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We derive an effective ring model in momentum space for trapped bosons with synthetic spin-orbit coupling.
This effective model is characterized by a peculiar form of the interparticle interactions, which is crucially
modified by the external confinement. The ring model allows for an intuitive understanding of the phase diagram
of trapped condensates with isotropic spin-orbit coupling and, in particular, for the existence of skyrmion lattice
phases. The model, which may be generally applied for spinor condensates of arbitrary spin and spin-dependent
interactions, is illustrated for the particular cases of spin- 1

2 and spin-1 condensates.
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I. INTRODUCTION

Synthetic electromagnetism in ultracold neutral gases has
attracted great interest [1,2] in recent years. In spite of the
absence of charge, the use of appropriate laser arrangements
has allowed for mimicking the effect of artificial magnetic
fields both in the continuum [3] and in optical lattices [4,5].
Moreover, the internal level structure of the atoms may be
employed to create synthetic spin-orbit coupling (SOC) [6–8],
an essential ingredient in many condensed-matter phenomena.

The physics of degenerate quantum gases in the presence
of SOC has attracted a large deal of theoretical attention
(for recent reviews see Refs. [9–12] and references therein).
A particular emphasis has been put on the case of an
equal admixture of Rashba and Dresselhaus SOC, since this
is the situation that has been experimentally realized up
to now [6–8]. The physics of Bose–Einstein condensates
(BEC) in the presence of isotropic SOC, such as Rashba or
Dresselhaus, is however particularly interesting due to the
associated peculiar ring-like dispersion. In the homogeneous
case (in the absence of a trap) the mean-field ground state
of a two-dimensional spin- 1

2 BEC breaks polar symmetry
spontaneously being characterized by the so-called plane-wave
or stripe phases, respectively corresponding to one peak or
two opposite-momentum peaks in the dispersion ring [13].
The presence of a harmonic trap may significantly enrich
the ground-state phase diagram, leading to the presence of
half quantum vortex phases [14–16] and skyrmion lattice
patterns [17,18]. The effects of SOC for the case of BECs with
higher spin have been also discussed [9,12,19]. In particular,
a spin-1 BEC with SOC (which could be generated by using
pulsed magnetic fields [20,21]) may present triangular and
square skyrmion lattice phases [19,22].

In this paper we provide a simplified picture that allows for
an intuitive understanding of the physics behind the various
ground-state phases of trapped BECs in the presence of
Rashba (or Dresselhaus) SOC. By exploiting the ring-like

form of the dispersion, we derive an effective quasi-one-
dimensional (quasi-1D) model in momentum space. As for
the homogeneous case [23,24] the effective quasi-1D model
is characterized by two types of interaction: an effective
long-range interaction in momentum space, and a destruction
or creation of pairs of atoms with opposite momentum on the
Rashba ring. We show, however, that the presence of the trap
crucially modifies the form of the interactions, and that this
trap-induced modification of the interactions in the effective
quasi-1D model explains the numerically observed skyrmion
lattice phases of different geometries [17–19].

The structure of the paper is as follows: In Sec. II
we introduce the two-dimensional model of spin- 1

2 BECs
with isotropic SOC. Section III discusses the derivation
of the effective ring model for spin- 1

2 BECs, showing
that the quasi-1D model allows for an intuitive understanding
of the ground-state phase diagram. In Sec. IV we illustrate
the general use of the ring model with a discussion of spin-1
BECs. Finally, in Sec. V, we summarize and comment on
further applications.

II. TWO-DIMENSIONAL CONDENSATES WITH
SPIN-ORBIT COUPLING

We consider in the following a trapped two-dimensional
pseudo-spin-F BEC with spin-independent interactions in the
presence of an isotropic synthetic SOC. The condensate is
described by the energy functional E = ESOC + ET + EI,
where

ESOC[�] = 1

2m

∫
d2�r �†

(
−i� �∇ − �

κ

F
�F⊥

)2
�, (1)

ET[�] =
∫

d2�r V (r)�† · �, (2)

EI[�] = g

2

∫
d2�r (�† · �)2, (3)
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characterize, respectively, the spin-orbit coupling term, the trap
energy, and the interaction energy. In the previous expressions
the momentum κ characterizes the SOC strength, V (r) =
mω2r2/2 is the isotropic harmonic trap on the xy plane.
Without loss of generality, we chose the spin-orbit coupling
vector F⊥ = Fx �ex + Fy �ey to be the in-plane component of
the spin vector with components [Fa,Fb] = iεabcFc. Note that
Dresselhaus or Rashba forms will provide identical results, up
to an unitary rotation. In the previous equations, �(�r ) is the
two-component spinor wave function. Note that we are hence
performing a mean-field analysis, although the ring model
discussed below may be used as well beyond the mean-field
approximation. The condensate physics is hence given by the
two-dimensional (2D) Gross–Pitaevskii equation (GPE):

i�
∂

∂t
� =

[
(−i� �∇ − �

κ
F

�F⊥)2

2m
+ V (r) + g(�† · �)

]
�.

(4)

In the following we assume a dominant SOC, i.e.,
�

2κ2/(2m) � �ω. We also consider that �ω is much greater
than the interaction energy per particle. The latter condition
leads in absence of SOC to a Gaussian BEC in the ground state
of the harmonic trap. The situation is radically different in the
presence of SOC where, for weak interactions, the system
presents a series of phases and phase transitions. For spin 1

2 ,
these include two half-vortex phases [HV( 1

2 ) and HV( 3
2 )] and

a skyrmion lattice phase [14–18] (for larger interactions the
system enters in the so-called stripe or plane-wave phase [13]).
Whereas the physics behind the half-vortex phases is quite
clear, the energetic justification of the skyrmion lattice phase
is, on the contrary, not well understood. We develop below
a simplified ring model that will allow us for an intuitive
understanding of the appearance of the lattice phase.

III. RING MODEL FOR SPIN- 1
2 CONDENSATES

A. Projection on lowest-energy branch

We now consider the case of F = 1
2 . The condensate is best

described in momentum space:

�(�r ) =
∫

d2k

(2π )2 ei�k·�r�̃(�k),

with �k = (k,φ) in polar coordinates. The spin-orbit part of the
energy functional,

ESOC =
∫

d2k

(2π )2 �̃
†
(�k)

�
2
(
�k − κ �σ⊥

)2

2m
�̃(�k),

presents two eigenenergy branches,

ε± (k) = �
2 (k ± κ)2 /(2m).

(The in-plane vector of Pauli matrices is �F⊥/F = �σ⊥ =
σ x �ex + σ y �ey .) Due to the dominant SOC the BEC physics may
be restricted to the lowest branch, ε−(k), which is characterized
by the eigenvector

η− (φ) = 1√
2

(
e−iφ

1

)
.

The spinor acquires hence the form �̃(�k ) = ψ(�k )η−(φ). Note
that ε−(k) has a Mexican-hat form. For a dominant SOC the
BEC occupies the momentum-space region around the ring-
like dispersion minimum (Rashba ring).

B. Trap energy

In absence of trapping the Bose gas condenses at one
or more points of the classical minimum of the Rashba
ring [13,14]. The harmonic trapping introduces an effective
radial and angular dispersion in momentum space:

ET =
∫

d2k

(2π )2 �̃
†
(�k)

(−mω2

2
∇2

�k

)
�̃(�k). (5)

Due to the polar symmetry, and for a dominant SOC,
we may introduce the separation of coordinates ψ(�k ) �
G(φ)f (k)/

√
k. The radial part f (k) obeys the 1D Hamiltonian

−mω2

2 ∂2
k + �

2

2m
(k − κ)2, which is characterized by a harmonic

energy spectrum �ω(n + 1
2 ). Since �ω is much larger than

the interaction energy we may consider that only n = 0
is populated, and hence f (k) = Ae−(k−κ)2l2

0/2, where l0 =√
�/(mω) is the oscillator length, and A is a normalization

constant that we determine below.
The physics of the weakly interacting Bose gas in this

approximation is characterized entirely by the angularly
dependent G(φ). For a dominant SOC we may approximate
k−2 � κ−2 and rewrite

ESOC + ET = mω2

2κ2

∫
dφG(φ)∗

(
l̂z − 1

2

)2

G (φ) , (6)

with l̂z = −i∂φ being the angular momentum around the z axis.
Note that the shift in the angular dispersion of 1

2 results from the
Berry’s phase of π that arises from encircling the Rashba ring.
This cannot be eliminated by a gauge transformation without
inducing twisted boundary conditions in G(φ). We now impose
the normalization

∫
dk|f (k)|2 = (2π )2 and

∫
dφ|G(φ)|2 =

1, which results in
∫

d2r�(�r )† · �(�r ) = 1. This fixes the
normalization constant A. We obtain in this way the final form
of the spinor in momentum space:

�̃(�k) = 2π3/4

√
l0

k
e−l2

0 (k−κ)2/2G (φ) η− (φ) . (7)

C. Interaction energy

In order to evaluate the interaction energy, it is convenient
to reexpress the spinor wave function in coordinate space.
Toward this aim we first decompose G(φ) into the different
angular-momentum components,

G (φ) =
∑

l

ale
ilφ/

√
2π,

with
∑

l |al|2 = 1. We may employ the approximate identity∫
dq

√
qe−(q−κ̃)2/2Jl (qs) �

√
2πκ̃e−s2/2Jl (κ̃s) , (8)

where s ≡ r/ l0 and Jl is the Bessel function of first kind.
Introducing the dimensionless parameter κ̃ ≡ κl0, the previous
identity requires κ̃ � l. The latter implies that the angular
wave function G(φ) must have a sufficiently large angular
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spread, such that single-particle energy satisfies ESOC + ET 

�ω (thin-ring limit). In what follows, we assume the thin-
ring limit unless otherwise stated. This assumption is the key
assumption in the development of the ring model below. By
using the previous identity, we may easily obtain the form of
the spinor in coordinate space [�r = (r,α)]:

�(�r ) =
√

κ̃e−s2/2

l0
√

2
√

π

∑
l

al

(
il−1ei(l−1)αJl−1(κ̃s)

ileilαJl(κ̃s)

)
. (9)

We may then rewrite

EI = gκ̃2

4l2
0

∑
l1,l2,l3,l4

a∗
l1
al2a

∗
l3
al4δl2+l4,l1+l3f

l3,l4
l1,l2

, (10)

with

f
l3,l4
l1,l2

≡
∫ ∞

0
sdse−2s2 [

Jl1−1Jl2−1 + Jl1Jl2

]
× [

Jl3−1Jl4−1 + Jl3Jl4

]
, (11)

where we use the simplified notation Jm = Jm(κ̃s). By
substituting al = ∫

dφ√
2π

G(φ)e−ilφ into Eq. (10) we obtain after

straightforward manipulations

EI

�ω
= g̃κ̃2

16π2

∫
dφ1dφ2dφ3dφ4G(φ1)∗G(φ2)G(φ3)∗G(φ4)

×W (φ1,φ2,φ3,φ4)A(φ1,φ2,φ3,φ4), (12)

with g̃ = g/(l2
0�ω). In Eq. (12), the function

A(φ1,φ2,φ3,φ4) = ei�/2

[
cos

(
φ1 − φ2

2

)
cos

(
φ3 − φ4

2

)

+ cos

(
φ1 − φ4

2

)
cos

(
φ3 − φ2

2

)]
, (13)

with � ≡ φ1 − φ2 + φ3 − φ4, stems from the particular form
of η−(φ). The form of the function A is hence specific to
spin- 1

2 BECs with spin-independent interactions. As we show
below A is different for spinor BECs with higher spins and/or
spin-dependent interactions. In contrast,

W (φ1,φ2,φ3,φ4) = 2
∑

l1,l2,l3,l4

δl2+l4,l1+l3e
i(l1φ1+l3φ3−l2φ2−l4φ4)

×
∫

sdse−2s2
Jl1Jl2Jl3Jl4 (14)

is a general function associated with the Rasba ring, valid
for spinor BECs with arbitrary spin and with spin-dependent
interactions, as shown in Sec. IV. Interestingly, the function
W may be reduced to a closed analytical form (see Appendix):

W (φ1, . . . ,φ4) = exp

{
− κ̃2

2
cos2 (�/4)

[
cos

(
φ3 − φ1

2

)
− cos

(
φ2 − φ4

2

)]2
}

× exp

{
− κ̃2

2
sin2 (�/4)

[
cos

(
φ3 − φ1

2

)
+ cos

(
φ2 − φ4

2

)]2
}

. (15)

For large κ̃ , we may use the limit definition

lim
ε→0

e−x2/(4ε)

2
√

πε
= δ(x),

to obtain

W (φ1, . . . ,φ4) = 2π

κ̃2
δ

(
cos

(
�

4

)[
cos

(
φ3 − φ1

2

)
− cos

(
φ2 − φ4

2

)])

× δ

(
sin

(
�

4

)[
cos

(
φ3 − φ1

2

)
+ cos

(
φ2 − φ4

2

)])
. (16)

D. Interaction channels

The function W can be viewed as an approximate momen-
tum conservation on the ring, which selects two interaction
channels:

(i) type-(i) interactions: φ1 � φ2 and φ3 � φ4, or φ1 � φ4

and φ3 � φ2;
(ii) type-(ii) interactions: φ3 � φ1 + π and φ4 � φ2 + π

(modulo 2π ).
For type-(i) interactions, φ2 � φ1 and φ4 � φ3, we may

rewrite

W (φ1,φ2,φ3,φ4) � 8π

κ̃2

δ (φ4 − φ3) δ (φ2 − φ1)

| sin (φ3 − φ1) | , (17)

where the validity of the expression demands sin2[φ3 −
φ1)/2] � 2/κ̃2. For type-(ii) interactions, φ3 � φ1 + π and
φ4 � φ2 + π , one obtains

W (φ1,φ2,φ3,φ4) � 8π

κ̃2

δ (φ3 − φ1 − π ) δ (φ4 − φ2 − π )

| sin (φ2 − φ1) | ,

(18)
for sin2[(φ2 − φ1)/2] � 2/κ̃2. Although these two types of
effective interactions have been discussed in the context
of homogeneous (i.e., untrapped) BECs with SOC [23,24],
their functional form is crucially different in the presence
of confinement, especially due to the appearance of the sine
function in the denominator of the expressions above. Note that

043632-3



CHEN, RABINOVIC, ANDERSON, AND SANTOS PHYSICAL REVIEW A 90, 043632 (2014)

this sine function in the denominators is problematic when it
approaches zero. We address this issue below.

E. Effective-interaction Hamiltonian

By substituting the expressions for the W function in
Eq. (12) we obtain a simplified form of the interaction
Hamiltonian:

EI

�ω
= g̃

2

∫ 2π

0
dφ

∫ 2π

0
dφ′V (φ − φ′)|G(φ)|2|G(φ′)|2

+ g̃

2

∫ π

0
dφ

∫ π

0
dφ′U (φ − φ′)G(φ)∗G(φ + π )∗

×G(φ′)G(φ′ + π ). (19)

The first term in EI corresponds to type-(i) interactions,
which hence may be understood as an effective “long-range”
interaction in momentum space. The strength of the long-range
interaction, given by the V (�φ) function, depends nontrivially
on the angular separation �φ = φ − φ′, as discussed below.
The second term in EI stems from the type-(ii) interactions,
which are characterized by the destruction of a pair of particles
with opposite momenta, and the creation of another pair of
opposite momenta. The strength of the pair-destruction–pair-
creation, U (�φ), depends on the angular separation between
the pairs. In the following we discuss the form of the interaction
potentials V and U .

The general form of V and U is complicated. For �φ

sufficiently away from 0 and π , we can provide a good
approximation by using Eqs. (17) and (18) to obtain

Va (�φ) ≡ 1 + cos2 (�φ/2)

π | sin (�φ) | , (20)

Ua (�φ) ≡ 2 cos (�φ)

π | sin (�φ) |e
i�φ. (21)

Note that these expressions are independent of κ̃ . Interestingly,
these expressions are identical to those found in homogeneous
BECs [23,24] except for the crucial presence of the sine
function in the denominator. On the other hand, in the vicinity
of �φ = 0 or π , the approximation leading to Eqs. (17)
and (18) break down. To calculate V and U for all �φ we
can introduce a patching function V0 and U0 and express

V (�φ) =
{
Va (�φ) , |�φ − π/2| < 0.2

V0 (�φ) otherwise,
(22)

U (�φ) =
{
Ua (�φ) , |�φ − π/2| < 0.2

U0 (�φ) otherwise.
(23)

In order to evaluate the function V0 close to �φ = 0 we
will need to use a series expansion. Note that the function
V (�φ) must be symmetric around �φ = 0, and hence in the
vicinity of �φ = 0 it may be expanded in the form V (�φ) �
V0(�φ) ≡ ∑∞

j=0 vj |�φ|j . We can then assume the angular
dependence is a Gaussian wave function

G (φ) = fG (φ) ≡ e−φ2/(2δφ2)

π1/4
√

δφ
, (24)

which is localized with a with a small width δφ 
 π . For this
particular angular wave function, only type-(i) interactions

contribute due to the absence of a wave function at opposite
momenta. The interaction energy (19) for the single Gaus-
sian (24) can be calculated analytically, and only V0 contributes
to give

E1G
int

�ω
= g̃

2

∑
j

[
((j + 1)/2)δφj

√
π

]
vj .

The expansion coefficients vj are found by performing this
calculation for a given δφ, and equating the result with the
energy that found from using G(φ) function using Eq. (3).
Repeating this procedure for a range of δφ, all relevant vj can
be found.

To calculate U0, we must repeat this procedure with a
G(φ) formed by two nonoverlapping Gaussians (with total
normalization 1) of width δφ 
 π and placed at ±π/2. The
interaction energy is of the form

E1G
int

�ω
= 1

2

E1G
int

�ω
+ g̃

4

∑
j

[
((j + 1)/2)�φj

√
π

]
(ṽj + uj/2),

where the V function in the vicinity of �φ = π may be
approximated by V (�φ) � ∑∞

j=0 ṽj |(�φ − π )|j , and in the
vicinity of φ = 0, Re[U (�φ)] � ∑∞

j=0 uj |�φ|j . We have
numerically checked that E2G

int = E1G
int , and hence vj = ṽj +

uj/2. Finally, note that Re[U ] must be symmetric around π/2,
and hence the behavior at �φ � π is the same as that at
�φ � 0.

By properly matching the analytical expressions and the
values in the vicinity of �φ = 0,π , we obtain the final form of
the U and V functions. Taking ṽj = 0.59vj and uj = 0.82vj ,
we have obtained for different κ̃ � 1 values that the V and U

functions calculated at �φ � 0 and π smoothly connect with
the analytical expressions (20) and (21). The exact value of
the coefficients vj , and hence the form of V0(�φ), depends
however on κ̃ .

F. Effective one-dimensional Gross–Pitaevskii equation

By employing Eqs. (6) and (19) we may derive the effective
one-dimensional GPE. For 0 < φ < π ,

i
∂

∂τ
G (φ,τ ) = 1

2κ̃2

(
l̂z − 1

2

)2

G (φ,τ )

+ g̃

∫ 2π

0
dφ′V (φ − φ′)|G(φ′,τ )|2G(φ,τ )

+ g̃

2

∫ π

0
dφ′U (φ − φ′)G(φ + π,τ )∗

×G(φ′,τ )G(φ′ + π,τ ), (25)

with τ = ωt . For φ > π the last line of the previous
expression must be changed to g̃

2

∫ 2π

π
U (φ − φ′)G(φ −

π,τ )∗G(φ′,τ )G(φ′ − π,τ ).

G. Understanding the phase diagram of a 2D BEC with SOC
by using the effective ring model

Figure 1 shows the form of the V and U functions for κ̃ =
20. Note that the function V is characterized by the appearance
of a local nonzero minimum at �φ � 0.6π . The function U
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(Δ
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FIG. 1. (Color online) Functions V (�φ) (dashed curve) and
UR(�φ) ≡ Re(U (�φ)) (bold dashed curve) for a spin- 1

2
BEC with κ̃ = 20. The final expressions are of the form
V (�φ) = V0(�φ)f0(�φ) + 0.59V0(π − �φ)fπ (�φ) + Va(�φ)
[1 − f0(�φ) − fπ (�φ)], where f0(φ) = e−(φ/0.5π )4

and fπ (φ) =
e−[(π−φ)/0.5π ]4

are interpolating functions. Similarly for U ,
Re[U (�φ)] = 0.82V0(�φ)f0(�φ) + 0.82V0(π − �φ)fπ (�φ) +
Re[Ua(�φ)][1 − f0(�φ) − fπ (�φ)]. In the figure we depict as well
the analytic expressions Va(�φ) (solid curve) and Re[Ua(�φ)] (bold
solid curve).

presents a zero minimum at �φ = π/2. Note that this peculiar
dependence of the interaction strengths U and V stems from
the 1/| sin(�φ)| dependence of the Va and Ua functions. This
dependence is characteristic of trapped condensates with SOC
with �ω much larger than the interaction energy, being absent
in homogeneous BECs [23,24]. As we discuss in the following,
the 1/| sin(�φ)| dependence is crucial to understand the
ground-state phases of trapped 2D BECs with an isotropic
SOC and, in particular, the appearance of skyrmion lattice
phases [17–19], whose origin remained, up to now, unclear.

Figure 2 compares the average angular momentum 〈l̂ −
1/2〉 of 2D GPE and 1D effective GPE for κ̃ = 20. For
vanishing interactions, it is clear from the form of ESOC + ET

that the lowest energy is given by the HV( 1
2 ) phase, which has

angular momentum l = 0 or 1 (we employ in the following
the notation of Ref. [17]). Note that the contribution of type-(i)
interactions to the interaction energy of both HV( 1

2 ) and HV( 3
2 )

phases is identical. The HV( 1
2 ) to HV( 3

2 ) transition is hence
given by the type-(ii) interactions. The transition occurs when
g̃

2

∫
dφ

∫
dφ′ 1

(2π)2 U (φ − φ′)[1 − e−i4(φ−φ′)] = κ̃−2. By using
the expression calculated above, one obtains for κ̃ = 20 that
the HV( 1

2 ) to HV( 3
2 ) transition occurs at g̃ = 2.34(2π/κ̃2),

in excellent agreement with the exact result, 2.35(2π/κ̃2),
obtained from the direct imaginary-time evolution of the 2D
Gross–Pitaevskii equation [17].

The transition to the lattice phases results from the form
of the V function. Recall that, in the homogeneous case,
the interaction energy is clearly minimized by placing the
BEC in a plane-wave phase (single momentum peak) or two
opposite peaks (stripe phase) [13]. However, the presence of
a local minimum of the interaction energy (which we stress
is induced by the external trapping) allows, at intermediate
interaction values of g̃, the system to minimize the energy by
creating a lattice characterized by regular peaks in momentum

0

1

2

3

 0.05  0.1  0.15  0.2  0.25  0.3

|<
l̂ z

-1
/2

>
|

g~

HV
(1/2)

HV
(3/2)

Triangular lattice phase

2D
1D

FIG. 2. (Color online) Comparison of the results for the average
angular momentum |〈l̂z − 1

2 〉| versus g̃ for κ̃ = 20 between the
2D model (solid) and the effective 1D ring model (dashed). The
transitions from HV( 1

2 ) to HV( 3
2 ) and HV( 3

2 ) to triangular-lattice
phases are represented by black solid vertical lines for the 2D model
and pink dashed lines for the 1D model.

space separated by an angle �φ = 2π/n [19]. This solution
has a large interaction energy but a smaller kinetic energy
than the plane-wave or stripe solution (in the following we
denote as “kinetic energy” the contribution of the ESOC + ET

term, which depends on the curvature ∂2
φG of the angular

distribution). Moreover, note that a lattice formed by three
peaks in momentum space may be approximated by three
Gaussians placed at a separation of 2π/3, i.e., very close to
the minimum of V .

Note as well that in the three-peak case type-(ii) interactions
are obviously irrelevant, since there are no pairs of opposite
momenta. In contrast, a four-peak square configuration given
by Gaussian-like peaks with an angle separation of π/2 (which
would lead to a square-lattice phase) may present in principle
type-(ii) interactions. Note, however, that U (π/2) = 0, i.e.,
quantum interference results in the cancellation of type-(ii)
processes also for the square configuration. This is a peculiar
feature of spin- 1

2 BECs, absent in spin-1 BECs, as discussed
in Sec. IV. The absence of type-(ii) processes is crucial in
spin- 1

2 BECs for the selection of the triangular phase against
the square phase. Both phases have a similar interaction energy,
but the square phase is characterized by momentum peaks with
a narrower angular spreading, and hence by a larger kinetic
energy.

Figures 3 and 4 show the triangular and hexagonal lattice
respectively when g̃ = 0.19. It is interesting to comment on the
case of an hexagonal phase, characterized by six momentum
peaks along the Rashba ring formed by three pairs of opposite
Gaussians separated by an angle π/3. We may compare the
case of six Gaussians separated by an angle π/3 against the
case of three Gaussians separated by 2π/3, assuming in both
cases Gaussians of the same width. It is clear that the type-(i)
part of the interaction energy is larger for the hexagonal case.
However, for the six-peak case the type-(ii) interactions do not
vanish. The latter is crucial, since the interaction energy of the
hexagonal phase may be then reduced by properly setting the
phases of the Gaussian pairs such that the type-(ii) contribution
is negative (the overall interaction energy is, of course, still
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FIG. 3. (Color online) (top) Momentum distribution (as a func-
tion k̃x ≡ kxl0 and k̃y ≡ kyl0) of a spin- 1

2 BEC with isotropic SOC
for κ̃ = 20 and g̃ = 0.19 obtained from a direct numerical simulation
of Eq. (4) and (bottom) of the effective ring model. A very similar
triangular momentum distribution is observed with both models.

repulsive). In particular, for three pairs of opposite momenta
with phases π/3, 0, and −π/3, we have numerically checked
that the type-(ii) contribution exactly cancels the increase of
type-(i) interaction energy, and hence that the energy for six
and for three nonoverlapping Gaussians is the same (within
our numerical accuracy). This degeneracy explains the results
obtained in Ref. [17].

Hence, the ring model allows for an intuitive understanding
of the qualitative features observed in a spin- 1

2 trapped BEC
with dominant isotopic SOC in the weakly interacting regime.
Moreover, the effective 1D Hamiltonian given by Eqs. (6)
and (19) leads to a good quantitative agreement with the
exact 2D result obtained from Eq. (4). For example, in Fig. 2
we compare the angular momentum |〈l̂z − 1/2〉| in the 1D
effective model and the 2D exact equation at κ̃ = 20. Clearly
the 1D model recovers both the HV( 1

2 )-HV( 3
2 ) transition and

the HV( 3
2 )-lattice phase transition. Moreover, although the ring

model is not applicable for large interactions, the form of the
U and V functions suggests that, for sufficiently large g̃, the
system should experience a first-order phase transition into
the stripe (or plane-wave) phase, as observed in the numerical
simulations of the 2D Gross–Pitaevskii equation [17]. Note
that this occurs when the system jumps from the local
interaction minimum to the global one at �φ = 0,π , since
the larger kinetic energy is eventually compensated by the
smaller interaction energy for a sufficiently large g̃.
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FIG. 4. (Color online) Same as Fig. 3 but under different initial
conditions for the imaginary time evolution. A very similar hexagonal
pattern appears. The energy of the triangular pattern of Fig. 3 and of
the hexagonal pattern of this figure is, within our numerical accuracy,
basically identical (see discussion in main text).

IV. RING MODEL FOR SPIN-1 CONDENSATES

In the previous section we obtained an effective ring model
for the specific case of a spin- 1

2 condensate. The procedure
is, however, general for spinor condensates of any spin and
arbitrary, possibly spin-dependent, short-range interactions, in
the regime of dominant SOC and weak interactions (�ω much
larger than the interaction energy). In this section we illustrate
the use of the general method for a more complicated system;
namely, a spin-1 condensate with spin-dependent interactions.

A. Effective ring model

We now consider the case of F = 1. The lowest branch,
again with eigenenergy ε− = �

2

2m
(k − κ)2, is characterized by

the eigenvector

η− (φ) = 1

2

⎛
⎝ e−iφ

−√
2

eiφ

⎞
⎠,

where the different entries of the vector correspond to the
Zeeman components m = −1,0,1. As in the spin- 1

2 case, we
project into the lowest band, obtaining the same expression (7),
but with the eigenvector η−(φ) of the spin-1 case. The
noninteracting part of the density functional acquires the form

ESOC + ET =
(

mω2

2κ2

) ∫
dφG (φ)∗ l̂2

zG (φ) . (26)
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Transforming G(φ) = ∑
l ale

ilφ/
√

2π , and assuming that
only angular momenta l 
 κ̃ contribute to G(φ), we obtain
the form of the spinor in coordinate space:

� (�r ) =
√

κ̃

2π1/4
e−s2/2

∑
l

ale
ilα

⎛
⎜⎝

il−1e−iαJl−1(κ̃s)

−√
2ilJl(κ̃s)

il+1eiαJl+1(κ̃s)

⎞
⎟⎠. (27)

Contrary to the case of spin- 1
2 condensates, the ground

state of the noninteracting spin-1 BEC is unique and is
given by a0 = 1, al>0 = 0. From Eq. (27) one sees that the
noninteracting ground state is characterized by counterpropa-
gating vortices in m = ±1 and a vortex-less m = 0 component
[HV(0) phase].

The general form of the interacting part of the energy
functional of a spin-1 spinor condensate is of the form [25,26]

EI =
∫

d3r

{(
g0 + 2g2

6

)
|ψ0|4 + g2

2
[|ψ1|4 + |ψ−1|4]

+
(

g2 + 2g0

3

)
|ψ1|2|ψ−1|2 + g2(|ψ1|2 + |ψ−1|2)|ψ0|2

+
(

g2 − g0

3

)
[ψ∗

1 ψ∗
−1(ψ0)2 + c.c.]

}
, (28)

where gS = 4π�
2asc(S)/m, with asc(S) being the s-wave

scattering length for the channel of total spin S = 0 and 2.
When writing EI above we assumed that the form of the
interactions is not modified by the spin-orbit fields, such as in
the case of magnetically generated spin-orbit coupling [20,21].
Employing expression (7), but with the eigenvector η−(φ)
of the spin-1 case, we obtain again expression (12), with
g̃ = g0/(l2

0�ω), but with a different function:

A(φ1,φ2,φ3,φ4) =
(

1 + 2χ

6

)
+ χ

4
cos(φ1 + φ3 − φ2 − φ4)

+
(

χ + 2

12

)
cos(φ1 − φ3) cos(φ2 − φ4)

+
(
χ − 1

6

)
[cos(φ1 − φ3) + cos(φ2 − φ4)]

+ χ

4
[cos(φ1 − φ4) + cos(φ3 − φ2)

+ cos(φ3 − φ4) + cos(φ1 − φ2)], (29)

where χ = g2/g0. Since the W function is the same as in the
spin- 1

2 case, we may employ Eqs. (17) and (18) to obtain the
corresponding V and U functions sufficiently far from �φ = 0
or π . For χ = 1, we obtain

Va(�φ) = 5 + 2 cos �φ + cos2 �φ

4π | sin �φ| ,

(30)
Ua(�φ) = 3 + cos 2�φ

2π | sin �φ| .

Note that, as spin- 1
2 BECs, the V and U functions are

independent of κ̃ in the vicinity of �φ = π/2. In the vicinity
of �φ = 0 or π we proceed as in the previous section to
obtain V0(�φ) and U0(�φ), which as for the spin- 1

2 case is
κ̃ dependent. In Fig. 5 we show the form of the V and U

functions for κ̃ = 20.

0
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 1.5

2

0  0.2  0.4  0.6  0.8 1

V
(Δ

φ)
, U

(Δ
φ)

Δφ/π

FIG. 5. (Color online) Functions V (�φ) (dashed curve) and
U (�φ) (bold dashed curve) for a spin-1 BEC with κ̃ = 20. In the
figure we depict as well the analytical expressions Va(�φ) (solid
curve) and Ua(�φ) (bold solid curve).

B. Understanding the properties of spin-1 BECs with SOC
by using the ring model

As for the spin- 1
2 case, the effective ring model, and in

particular the form of the functions U and V , allows for an
intuitive understanding of the properties of spin-1 BECs under
isotropic SOC. Figure 6 compares, for κ̃ = 20, the expectation
value |〈l̂z〉| obtained using directly the 2D GPE with the
effective spin-1 1D GPE in Eq. (26). The direct solution of the
2D GPE shows that, as mentioned above, the noninteracting
BEC is in the HV(0) phase. As interactions are increased, the
system experiences a phase transition into the HV(1) phase,
characterized by lz = ±1. As for spin- 1

2 , for a sufficiently
large g̃ the system enters into a triangular-lattice phase,
characterized by three peaks along the ring. However, contrary
to the spin- 1

2 BEC, there is a second phase transition into a
square lattice for a large-enough g̃ [19]. All these features are
well reproduced by the ring model (see Figs. 5, 6, 7, and 8).
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 0.03  0.06  0.09  0.12  0.15

|<
l̂ z

>
|

g~

HV
(0)

HV(1)
Triangular lattice phase

2D
1D

FIG. 6. (Color online) Mean value of the angular momentum
|〈l̂z〉| as a function of g̃ for a spin-1 BEC with κ̃ = 20. We compare the
results obtained from the 2D GPE (4) (solid) and from the ring model
(dashed). The transitions from HV(0) to HV(1) and from HV(1) to
a triangular-lattice phase are represented by black solid vertical lines
for the 2D model and pink dashed lines for the 1D model.
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FIG. 7. (Color online) (top) Momentum distribution (as a func-
tion of k̃x ≡ kxl0 and k̃y ≡ kyl0) of a spin-1 BEC with isotropic
SOC for κ̃ = 20 and g̃ = 0.2 obtained from a direct simulation of
Eq. (4) and (bottom) of the effective ring model. A very similar
triangular-lattice phase is observed in both cases.

The ring model also provides a clear insight into the physics
behind the different lattice phases. To understand why the
square phase is preferred for sufficiently large g̃ it is crucial
to realize that, for the spin-1 case, U (π/2) = 1/π , whereas
for the spin- 1

2 case U (π/2) = 0. Note that, as mentioned
above, the type-(ii) interactions depend on the phase of the
G(φ) function. It is hence possible to arrange the angular
dependence of the phase such that the type-(ii) contribution to
the interaction energy is minimized. Assuming that the G(φ)
function is formed by four separated narrow Gaussian-like
wave packets, fG(φ), at jπ/2, with j = 0,1,2,3, G(φ) =
1
2

∑3
j=0 fG(φ − jπ/2)eiθj , we obtain that the interaction

energy is proportional to V (π/2)/2 + 1
4U (π/2) cos θ , with

θ = θ0 + θ2 − θ1 − θ3. The energy is hence minimized for
θ = π , for which the contribution of the type-(ii) interactions
is actually negative. A similar analysis for a triangular lattice
results in an interaction energy proportional to 2V (2π/3)/3.
Since for spin-1 BECs U (π/2) is comparable to V (π/2) and
V (2π/3), it is hence clear that the interaction energy of the
square lattice may become significantly smaller than that of
the triangular lattice. This mechanism was crucially absent
in the spin- 1

2 case, since U (π/2) = 0, and hence for spin- 1
2

the triangular lattice was selected. From Figs. 7 and 8 it is,
however, clear that the kinetic energy, being dependent on
∂2
φG, is larger in the square lattice, explaining why there is an

intermediate triangular-lattice phase.
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FIG. 8. (Color online) (top) Momentum distribution (as a func-
tion of k̃x ≡ kxl0 and k̃y ≡ kyl0) of a spin-1 BEC with isotropic SOC
for κ̃ = 20 and g̃ = 0.8 obtained from a direct simulation of Eq. (4)
and (bottom) of the effective ring model. A very similar square-lattice
phase is observed in both cases.

For κ̃ = 20 (the case of Figs. 6, 7, and 8), the direct
numerical simulation of the 2D GPE shows a triangular-to-
square–lattice phase transition at g̃ � 0.28, which is in very
good quantitative agreement with the result obtained from the
effective 1D ring model (g̃ � 0.23). We have also checked in
our direct numerical simulation of the 2D GPE that the square
lattice is characterized by θ = π as discussed above. Due to
the minimization of the type-(ii) interactions induced by the
relative phase arrangement the square lattice is very robust,
and from our numerical simulation of the 2D GPE we observe
that it remains the ground state for g̃ � 1, well beyond the
validity regime of the thin ring model.

V. OUTLOOK

In this paper we have derived an effective quasi-one-
dimensional ring model in momentum space for the study
of two-dimensional BECs under dominant isotropic SOC
and sufficiently weak interactions. The model, which may
be generally applied to spinor BECs with arbitrary spin
and spin-dependent interactions, reduces the BEC physics to
the angular dependence along the Rashba ring. Two main
energy contributions characterize this physics, the kinetic
energy induced by the effective dispersion in momentum
space introduced by the external trap, and the interaction
energy. The latter is provided by two types of interactions,
an effective long-range interaction between two momentum
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components in the Rashba ring [type-(i) interactions], and
the destruction or creation of pairs of particles of opposite
momentum in the ring [type-(ii) interactions]. Although these
two types of interactions also occur naturally in the absence
of trapping [23,24], we have shown that the presence of
the trap introduces a peculiar angular dependence for these
interactions, which is responsible for the appearance of
skyrmion lattice phases in trapped BECs. We have shown
that the ring model permits an intuitive understanding of the
ground-state phases of condensates with isotropic SOC, well
reproducing the qualitative and even quantitative features of
the exact 2D model.

The ring model may be applied as well to systems with
weakly anisotropic dispersion. This is, in particular, the case of
realistic SOC implementations, which converge to an isotropic
ring-like dispersion only at large laser intensities [27]. For
large but finite intensities, the lowest-branch dispersion for a
four-laser arrangement acquires the form

ε− (q,φ) � �
2

2m
(q − κ)2 + A cos 2φ,

where the constant A scales inversely with the laser inten-
sity [27]. The extra anisotropic term may be straightforwardly
added to the noninteracting Hamiltonian, resulting in four
energy minima along the Rashba ring separated by an angle
π/2. At finite intensities and weak interactions the condensate
will occupy these minima. The form of the interactions derived

in this paper, however, will remain valid. In particular, the fact
that U (π/2) = 0 (>0) in spin- 1

2 (spin-1) BECs is expected to
play a crucial role in the properties of BECs in these four-
minima arrangements.

Finally, we would like to note that the ring model is
interesting well beyond the description of the ground-state
mean-field phases of BECs. It may be employed not only for
the study of excitations and dynamics [employing, respec-
tively, the effective quasi-one-dimensional Bogoliubov–de
Gennes equations and the time-dependent GPE associated
with Eq. (26)], but also for the study of beyond-mean-field
physics, since the derivation of the ring model and the effective
interactions does not rely on mean-field approximations: one
could use Eq. 19 with G(φ) replaced with a field operator
Ĝ(φ). The analysis of these problems will be the subject of
further research.

Note added. Recently, we became aware of a related work
on few-electron dots [28].
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APPENDIX: DERIVATION OF THE W FUNCTION

In this Appendix we present the derivation of the simplified form (15) of the W function. We may rewrite Eq. (14) in the form

W (φ1,φ2,φ3,φ4) = 2
∑
L,l,l′

eiL�e−il(φ1−φ2)eil′(φ2−φ4)
∫ ∞

0
sdse−2s2

JL−lJL−l′JL+lJL+l′

+ 2
∑
L,l,l′

ei(L+ 1
2 )�e−i(l+ 1

2 )(φ1−φ3)ei(l′+ 1
2 )(φ2−φ4)

∫ ∞

0
sdse−2s2

JL−lJL−l′JL+l+1JL+l′+1, (A1)

with Jl = JL(κ̃s). Employing the identities 2πJL−lJL+l = (−1)L−l
∫

due−i2LuJ2l(2κ̃s cos u) and 2πJL−lJL+l+1 =
(−1)L−l

∫
due−i(2L+1)uJ2l+1(2κ̃s cos u), we obtain

W (φ1,φ2,φ3,φ4) = 1

2π2

∫
sdse−2s2

∫
dudū

∑
L,l,l′

(−1)l+l′ {eiL[�−2(u+ū)]e−il(φ1−φ3)eil′(φ2−φ4)J2l(x)J2l′ (x̄)

+ ei(L+ 1
2 )[�−2(u+ū)]e−i(l+ 1

2 )(φ1−φ3)ei(n+ 1
2 )(φ2−φ4)J2l+1(x)J2n+1(x̄)}, (A2)

with x = 2κ̃s cos u and x̄ = 2κ̃s cos ū. By using the identities cos(x cos η) = ∑
l(−1)le−i2lηJ2l(x) and sin(x cos η) =∑

l(−1)le−i(2l+1)ηJ2l+1(x) and employing θ = 2(u − ū) and α = u+ū
2 , we obtain

W (φ1,φ2,φ3,φ4) = 1

4π

∫
sdse−2s2

∫ 4π

−4π

dθ

∫ π

−π

dα
∑

n

δ (� − θ + 2πn)

{
cos

[
x cos

(
φ3 − φ1

2

)]
cos

[
x̄ cos

(
φ4 − φ2

2

)]

+ ei
φ−θ

2 sin

[
x cos

(
φ3 − φ1

2

)]
sin

[
x̄ cos

(
φ4 − φ2

2

)]}

= 2

π

∫
rdre−2r2

∫
dα cos

{
2κr

[
cos

(
α + �

4

)
cos

(
φ1 − φ3

2

)
− cos

(
α − �

4

)
cos

(
φ2 − φ4

2

)]}
. (A3)

Solving the Gaussian integral leads to Eq. (15).
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[6] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[7] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,
and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[8] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah,
W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[9] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[10] V. Galitski and I. B. Spielman, Nature (London) 494, 49

(2013).
[11] X. F. Zhou, Y. Li, Z. Cai, and C. J. Wu, J. Phys. B: At., Mol.

Opt. Phys. 46, 134001 (2013).
[12] H. Zhai, arXiv:1403.8021.
[13] C. Wang, C. Gao, C. M. Jian, and H. Zhai, Phys. Rev. Lett. 105,

160403 (2010).

[14] T. D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A 78,
023616 (2008).

[15] C. J. Wu, I. Mondragon-Shem, and X. F. Zhou, Chin. Phys. Lett.
28, 097102 (2011).

[16] B. Ramachandhran, B. Opanchuk, X.-J. Liu, H. Pu, P. D.
Drummond, and H. Hu, Phys. Rev. A 85, 023606 (2012).

[17] S. Sinha, R. Nath, and L. Santos, Phys. Rev. Lett. 107, 270401
(2011).

[18] H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Phys. Rev. Lett.
108, 010402 (2012)

[19] Z. F. Xu, Y. Kawaguchi, L. You, and M. Ueda, Phys. Rev. A 86,
033628 (2012).

[20] B. M. Anderson, I. B. Spielman, and G. Juzeliunas, Phys. Rev.
Lett. 111, 125301 (2013).

[21] Z.-F. Xu, L. You, and M. Ueda, Phys. Rev. A 87, 063634 (2013).
[22] E. Ruokokoski, J. A. M. Huhtamäki, and M. Möttönen, Phys.
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