39]. Hence in this paper we will restrict
ourselves to λ = 1/4. The resulting ETF model is described
by a single parameter, the Bertsch parameter ξ . To compare
with the time-dependent SLDA simulations of Ref. [14], we
will use their value ξ = 0.42.

The aim of this paper is to demonstrate the extent to which
the ETF can be used to study the dynamics of the UFG in
place of the more computationally expensive SLDA. Since the
ETF is tuned to match the UFG EOS, it will by construction
reproduce all related properties such as the leading-order (LO)
(in energy and momentum) static and dynamic responses. The
nontrivial validation comes when one considers higher orders
and nonlinear effects. We consider three tests here: (Sec. III)
the static response at high wave vectors q; (Sec. IV) the
dynamic linear response at finite wave vector q and frequency
ω; (Sec. V) the nonlinear response by comparing with SLDA
dynamics and experiments.

III. STATIC RESPONSE

The static ETF model has been compared with QMC results
for the harmonically trapped UFG [34,35]. Comparison with
recent QMC results [46] demonstrates that it exhibits the
correct qualitative asymptotic behavior in the thermodynamic
limit, reproducing the asymptotic form predicted by the
low-energy superfluid effective field theory [55], but fails for
small systems. This failure is expected since the ETF lacks the
fermionic shell structure resulting from the Pauli exclusion
principle and the kinetic density τ in the SLDA.

The linearized static density response χρ(q,ω = 0) for
wave vector q is defined by considering how the density
changes in response to a small cosine modulation:

VR(x) = δ cos(qx), ρ(x) = ρ0 + χρ(q,ω = 0) δ cos(qx).

The static response of the ETF and SLDA are compared
in Fig. 1. The EOS fixes the value χρ(q → 0,ω = 0) =
∂n/∂μ, but the ETF matches the fermionic SLDA quite well,
even for large wave vectors. Although we do not consider
such corrections here, it should be possible to add gradient
corrections to the ETF to improve this agreement (being careful
not to affect the structure of vortices near the core, etc.).

To compare the static response in the nonlinear regime,
we consider the structure of a single vortex in Fig. 2. This
demonstrates one major limitation of the ETF model which
imposes an artificial relationship between the square of the
order parameter and the density ρ = 2|�|2. In the fermionic
theory, the relationship between � and ρ are determined as
independent sums of the single-particle wave functions: the
relation ρ = 2|�|2 only becomes valid for fermions in the
deep BEC regime. In the UFG, the vortex cores have a nonzero
density (often thought of as “normal” fermionic modes
occupying the vortex core where the superfluid condensate
vanishes), while the ETF by construction has zero-density
wherever the condensate � = 0 vanishes.

This core occupation also appears in solitons, giving rise
to a change in the oscillation period for solitons in a quasi-1D

FIG. 1. (Color online) Static (ω = 0) response for two fermionic
DFTs and the corresponding ETFs. Upper curve: BdG (upper solid red
curve) with ξ = 0.5906 · · · and � = 0.6864 · · · EF (see also [54]).
Lower curve: SLDA (lower solid blue curve) with α = 1, ξ = 0.42,
and � = 0.502EF (to match [14]). The ETFs (dashed black curves)
have their single parameter ξ tuned to match the respective fermionic
theories, and consequently match at q = 0 where the response (the
compressibility) is determined by the EOS. The curvature for small q

is incidentally numerically very similar for the corresponding theories
(see Sec. IV). The deviations for larger q give an estimate of how well
the ETFs can model the fermionic theories.

harmonic trap from T ≈ √
2Tz [57–61] in the bosonic systems

(reproduced by the ETF model) to T ≈ √
3Tz in the fermionic

DFTs (BdG [62] and SLDA [63]). Thus, bosonic and fermionic
simulations are qualitatively, but not quantitatively, similar
when describing these types of dynamics. Note that a recent
experiment [10] suggested that solitons in the UFG might
have a significantly longer period T ≈ 10Tz, but this has been
resolved by identifying the observations with vortex rings [15].

FIG. 2. (Color online) Structure of a single static vortex in the
SLDA [56] (solid blue curve), and in the matching ETF (dashed
black curve). We compare only with parameter set II from [56] which
has unit inverse effective mass α = m/m∗ = 1 and parameters tuned
so that ξ = 0.44 while the energy of the normal state is ξN = 0.54
(this gives a somewhat low pairing gap � ≈ 0.3718EF ). We do not
consider the α 	= 1 vortex for parameter set I in [56] which is missing
the corrections that restore Galilean invariance [30].
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Related to the deficiency in properly describing the core
density, we note that unitary evolution of the ETF implies that

∂

∂t

∫
d3x�∗(x,t)�(x,t) = 0. (7)

This means that not only is the total particle number conserved
(which is physical), but the integrated “gap” is also conserved.
In fermionic systems, pair-breaking excitations will reduce
the gap, resulting in a mixture of superfluid and normal
fluid; in highly excited systems the superfluid may vanish
completely. The ETF on the other hand does not admit this
behavior, and even highly excited systems will still have a
rapidly fluctuating but nonzero order parameter. The degree to
which the integrated gap is conserved during the evolution
of a fermionic system provides a useful measure of how
successfully the ETF can model the corresponding evolution.
(We shall explore this further in Fig. 8.)

Despite the fact that the resulting ETF contains only
a single parameter (compared with the three independent
parameters of the SLDA), it still qualitatively reproduces
many response properties. This qualitative agreement is a
somewhat fortuitous consequence of the best-fit parameter
values. From the point of view of the ETF, the UFG contains
two independent length scales: the interparticle spacing set by
the density, and the coherence length set by the gap. This is
demonstrated by the failure of the ETF to capture the core
structure of a vortex. Thus, while the present concordance of
the SLDA and ETF is fortuitous, it may turn out that the SLDA
requires further gradient corrections [46] (a result that is still
awaiting further ab initio confirmation). If these corrections
turn out to be significant, then one might have to introduce
gradient corrections in the ETF in a more complicated form
(compared to the simple Weizsäcker term) that does not spoil
vortex structure and collision dynamics. Such corrections
will be nonuniversal (i.e., must have a different form for
small densities than for large densities) and probably most
conveniently accounted for in a two-fluid model with an
additional “normal” component that can populate the vortex
core. The approximation to the BdG discussed in [64] may
shed some light on the nature of these types of corrections.

IV. LINEAR RESPONSE

We now consider dynamical systems. For small fluctuations
one can simply compare the linear response of the ETF with
that of the SLDA. We compute the response of the system to
an external time-dependent perturbation in the limit of small
δ:

VR(x,t) = δRe[ei(qx+ωt)],

ρR(x,t) = ρ0 + δRe[χne
i(qx+ωt)] + O(δ2).

The magnitude of the resulting response |χn| is shown in Fig. 3
for the BdG and SLDA and compared with the response for
the corresponding ETF model tuned to match the value of ξ .

The response at low frequencies is dominated by the pole
associated with the superfluid phonon. This may be computed

analytically for homogeneous matter in the ETF:

ωphonon =
√(

�q2

4m

)2

+ 2q2

3m
ξEF = csq + O(q3), (8)

where cs = √
ξ/3vF is the sound speed and vF = �kF /m is

the Fermi velocity. At small momenta, q, the f -sum rule [65]
ensures that the residue of the pole in the bosonic and fermionic
theories is equal to −πρ0q

2
�

2/(2mω).
The low-energy properties of these theories can be char-

acterized by a superfluid effective field theory for the UFG
[55] (also see [66]). At LO, the theory is characterized
by the Bertsch parameter ξ which determines the equation
of state. Two new coefficients appear at next to leading
order (NLO),2 which we shall denote cχ and cω following
[46], that characterize the low-energy static and dynamic
properties, respectively. These coefficients characterize the
phonon dispersion ωq and static response χ (q,ω = 0):

ωq = csq

[
1 + cω

24ξ

q2

k2
F

+ O(q4 ln q)

]
, (9)

χ (q,ω = 0) = −mkF

�2π2ξ

[
1 − cχ

12ξ

q2

k2
F

+ O(q4 ln q)

]
. (10)

Matching with the linear response of the ETF gives cω = cχ =
9/4. This is qualitatively consistent with the estimate of these
parameters from the ε expansion [67] (expanding in spatial
dimension: ε = 4 − d) which finds cχ ≈ 8/5 + O(ε2) and
cχ ≈ cω + O(ε2).3 The BdG mean-field theory [66] finds quite
different values, cχ = 7/3 and cω = 0.7539. Interestingly, for
α = 1 the SLDA gives cχ = 7/3 independent of the values of
β and γ in Eq. (2) (or equivalently η and ξ ). The value of cω in
SLDA is not quite as robust. For fixed η = 0.502 and α = 1,
cω changes from −0.255 to 0.055 as ξ is reduced from 0.42 to
0.37 (i.e., from the value used in Fig. 3 to the current best-fit
value). The value for cχ ≈ 1.5(3) follows from an analysis of
gradient corrections to harmonically trapped gases [46].

The value of cω determines the curvature of the phonon
dispersion. As is clear from Fig. 3 the ETF gives a large positive
curvature for the dispersion. In contrast the dispersion curves
for BdG and SLDA appear relatively linear and eventually
curve downward. This is a combination of two effects. First,
cω is smaller in the fermionic theories (negative for SLDA).
Second, higher-order effects in q/kF pull the curves down as
one approaches the pair-breaking threshold. For the BdG this
implies the existence of a point of inflection at q/kF ≈ 0.53.

That the ETF has no transverse response, which can
be expressed in terms of the difference cχ − cω, represents
another shortcoming of the model. As argued in [55], the
transverse response should be positive to ensure stability with
respect to a spontaneous generation of currents or formation
of inhomogeneous condensates.

2The coefficients cχ and cω are “natural” in the sense that cχ ≈
cω ≈ 1. Different notations are used in [55] and [66]; both use ξ =
25/3/(15c0π

2)2/3: cχ

−6π2(2ξ )3/2 is 2c1 − 9c2 in Ref. [55], but 2c1 in Ref.
[66] cω

−6π2(2ξ )3/2 is 2c1 + 3c2 in Ref. [55], but 2c1 − 6c2 in Ref. [66].
3To compare with [67], note that their cs ≡ cχ/2ξ .
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FIG. 3. (Color online) Comparison of the linear response for the ETF (top) and two fermionic DFTs (bottom). The linear response of
the BdG which has ξ = 0.5906 · · · and � = 0.6864 · · · EF (see also [54]) is on the lower left; the linear response of the SLDA tuned to
ξ = 0.42 and � = 0.502EF to match [14] is on the lower right. The ETF has only the single tunable parameter ξ , which is chosen to match the
corresponding fermionic theory in the panel immediately below. The bosonic ETF reproduces the low-frequency response, but breaks down for
ω ≈ 2� at the pair-breaking threshold. The slope of the phonon dispersion relationship is reproduced near the origin, but the curvature differs
between the fermionic and bosonic theories.

To end this section, we consider the numerical values using
ξ = 0.374 [25]:

ωq ∝ 1 + 0.11cω

q2

k2
F

, χ (q) ∝ 1 − 0.22cχ

q2

k2
F

.

Since cχ ≈ cω ∼ 1, we see that the prefactor multiplying the
correction to the leading-order dynamics is somewhat small.
Thus the low-energy dynamics are rather insensitive to the
limitation that cχ − cω vanishes in the ETF and that cω is
somewhat larger than in fermionic theories. The partly explains
the success that the ETF enjoys at low energy.

V. NONLINEAR RESPONSE

From the previous analysis, we expect the ETF to provide a
reasonable description of small-amplitude fermionic dynamics
as long as one does not push the system to the pair-breaking
threshold, i.e., for slowly varying external potentials. In the
nonlinear regime, the disagreement grows as evolution in
the ETF transfers energy from the small-momentum modes to
the higher-momentum modes. The high-momentum response
is dominated by the phonon dispersion, so this tends to create
excitations in the pair-breaking regime where the ETF breaks
down.

The transfer of energy to higher momenta results from
the nonlinear interaction term which acts as a wave-vector
multiplier. The result is that ETF simulations tend to be more
noisy than the corresponding SLDA simulations. To see this in
a concrete example, we directly compare the dynamics of the
ETF with that of the SLDA using the same trapping potential
and time-dependent stirring potential as in [14].

The setup is as follows: The cloud is prepared in the ground
state of a two-dimensional axially symmetric flat-bottomed
trap of radius R (precise details of the potential, etc., are given
in Appendix B). A repulsive potential at a distance rstir from the

center rotates with constant angular frequency ωstir = vstir/rstir.
This is gradually turned on, left on for nstir ≈ 10 rotations,
then gradually turned off. These simulations are quasi-two-
dimensional and have translational symmetry along the trap
axis: the fermionic simulation discretizes the wave functions
on a 322 two-dimensional lattice. It will turn out that simulating
the ETF on larger (642) lattices better reproduces features
of the fermionic theory, most likely due to the transfer of
energy to higher-momentum modes discussed above. Figure 4
summarizes some sample results.

In Table I we compare the number of vortices generated
after four (for vstir = 0.1, 0.11) or ten revolutions (for all
others) of the stirring potential. The table demonstrates the

TABLE I. Number of vortices created after ten revolutions of a
stirring potential as a function of the stirring velocity vstir/vF where
vF is the Fermi velocity at the center of the trap. The second column
(SLDA) shows the results of [14] on a 322 lattice, while the third
and fourth columns show the corresponding results for the ETF with
lattices of 322 and 642 points, respectively. For the higher velocities,
the 322 ETF simulations are too noisy to admit an accurate count of
the vortices.

vstir/vF SLDA (322) ETF (642) ETF (322)

0.1 1 0 0
0.11 1 1
0.197 3 2
0.2 3 4 3
0.242 5 2
0.25 5 6 2
0.3 6 5 (noise)
0.312 6 (noise)
0.35 7 7 (noise)
0.40 9 9 (noise)
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FIG. 4. (Color online) Stirring simulations. The curves show the energy per particle as a function of time for various simulations for
increasing stirring speeds: vstir ≈ 0.1vF (top), vstir ≈ 0.2vF , vstir ≈ 0.25vF (middle), and vstir ≈ 0.3vF (bottom). Sample density profiles are
shown below the x axis starting with the SLDA simulation from [14], followed by the ETF simulation(s). The plots each have two ETF
simulations, one with exactly the same vstir as the SLDA, and another with a slightly different vstir that produces the same total number of
vortices and give the energy curves (dashed, black) immediately below the SLDA energy curves (solid, blue). The SLDA simulations use a 322

lattice while the ETF simulations use a 642 lattice. The light dotted (yellow) curve in the third plot shows the strength of the stirring potential
(in arbitrary units) as it is turned on, held, then turned off.

qualitative agreement between the ETF model and the SLDA.
For small velocities, there are some minor disagreements:
at vstir = 0.1, the ETF does not produce a vortex, but does
produce one for vstir = 0.11. This ≈10% difference might be
due to differences in the static response of the ETF and the
SLDA. For example, the pinning potential creates a larger
depletion in the SLDA (visible in Fig. 4), thereby exciting

regions closer to the edge of the trap where the density is
lower. These regions have a slower critical velocity, allowing
a vortex to be nucleated more easily than in the ETF. One
might consider tuning the potential or model as suggested in
[32] to study vortex-pinning interactions to match the density
depletion in the ETF to that in the SLDA, but we have not
performed any such tuning here.
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FIG. 5. (Color online) Comparison of final-state densities (mov-
ing from left to right) for N = 32 SLDA, a smoothed version of
N = 64 ETF, the raw result for N = 64 ETF, and the raw result for the
N = 32 ETF. The simulations are for vstir ≈ 0.1, 0.2, 0.3, 0.35, 0.40
(moving from top to bottom), taking the vstir for the ETF from
Table I which gives the same number of vortices as the SLDA.
The SLDA vortices are arranged in a regular pattern in the final
state. The N = 32 ETF is too noisy. The higher resolution (N = 64)
ETFs are qualitatively more similar, especially after smoothing, but
the vortices are not as regularly arranged as the SLDA simulations.
The density was smoothed by convolving with a two-dimensional
Gaussian smearing function of spatial width 0.75/kF . The length of
each side of the system is 32 units for both N = 32 and N = 64.

As one increases the rotation rate, one finds that the
322 simulations depart significantly; these essentially develop
short-wavelength noise due to the aforementioned amplifica-
tion of short-wavelength modes to a point where identifying
vortices becomes impossible. The problem here is essentially
that significant phonon “noise” coexists on the same length
scale as the vortex core. Increasing the resolution resolves this
issue by providing a separation of scales between the phonon
“noise” and the larger structure of the vortices. A comparison
of the final states obtained for various resolutions is shown in
Fig. 5.

The rough final agreement in vortex number between the
two theories follows mainly from the superfluidity of the
system. In order to support a rotational current with a fixed
stirring velocity vstir at the specified radius, the system must
carry enough angular momentum; hence it must have (roughly)
a certain number of vortices. Once the system achieves a
rotational flow with v = vstir an equilibrium is established and

no further energy is transferred from the stirrer to the system.
From Fig. 4 we see that the overall energy scale for a given
number of vortices is roughly equal in the ETF and the SLDA
(the final ETF energies are systematically slightly smaller than
the final SLDA energies for the same number of vortices). This
is because the equation of state of the two systems are the same
and energies are the kind of bulk property for which the ETF
can be trusted.

From the details in Fig. 4, this bulk agreement is apparent.
In addition, one sees detailed qualitative agreement in the
dynamics for lightly excited systems. For example, the single
vortex produced for vstir ≈ 0.1vF behaves almost identically
in both the SLDA and ETF. While the stirrer is “on,” the
vortex is closely attached to it. When the stirrer has “switched
off,” the vortex continues (roughly) rotating around the center
of the trap with an angular velocity ω ∼ �/[2m(R2 − r2

stir)]
determined by the background superfluid velocity at the vortex
induced by the trap [17].

For higher velocities, however, many qualitative differences
between the SLDA and ETF dynamics become apparent. Most
obviously, the energy transfer to the ETF is significantly slower
in the ETF than in the SLDA. Another obvious feature is
that the ETF vortex lattice does not “crystallize” as it does
in the SLDA. This is similar behavior to the GPE where
crystallization is known to require the addition of dissipative
mechanisms as in the stochastic Gross-Pitaevskii equation
(SGPE) (see [68] and references therein).

The nonlinear nature of the ETF implies that even if initially
only long-wavelength modes are excited (for example, in our
simulations the stirring potential only only has support for
momenta up to q/kF � 1.5), energy can be transferred to
short-wavelength modes. This phenomenon is common to a va-
riety of nonlinear nondissipative systems, for instance optical
systems, cold plasmas, and bosonic superfluids described by
the GPE [69]. The difficulty this presents with the ETF is that
the phonon pole continues to extend to both high momenta and
high frequencies, whereas in the SLDA, the pole is replaced
by a branch cut at the pair-breaking threshold (see Fig. 3).
Thus, while short-wavelength modes seem to decay in the
SLDA, they persist (see Fig. 6) in the ETF giving rise to

FIG. 6. (Color online) Comparison of the power spectrum (aver-
aged over the time after “switch off”) for different momentum modes
for the SLDA and the ETF. The fluctuations in the SLDA decrease
with increasing q faster than in the GPE.
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FIG. 7. (Color online) We compare the power spectra of the
fluctuations of density in the bosonic simulations (lower panel) and
the fermionic simulations (upper panel). For the bosonic (fermionic)
simulations we consider stirring velocities vstir = 0.11vF (0.10vF ),
vstir = 0.197vF (0.20vF ), and vstir = 0.242vF (0.25vF ), going from
left to right. The spatial Fourier transform is taken over the entire
simulation volume and the temporal transform is taken over the time
after the stirring potential is turned off. The solid horizontal line
(green) corresponds to the pair-breaking threshold, ω/EF = 2η. For
the SLDA simulations, there is little strength above the pair-breaking
threshold. For the ETF simulations with the smallest velocity, most of
the power is concentrated in the low frequencies. For higher velocities,
there is significant power near and above the pair-breaking threshold.
The curves (blue) correspond to the phonon dispersion relation.

noisy simulations that cannot reproduce features such as the
relaxation of vortex lattices (see Fig. 5).

To contrast the situation from the SLDA we compare the
power spectra of the density perturbations in Fig. 7. These
spectra are computed after the stirring potential is turned off
and demonstrate that the majority of the power lies along
the phonon dispersion. These simulations also have vortices,
which add power at low frequencies (one can think of a vortex
as a collection of virtual phonons). Note that in the ETF, even
the slowest simulation vstir = 0.11vF has energy above the
pair-breaking excitation, demonstrating the amplification of
short-wavelength modes.

All of this evidence is commensurate with the fundamental
failure of the ETF to properly describe pair-breaking excita-
tions above ω > 2� that appear to be present in all simulations
(except the vortexless vstir = 0.1 simulation). In the SLDA,
these excitations break superfluid pairs, transferring energy to
the normal component of the fluid which is absent in the ETF.
This provides a damping mechanism for the superfluid in the
SLDA that allows the vortex lattice to crystallize. In the ETF,
these excitations must remain in the superfluid and scatter off
of the vortices, preventing the lattice from crystallizing.

To check this, we can consider the superfluid order
parameter �. To make its dimensions match with the ETF
order parameter we compare the conservation of the following
integrated quantities:

SLDA:
∫

d3x
|2m�|2

ρ1/3
, vs ETF:

∫
d3x |�|2. (11)

The scaling has been chosen so that in the Thomas-Fermi
limit both the integrals are proportional to the total number
of particles. Pair-breaking effects reduce the amount of
superfluid, resulting in a decrease in the total integrated gap in
the SLDA, whereas the corresponding quantity in the ETF is
proportional to the conserved particle number (7).

To realize pair-breaking physics in an ETF-like model, one
needs to introduce an additional thermal “normal” component
to the system, transferring energy and mass to this as
excitations exceed the pair-breaking threshold. To test the
validity of this notion, we compare in Fig. 8 the evolution of
the integrated pairing gap (11) in the SLDA with the integrated
order parameter in the ETF after coarse-graining the field �

with a filter that removes excitations above q � 1.3kF . (We
simply smoothed the 642 simulation with a two-dimensional
Gaussian smearing function of spatial width 0.75/kF .)

The qualitative agreement here shows that this character-
ization of the superfluid to normal conversion is reasonable.
This is visually confirmed in Fig. 5 where we also include a
coarse-grained representation of the density (smoothing now
the density ρ = 2|�|2 rather than �).

FIG. 8. (Color online) Conservation of the integrated squared
pairing gap (squared smoothed ψ) for the simulations for vstir = 0.1vF

(vstir = 0.11vF ), vstir = 0.2vF (vstir = 0.197vF ), and vstir = 0.25vF

(vstir = 0.242vF ) for SLDA (ETF). The wave function was smoothed
by convolving with a two-dimensional Gaussian smearing function
of spatial width 0.75/kF . Note that the scales of the three plots are
different: The vstir ∼ 0.1vF integral is essentially unchanged, while
the vstir ∼ 0.25vF integral decreases by about 25%.

043638-9



MICHAEL MCNEIL FORBES AND RISHI SHARMA PHYSICAL REVIEW A 90, 043638 (2014)

A similar coarse graining of the evolved ETF was performed
in [39] to compare with the shock-wave experiment [9]. The
agreement there confirms this picture that the ETF is suitable
for modeling bulk dynamical properties. Note, however, that
the difference in dynamics here is in contrast with the implied
claim of Refs. [39] that the coarse graining is simply needed
to replicate the averaging implied by imaging. Contrasting
the vortex dynamics here suggests that the actual motion of
topological defects through the Fermi gas cannot be properly
modeled by the simple ETF. The agreement seen between [39]
and [9] thus supports the conclusion that these differences do
not affect bulk dynamical properties.

Coarse graining also adds density to the core of vortices,
bringing the density more closely in line with that of the
SLDA. In a proper two-fluid model, these effects would
increase the effective mass of topological defects, for example,
altering their dynamical behavior as was observed for soliton
dynamics.

The degree to which the integrated gap
∫ |�|2/ρ1/3 is

conserved provides a measure of the extent to which one
can trust the qualitative results of the ETF model, and Fig. 8
shows that a reasonable estimate of this can be obtained from∫ |�̄|2 where �̄ is � smoothed on a scale of q ≈ 1.5kF ; i.e.,
�̄ is the result of applying a low-pass filter to � excluding
Fourier components with k > 1.5kF . Of course, one can also
extract this information from the spectra (Fig. 7) but the
nonconservation of the integrated gap provides a convenient
representation.

To see that this diagnostic applies in other geometries, we
consider the success of [39] where the ETF quantitatively
describes the evolution of the densities observed in the
experiment [9] which collides two clouds of the unitary Fermi
gas. Checking the diagnostic on one-dimensional and two-
dimensional realizations of this experiment, we find that

∫ |�̄|2
is conserved on the subpercent level, providing evidence that
this criterion is applicable for generic traps, especially where
the potential does not have large gradients.

VI. CONCLUSION

We study the features and the limitations of the ETF as a
model for the dynamics of unitary Fermi gases by comparing
and contrasting its dynamical properties with those of the
fermionic SLDA DFT from [14]. Like the GPE, the dynamical
ETF model depends on a single collective wave function �;
it is therefore significantly easier to solve numerically than
the SLDA which requires evolving hundreds of thousands of
wave functions. Unlike the SLDA, however, the ETF lacks
a pair-breaking mechanism. The extra fermionic degrees of
freedom in the SLDA allow it to model both the superfluid
and the normal components whereas the ETF models only the
superfluid.

By comparing the dynamic response of the ETF with
that of the SLDA, we can assess the importance of these
pair-breaking effects on the overall dynamics. We find that the
ETF and SLDA have similar properties at low energies with
a similar static response (Fig. 1) on the 10% level even for
momenta q about 2kF . The dynamic linear response (Fig. 3)
is also similar for small momenta and frequencies as required
by the equation of state, but significantly departs near the

pair-breaking threshold ω ∼ 2�. We also remark on a possible
physical consequence of the difference in the curvatures of
the phonon dispersion curves, as elucidated by Fig. 3. In a
theory with positive curvature, the phonon with higher energy
is kinematically allowed to decay to multiple phonons of lower
energy. We can see that the curvature of the dispersion relation
in ETF is positive. On the other hand, for ξ = 0.42, η = 0.502,
and α = 1 the phonon dispersion in the SLDA has a negative
curvature. To see physical implications of these differences,
however, one must devise sensitive probes as the effect is
naturally quite small. We note that such decays will not show
up in a theory like the ETF where the fluctuations about
the condensate—the phonons—are not quantized, but will be
present if we describe phonon dynamics using any transport
formalism.

Exciting the ETF produces phonons and topological defects
(vortices in this case), but nonlinear excitations amplify the
amplitudes of the high-frequency modes, thereby creating
excitations above the pair-breaking threshold. Once a system
contains appreciable power above the pair-breaking threshold,
detailed dynamics of topological defects disagree markedly
between the two theories; vortex lattices crystallize in the
SLDA, for example, but remain chaotic in the ETF.

Despite these differences in microscopic behavior, the ETF
remains a useful tool for modeling bulk dynamics. This is
perhaps best demonstrated by the remarkable quantitative
agreement between the ETF simulations [39] and the observed
shock-wave phenomena obtained experimentally by colliding
two UFG clouds [9]. The quantitative agreement conclusively
demonstrates that [9] is not probing dissipative effects such as
viscosity which are missing in the conservative ETF approach.

The picture that emerges is that the high-frequency, short-
wavelength phonon gas in the ETF acts very much like the
excited “normal” component created through pair breaking in
the SLDA. This suggests that one might be able to improve
a simple model like the ETF by somehow introducing a
normal component and a coarse-graining process that transfers
energy and particle number from the superfluid to this normal
component, such as realized for bosonic systems with the
SGPE and the stochastic projected Gross-Pitaevskii equation
(SPGPE) (see Refs. [68] and references therein). This is further
confirmed by coarse graining the ETF results which results in a
much better qualitative agreement with the SLDA. One effect
of coarse graining is to add density in the cores of topological
defects; thus, a theory that effectively coarse grains should
better reproduce the dynamics of fermionic defects which have
a different effective mass. Another effect is the reduction in
the integrated square of the coarse-grained order parameter,
mimicking the conversion of the superfluid to a normal fluid.
The qualitative agreement of this reduction also provides a
diagnostic for assessing how well a given ETF simulation
might model dynamics in the SLDA.

We have considered only zero-temperature dynamics here;
it is an interesting question as to how finite-temperature
dynamics might be implemented in a similar framework, and
to what extent coarse graining can describe thermalization.
SGPE and SPGPE (Refs. [68,70]) provide a natural starting
point for such an investigation. The extension of SLDA to finite
temperatures—evolving thermally occupied ensembles—is
another possible direction.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Almost any algorithm implementing the GPE can be easily
extended to implement the ETF; the only differences are the
form of the nonlinear interaction (ρ5/3 vs ρ2) and a few factors
of 2. We implement the evolution using two methods: if high-
accuracy is needed (in order to calculate a power spectrum
for example), then we use a fifth-order integrator described
in [71] that averages the Adams-Bashforth and Milne (ABM)
predictor-corrector methods:

pn+1 = yn + yn−1

2
+ h

48
(119y ′

n − 99y ′
n−1

+ 69y ′
n−2 − 17y ′

n−3) + 161

480
h5y(5),

mn+1 = pn+1 − 161

170
(pn − cn),

cn+1 = yn + yn−1

2
+ h

48
(17m′

n+1 + 51y ′
n

+ 3y ′
n−1 + y ′

n−2) − 9

480
h5y(5),

yn+1 = cn+1 + 9

170
(pn+1 − cn+1), (A1)

where h = δt is the time step. Here the primes denote deriva-
tives as computed with the Hamiltonian: y ′

n = ∂tyn = −i Hyn.
Each iteration requires two applications of the Hamiltonian,
one for the predicted step m′

n+1 (evaluated at time t + h/2)
and one for the corrected step y ′

n+1 (evaluated at time t + h).
Note that yn+1 is accurate to order h6, so after iterating
by N = T/h steps, one obtains an error that scales as h5

(fifth order). This scaling requires that the function be at
least C(4), so a high-order integrator must be used to provide
the first four stating iterations. (Another approach is to start
from a stationary solution so that ym = pm = cm = y0 for
n ∈ {1,2,3}).

This method requires storing the previous four derivatives
y ′

n−3, y ′
n−2, y ′

n−1, y ′
n, as well as the previous pn − cn and

current and previous steps yn, and yn+1. Adding an additional
workspace for computing the fast Fourier transform (FFT), the
memory requirements rise to 8N complex numbers.

When one does not need high accuracy, an alternative
method, the split-operator approach, is faster. Here one
decomposes the Hamiltonian into kinetic and potential parts,
each of which can be applied directly to the wave function
with an error that scales as h3 [72]:

ei�h(K+V ) = ei�hK/2ei�hV ei�hK/2 + O(h3). (A2)

This method is symplectic, effecting strictly unitary evolution,
and requires no additional storage beyond the current state and
any scratch space needed for computing the FFT. In addition,
this approach can be nicely transferred to a graphics processing

unit (GPU) for a further gain in performance. Although not as
accurate as the higher-order ABM method, this method can
be used with relatively large time steps (h = δt ≈ 0.1/�Ec) to
quickly gain a qualitative picture of the dynamics.

APPENDIX B: PARAMETERS OF THE TRAP

To compare our results with Ref. [14] we use ξ = 0.42 in
Eq. (4). The parameters are conveniently written in “atomic”
units, where we take � = m = 1. The chemical potential is
chosen so that the ground-state density of fermions, ρ, at the
center of the trap matches the desired value, ρcentral = 0.0375,
which corresponds to kF = 1.035 (EF = 0.536). This fixes
the chemical potential μ = ξEF = 0.225.

The trapping potential is cylindrically symmetric and taken
to have the same profile as used in [14],

V (r) = 3.9478 ×
[

1 − cos 2πr
L

2

]8

, (B1)

where L = 32 is the extent of the simulation box in each
direction, and r is the distance from the center.

The trap radius R is defined as the point where V (r/0.90) =
μ, where the factor of 0.9 is used to avoid the periphery of
the cloud. This gives R = 9.08. We focus on the family of
simulations performed in [14] for N = 32 grid points in each
(x and y) direction. To compare, we perform simulations for
N = 32 and N = 64 points in each direction. In Table I, the
trap has radius R = 9.08 and the stirrer orbits at fixed distance
rstir = 6 from the center.

We begin the simulation with the ground state in the
potential (B1) at time t = 0. If the Thomas-Fermi profile were
exact in both SLDA and the GPE, the density profiles of the
two would be equal. In reality, the density profiles differ near
the boundary of the trap and the total number of particles in
the GPE (Npart = 9.047 per unit length, or 289.5 particles in a
cylinder of height 32) differs slightly from the total number in
the SLDA (Npart = 9.375 per unit length, or 300 particles in a
cylinder of height 32).

A stirring potential of the form

Vstir = EF exp

(
− r2

r2
pin

)
(B2)

with rpin = 2 is gradually switched on after t = 94.25/eF and
switched off after stirring the superfluid nstir times.

APPENDIX C: ENERGETICS

In Fig. 4 we compare how the total energy of the system
changes through four sample stirring simulations. Both ETF
and SLDA simulations with vstir ≈ 0.1vF that result in a
single vortex display the same qualitative behavior: First the
energy increases as the stirring potential is turned on and
fluid is displaced (slight quantitative differences on the 10%
level appear here due to the aforementioned differences in
the displaced densities). The stirring potential nucleates a
vortex from the edge of the trap, and then effectively pins the
vortex: the stirring potential displaces fluid, thereby creating
an attraction for the vortex which also prefers a density
depletion in its core. The vortex then oscillates in this pinning
potential, causing an oscillating force on the stirring potential
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that appears as oscillations in the energy dE/dt = −F · v as
the stirring potential does work on the system. Since usually
only one vortex is attached to the pinning site at any given
time, the F can be associated with the pinning force exerted
by the pinning potential on the vortex. Since the velocity
of the stirrer, v, is almost identical in the two simulations,
this points to the fact that F (per unit length) is larger in
the GPE compared to SLDA. This is not surprising because
the force exerted on the superfluid by a potential V can be
written as

F = −
∫

d2xρ∇V, (C1)

and the depletion in the density in the core of the vortex,
which is the source of the pinning force, is smaller in the
SLDA compared to the GPE.

Finally, the stirring potential is removed, leaving the single
vortex, with an orbit determined by a countercirculating image
vortex outside the trap [17]. The subsequent motion of the
vortex is almost identical in both ETF and SLDA simulations
since it results from long-distance superfluid hydrodynamic
boundary effects rather than the buoyant force (the trap is flat
at the orbital radius) which would be more sensitive to the
difference in vortex mass due to nonzero occupation of the
core in the SLDA.

For vstir ≈ 0.2vF , a similar picture is presented: vortices are
nucleated from the boundary of the system, and one remains
pinned to the stirrer while three others perform complex
orbits as governed by the Magnus relation in the presence
of each other, the boundary of the trap, and the stirrer.
The motions of the vortices appears to be chaotic—small
changes in initial conditions, lattice resolution, etc., lead to
different trajectories. For example, in the high-resolution 642

ETF simulation with vstir = 0.2vF , eventually four vortices
remain in the bulk, whereas with the 322 simulation and the
vstir = 0.197vF simulations, one vortex attaches itself to the
boundary of the trap and vanishes once the stirrer is removed,
as in the corresponding SLDA simulation. At several times
during the simulation, the stirring potential catches up with
one of the free vortices and the vortex-pinning interaction
exerts a stronger force on the stirrer, allowing it to perform
work on this system; this appears as jumps in the energy
evolution.

For vstir = 0.25vF , the ETF and the SLDA simulations have
both qualitative and quantitative differences. The stirrer in the
SLDA leaves five vortices in the bulk of the trap, while the
322 ETF simulation ends with only two vortices. Increasing
the resolution to 642 gives six final vortices, though for a
slightly smaller stirring speed (vstir = 0.242) five vortices are
left, matching SLDA. In the ETF, however, the stirrer creates

FIG. 9. (Color online) The excitation energy (the difference be-
tween the energy after the removal of the potential and before the
introduction of the potential) as a function of the number of vortices
created in the bulk (Nv).

filamentary structures that are not seen in the SLDA. For
higher vstir, the qualitative differences between the two models
become even more pronounced; in particular, as discussed be-
fore, the low-resolution ETF simulations become so noisy that
it is difficult to identify the vortices. With higher resolution,
however, the ETF retains the somewhat striking property of
the fermionic simulation, that coherent superfluidity persists
for supersonic stirring vstir > cs ≈ 0.37vF . As pointed out in
[14], this is due to the compressible nature of the superfluid: the
stirring potential compresses the superfluid, raising the local
critical velocity. Of course, strictly speaking, the ETF always
remains superfluid, but for sufficiently fast stirring, the phase
fluctuations are so rapid that a coarse-grained picture will find
little spatial coherence. An improved two-fluid model would
include such a coarse-graining procedure to convert superfluid
to the normal fluid.

From the total energy difference after the stirrer is removed
we can calculate the total excitation energy. This depends
primarily on the number vortices added to the system, though
there are minor contributions due to excited phonons. The
classical estimate [14]

Eexcit ∼ L2
z/(2Irigid), (C2)

where Lz is the angular momentum which is roughly propor-
tional to the number of vortices, and Irigid is the moment of
inertia of the superfluid in the trap, suggests that it increases
quadratically with the number of vortices. Equation (C2) is just
a rough estimate, and it turns out to overestimate the excitation
energy by a factor of 2, as we show in Fig. 9. The GPE provides
a reasonable estimate of the excitation energy in the SLDA as
a function of the number of vortices created, all the way up to
vstir < vF 0.35.
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[66] L. Juan Mañes and M. A. Valle, Ann. Phys. (NY) 324, 1136

(2009); A. M. J. Schakel, ibid. 326, 193 (2011).
[67] G. Rupak and T. Schaefer, Nucl. Phys. A 816, 52

(2009).
[68] C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, J. Phys. B 35,

1555 (2002).

[69] W. Wan, S. Jia, and J. W. Fleischer, Nat. Phys. 3, 46 (2007);
S. J. Rooney, P. B. Blakie, and A. S. Bradley, Phys. Rev. A 86,
053634 (2012).

[70] M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett. 87,
160402 (2001).

[71] R. W. Hamming, Numerical Methods for Scientists and Engi-
neers (McGraw-Hill, Inc., New York, 1973).

[72] J. Huyghebaert and H. D. Raedt, J. Phys. A 23, 5777
(1990).

[73] G. A. Baker, Jr., Phys. Rev. C 60, 054311 (1999).
[74] G. A. Baker, Jr., Int. J. Mod. Phys. B 15, 1314 (2001).

043638-14

http://dx.doi.org/10.1103/PhysRevB.87.214507
http://dx.doi.org/10.1103/PhysRevB.87.214507
http://dx.doi.org/10.1103/PhysRevB.87.214507
http://dx.doi.org/10.1103/PhysRevB.87.214507
http://dx.doi.org/10.1016/j.aop.2009.01.003
http://dx.doi.org/10.1016/j.aop.2009.01.003
http://dx.doi.org/10.1016/j.aop.2009.01.003
http://dx.doi.org/10.1016/j.aop.2009.01.003
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://dx.doi.org/10.1016/j.aop.2010.09.005
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.004
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://dx.doi.org/10.1088/0953-4075/35/6/310
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1038/nphys486
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://dx.doi.org/10.1103/PhysRevA.86.053634
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1088/0305-4470/23/24/019
http://dx.doi.org/10.1103/PhysRevC.60.054311
http://dx.doi.org/10.1103/PhysRevC.60.054311
http://dx.doi.org/10.1103/PhysRevC.60.054311
http://dx.doi.org/10.1103/PhysRevC.60.054311
http://dx.doi.org/10.1142/S0217979201005775
http://dx.doi.org/10.1142/S0217979201005775
http://dx.doi.org/10.1142/S0217979201005775
http://dx.doi.org/10.1142/S0217979201005775



