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The existence and stability of domain walls (DWs) and bubble-droplet (BD) states in binary mixtures of
quasi-one-dimensional ultracold Bose gases with inter- and intraspecies repulsive interactions is considered.
Previously, DWs were studied by means of coupled systems of Gross-Pitaevskii equations (GPEs) with cubic
terms, which model immiscible binary Bose-Einstein condensates (BECs). We address immiscible BECs with
two- and three-body repulsive interactions, as well as binary Tonks–Girardeau (TG) gases, using systems of
GPEs with cubic and quintic nonlinearities for the binary BEC, and coupled nonlinear Schrödinger equations
with quintic terms for the TG gases. Exact DW solutions are found for the symmetric BEC mixture, with equal
intraspecies scattering lengths. Stable asymmetric DWs in the BEC mixtures with dissimilar interactions in the
two components, as well as of symmetric and asymmetric DWs in the binary TG gas, are found by means of
numerical and approximate analytical methods. In the BEC system, DWs can be easily put in motion by phase
imprinting. Combining a DW and anti-DW on a ring, we construct BD states for both the BEC and TG models.
These consist of a dark soliton in one component (the “bubble”), and a bright soliton (the “droplet”) in the other.
In the BEC system, these composite states are mobile, too.
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I. INTRODUCTION

Domain walls (DWs) represent the most fundamental type
of robust structures which are supported by immiscibility
in a variety of binary physical systems. Commonly known
are DWs in magnetics [1], ferroelectrics [2], and liquid
crystals [3]. In those media, the immiscible species are em-
ulated by different orientations of a vectorial order parameter.
Similarly organized are DWs separating temporal-domain
regions occupied by light waves with orthogonal circular
polarizations in bimodal optical fibers [4,5]. Binary Bose-
Einstein condensates (BEC) formed by immiscible atomic
species, or immiscible hyperfine states of the same atom,
make it possible to study the formation of DW structures
in superfluids. These structures were studied theoretically in
a number of different settings [6], including the extension
to BEC with linear interconversion between the immiscible
components [7], condensates with long-range dipole-dipole
interactions [8], three-component spinor BEC [9], and the BEC
effectively discretized by trapping in a deep optical-lattice
potential [10].

In addition to the condensates, degenerate Bose gases have
been also experimentally realized in the Tonks-Girardeau (TG)
state [11], using tight quasi-one-dimensional traps [12] (for
a review of the TG model see Ref. [13]). In this context,
a macroscopic (mean-field-like) description of the TG gas
was proposed in terms of the quintic nonlinear Schrödinger
equations NLSE [14] and adopted for various settings [14–18].
In this framework, it was demonstrated that oscillation fre-
quencies derived from the fermionic hydrodynamic equations,
which emulate the hard-core TG gas, are very close to their
counterparts predicted by the quintic NLSE [16,19]. The NLSE
approach was employed to investigate particular nonlinear
features of TG states, including dark solitons [14,17,20],
bright solitons formed by the long-range dipole-dipole interac-

tions [21], etc. Exact solutions for the ground state in mixtures
of TG and Fermi gases have been found, too [22].

On the other hand, the mean-field approach does not
apply beyond the framework of the hydrodynamic regime—in
particular, to problems such as the merger of two gas clouds
into one [23]. Recently, however, the ground state of the
binary TG mixture trapped in the harmonic-oscillator potential
was constructed, using the density-functional theory with the
local-density approximation [24,25]. Coupled quintic NLSEs
emerge in this case, too (although only for particular parameter
settings), where they were used to investigate mainly miscible
ground states.

One expects that DWs, both in BEC and in TG gases, can
exist only in the case of immiscibility. DWs were indeed
observed experimentally in immiscible binary BECs [26].
DWs have been also investigated in other physical systems
described by systems of continuous or discrete NLSEs, both
conservative and dissipative. In particular, DWs were found
in one-dimensional (1D) Heisenberg ferromagnets as front
patterns, both at the classical [27] and quantum [28] level.
Similar structures were also found in a dissipative discrete
NLSE [29] and in coupled Ginzburg-Landau equations mod-
eling convection patterns in two dimensions [30]. To the best
of our knowledge, however, DWs of immiscible binary gases
with quintic interactions, of both BEC and TG types, have not
been investigated yet.

The aim of the present paper is to address the existence
and stability of DWs and bubble-droplet (BD) states in binary
mixtures of immiscible BEC and TG gases. To this end,
we introduce a system of nonlinearly coupled cubic-quintic
(CQ) NLSEs, which describes, in proper situations, both BEC
mixtures and binary TG gases. As concerns the BEC, the
quintic nonlinearities model three-particle collisions in the
limit when the related losses may be neglected [31]. In this
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case, we derive a class of exact DW solutions, with equal
background amplitudes and equal intraspecies and interspecies
interactions (symmetric DWs).

The existence and stability of asymmetric DWs in the
BEC mixtures with dissimilar background amplitudes and
interactions in the two components, as well as of symmetric
and asymmetric DWs in the binary TG gas, is demonstrated
by means of numerical and approximate analytical methods.
It is shown, too, that DWs can be easily put in motion by
phase imprinting. We also show that, by combining a DW
with an anti-DW on a ring, it is possible to construct, for
both BEC and TG gases, BD excitations, consisting of a dark
(gray) soliton in one component (the “bubble”), and a bright
soliton (the “droplet”) in the other. In the BEC system, such
composite excitations are found to be mobile as well. Finally,
our estimates suggest that, using the Feshbach-resonance
technique to control the strengths of the inter- and intraspecies
repulsion in a binary Bose gas loaded into a quasi-1D trap,
the observation of DWs and BDs should be possible in
experiments.

The paper is organized as follows. In Sec. II we introduce
the model equations, for which exact symmetric DWs and
the immiscibility condition are explicitly derived. Section III
is focused on symmetric and asymmetric DWs and BD
complexes in the BEC mixture. The existence of asymmetric
DWs and stability of DWs and BDs is numerically investigated,
and their mobility is demonstrated. In Sec. IV we consider
DWs and BDs in binary TG gases for the symmetric case
of equal masses and equal interactions, as well as for the
asymmetric setting. In Sec. V we summarize the paper and
briefly discuss possible experimental settings.

II. MODEL EQUATIONS AND EXACT DW SOLUTIONS

We start with the general system of coupled scaled NLSEs
with the CQ nonlinearity and equal atomic masses of both
components:

i
∂ψj

∂t
= −1

2

∂2ψj

∂x2
+ [γj |ψj |2 + γ12|ψ3−j |2]ψj

+ [αj |ψj |4 + χ (|ψ3−j |4 + 2|ψj |2|ψ3−j |2)]ψj ,
(1)

j = 1,2,

where positive real parameters γj ,γ12,αj ,χ represent the
repulsive interactions. We will focus on two physically relevant
cases: (i) χ = 0, and (ii) the quintic-only interactions, γ1,2 =
γ12 = 0. The former case corresponds to the binary BEC
with coefficients γ1,2 and γ12 accounting for the intraspecies
and interspecies two-body repulsive interactions, respectively,
while α1,2 add the repulsive three-body interactions in each
component [31]. On the other hand, the quintic-only version
of Eq. (1) may be used as the model for the binary TG gases.

Obviously, Eq. (1) admits the Hamiltonian representation,
in the form of i∂ψj/∂t = δH/δψ∗

j , with

H =
∫ +∞

−∞

2∑
j=1

{
1

2

∣∣∣∣∂ψj

∂x

∣∣∣∣
2

+ γj

2
|ψj |4 + αj

3
|ψj |6

+ γ12

2
|ψj |2|ψ3−j |2 + χ |ψj |4|ψ3−j |2

}
dx. (2)

In particular, this representation explains ratio 1:2 of coef-
ficients in front of the terms multiplied by χ in Eq. (1),
which are derived from terms χ (|ψ1|4|ψ2|2 + |ψ2|4|ψ1|2) in
the Hamiltonian density of Eq. (2). In addition to H , the
system preserves the norm (scaled number of the atoms) of
each component,

Nj =
∫ +∞

−∞
|ψj |2dx, (3)

and the total momentum, P = i
∫ +∞
−∞

∑2
j=1 ψj (∂ψ∗

j /∂x)dx.
Due to the repulsive nature of the nonlinearity, one may

expect that, with the increase of the constants accounting
for the interactions between the components, γ12 and/or χ ,
the binary system becomes immiscible, building DWs as
interfaces between domains filled by different components.
To address this point, we are first looking for particular exact
DW solutions to Eq. (1). In the case of the coupled stationary
NLSEs with the cubic nonlinearity, which corresponds to
Eq. (1) with α1,2 = χ = 0, an exact DW solution was found
in Ref. [30], imposing a special restriction on the cubic coeffi-
cients, γ1 = γ2 = γ12/3. For the single-component NLSE with
the CQ nonlinearity, an exact solution, describing a transient
layer between zero and constant-amplitude states (a variety of
DW), was found in Ref. [32]. In the present context, we are
looking for exact DW solutions employing an ansatz suggested
by the latter solution:

ψ1(x,t) = A1 e−iμ1t

√
1 + eλx

, ψ2(x,t) = A2 e−iμ2t

√
1 + e−λx

, (4)

with background amplitudes A1,2, chemical potentials μ1,2,
and parameter λ defining the DW width, W ∼ 1/λ.

Substituting this ansatz into Eq. (1), one arrives at a system
of algebraic equations:

4
(
A2

j γj + A2
3−j γ12 + 2χA2

jA
2
3−j

) − 8μj + λ2 = 0,

8A2
j

(
γ12 + χA2

j

) − 8μj − λ2 = 0, (5)

A2
j

(
γj + αjA

2
j

) − μj = 0, j = 1,2.

One can readily check that for symmetric intraspecies interac-
tions, i.e.,

γ1 = γ2 ≡ γ, α1 = α2 ≡ α, (6)

and equal amplitudes (the symmetric DW), Eq. (5) admits a
nontrivial solution with μ1 = μ2 ≡ μ, A1 = A2 ≡ A, and

A2 = 3

4

γ12 − γ

α − χ
,

λ = ±(γ12 − γ )

√
3

2(α − χ )
, (7)

μ = 3

16

γ12 − γ

(α − χ )2
(αγ + 3αγ12 − 4γχ ).

From this we conclude that symmetric DWs are generic
solutions, provided that conditions α > χ and γ12 > γ are
satisfied. Note that in the decoupling limit, γ12 → 0,χ → 0,
and for the symmetric interactions, Eq. (1) reduces to a
single-component CQ NLSE. In this case, the exact DW
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reproduces the one found in Ref. [32] for the particular case
of γ = −2,α = 1.

A. The immiscibility condition and asymptotic relations

It is interesting to relate the existence of generic DW
solutions to the immiscibility in the two-component NLSE
system (1). Due to the repulsive nature of all the interactions
and the absence of any trapping potential, the ground state must
be obviously spatially uniform in the miscible case, hence
the DW cannot exist in the miscible system. In the case of
immiscibility, generic stable DW can exist if its free energy
is lower than the one of the corresponding uniformly mixed
state. Then, the immiscibility condition is written in terms of
the free energy, F = H [ψ1,ψ2] − ∑

j μjNj , as

FDW − FUB � 0, (8)

where FDW − FUB is the difference in the free energies
between the DW and of the corresponding uniform background
(each free energy diverges in the infinite system, but the
difference is finite).

Defining background amplitudes Aj , j = 1,2, of the two
DW components as in ansatz (4),{|ψ1(x = −∞)|2 = A2

1
|ψ2(x = −∞)|2 = 0

}
,

{ |ψ1(x = +∞)|2 = 0
|ψ2(x = +∞)|2 = A2

2

}
(9)

(the corresponding densities in the uniformly mixed state
obviously being |ψj |2 = A2

j /2), one can readily write the
immiscibility condition (8), with the aid of Eq. (2), in the
explicit form:∑

j=1,2

(
γjA

4
j + αjA

6
j

)
�

[
2γ12 + χ

(
A2

1 + A2
2

)]
A2

1A
2
2, (10)

which is exact for the infinite domain, and approximated
for a finite domain of length L, the error coming from the
gradient-energy terms being estimated as ∼1/L. For the exact
symmetric DW solution given by Eq. (7), condition (8) is
always satisfied. Indeed, from Eq. (7) we obtain

A2 = 3

4

γ12 − γ

α − χ
<

γ12 − γ

α − χ
,

this being in agreement with Eq. (10), taking Eq. (6) into
regard. It is also relevant to note that the equality of the free-
energy densities at x = ±∞ implies the following relation
between the chemical potentials and asymptotic densities of
the numbers of atoms, fixed as per Eq. (9):

∑
j=1,2

(−1)j
[
μj − 1

2
γjA

2
j − αj

3
A4

j

]
A2

j = 0. (11)

For χ = α and γ = γ12 = 0, which corresponds to the two-
component TG gas described by the coupled quintic equations,
exact solution (7) degenerates into a uniform one. Different
solutions for this case are given below.

III. REPULSIVE BEC MIXTURES WITH CUBIC AND
QUINTIC INTERACTIONS

For the binary BEC mixture, we consider a reduced form
of the NLSE system (1), in which the interspecies repulsion

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

λ

A

FIG. 1. (Color online) The existence region (shaded) for families
of stationary exact domain-wall solutions given by Eqs. (4) and (7)
under condition (6), with the quintic coefficient, α, varying in the
interval of [0.01,1] . Continuous curves from top to bottom refer to
α = 0.01,0.1,0.5,1.0, respectively.

is accounted for by the cubic terms, while the quintic ones
contribute solely to the self-repulsion (χ = 0):

i
∂ψ1

∂t
= −1

2

∂2ψ1

∂x2
+ (γ1|ψ1|2 + γ12|ψ2|2 + α1|ψ1|4)ψ1,

(12)

i
∂ψ2

∂t
= −1

2

∂2ψ2

∂x2
+ (γ2|ψ2|2 + γ12|ψ1|2 + α2|ψ2|4)ψ2.

A. Symmetric and asymmetric DWs in the infinite domain

For the symmetric system, as defined in Eq. (6), parameters
of the exact DW solution given by Eqs. (4) and (7) with χ = 0
are

μ = γ + 3γ12

4
A2, λ =

√
8α

3
A2, A2 = 3

4

γ12 − γ

α
.

(13)

In Fig. 1 we show the existence region of this solution in the
plane of (A,λ) (the amplitude and inverse width of the DW), as
the three-body coefficient α varies in the interval of [0.01,1].
Typical profiles of the corresponding stationary domain walls
for different values of the three-body interaction parameter α

and the background amplitude fixed to be A = 1, i.e.,

γ12 = γ + (4/3)α, (14)

as it follows from Eqs. (4) and (5), are depicted in Fig. 2. In
this case, as seen from Eq. (13), the inverse width of the DW
is determined solely by the quintic parameter, λ = √

8α/3.
As said above, for the exact DW solutions the immiscibility

condition (10) always holds, hence the stability of these
solutions is expected. This has been checked by simulations
of Eq. (12), with small noise added to the initial DW profile
(not shown here in detail). We have found that the DW remains
stable also when it is put in motion by means of the standard
phase-imprinting method, i.e., multiplying the quiescent DW
by exp (ivx), as shown in Fig. 3.

The symmetry restrictions, γ1 = γ2, α1 = α2, adopted
above for obtaining the exact DW solution, is not a limitation
for the existence of DWs in real condensates. Indeed, it is pos-
sible to demonstrate that DWs are generic states in immiscible
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FIG. 2. (Color online) Typical profiles of stationary domain walls
in the binary immiscible BEC generated by Eq. (12) with values of
the quintic coefficient α = 0.01,0.1, and 0.05 (purple dashed, blue
continuous, and red dotted curves, respectively). The parameters are
taken as per Eq. (14), so as to have A = 1 in Eq. (7). We only show
the profiles of the first component, the other one being produced by
specular reflection with respect to the vertical axis.

two-component BECs with repulsive interactions, including
asymmetric settings with unequal background densities in the
two components at x = ±∞. A numerically found example
of such a stable asymmetric DW is depicted in the left panel
of Fig. 4 (see also Sec. V).

Another relevant physical situation, in which strongly
asymmetric DW solutions naturally appear, is the one with
the two-body and three-body intraspecies interactions acting
only in the first and second components, respectively, the
coupling being accounted for by two-body interactions. This
corresponds to γ2 = 0,α1 = 0 in Eq. (12), which can be experi-
mentally implemented by enhancing the three-body interaction
in one component via Efimov states [33], simultaneously
tuning the two-body scattering length in the same component
to zero by means of the Feshbach resonances. For this case,
typical asymmetric DWs are displayed in the right panel of
Fig. 4. One can check, using parameter values given in the
caption to the figure, that the respective immiscibility condition

FIG. 3. A moving domain wall produced by phase imprinting
with initial velocity v = 0.8 (see the text).

FIG. 4. (Color online) (Left) Typical density profiles of an asym-
metric stationary domain wall in the binary immiscible BEC with
γ1 = 1,γ2 = 0.9,γ12 = 1.08 and equal coefficients of the quintic
nonlinearity, α1 = α2 = 0.1. The short horizontal line with the
vertical arrow shows the mismatch between the left and right
background levels. (Right) The same as in the left panel, but
for γ1 = 1, γ2 = 0, α1 = 0, α2 = 0.05 in Eq. (12), and different
strengths of the interspecies cubic interaction: γ12 = 0.5 (continuous
curves), γ12 = 1.1 (dash-dotted curves), and asymptotic (left and
right) densities A1 = 0.916, A2 = 2.325. In both panels, the blue
and red lines depict profiles of the first and second components,
respectively.

[setting χ = 0,α1 = 0,γ2 = 0 in Eq. (10)] for these solutions,

γ1A
4
1 + α2A

6
2 − 2γ12A

2
1A

2
2 � 0, (15)

is satisfied; hence, despite the large mismatch between the
backgrounds, one can expect this asymmetric DW to be
stable. This was confirmed by direct simulations of Eq. (12)
(not shown here). The respective relation between asymptotic
amplitudes Aj and chemical potentials [setting χ = 0,α1 =
0,γ2 = 0 in Eq. (11)],

μ1A
2
1 − γ1

2
a4

1 = μ2A
2
2 − α2

3
a6

1, (16)

was also confirmed numerically. Note that, while Eq. (16) does
not contain γ12, the immiscibility condition (15) explicitly de-
pends on it. From the experimental point of view, this suggests
controling the immiscibility condition by keeping parameters
γj ,αj , j = 1,2, fixed and changing the interspecies two-body
scattering length by means of the Feshbach resonance. The
variation of γ12 mainly affects the shape of the DW interface,
while the asymptotic values Aj remain unaltered. It is easy
to find, from Eq. (15), the critical value at which the mixture
becomes miscible in this case:

γ̃12 = γ1A
4
1 + α2A

6
2

2A2
1A

2
2

. (17)

This prediction will be numerically checked in the next
subsection (see Fig. 7 below for DWs in finite-length rings).

B. BEC mixtures on a ring: BD states

The DW solutions considered above refer to infinite
domains. DWs in finite-length ring regions, subject to periodic
boundary conditions (b.c.), are relevant for the realization of
the BEC in toroidal traps [34,35], including binary conden-
sates [36]. Such patterns can be constructed by combining a
DW and the respective anti-DW on the ring, to satisfy the b.c.
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FIG. 5. (Color online) The DW-anti-DW state in Eq. (18) of
the repulsive binary BEC with α = 0.1,A = 1, λ = 2

√
2α/3 and

separation x0 = 30 (blue lines) or x0 = 8 (red lines). Thin and thick
lines refer to the first and second components, respectively. Filled
blue and red regions depict, severally, the bubble and droplet parts of
the patterns with x0 = 30 and x0 = 8 (they are shown for different
values of x0 to avoid confusing overlap between them).

More precisely, we consider trial solutions of the type,

ψ1(x,t) =
⎧⎨
⎩

Ae−iμt√
1+eλ(x+x0)

at x � 0

Ae−iμt√
1+e−λ(x−x0)

at x > 0
,

(18)

ψ2(x,t) =
⎧⎨
⎩

Ae−iμt√
1+e−λ(x+x0)

at x � 0

Ae−iμt√
1+eλ(x−x0)

at x > 0
,

where 4x0 is the perimeter of the underlying ring, and
2x0 is separation between the DW and anti-DW placed at
diametrically opposite positions.

Typical profiles of such numerically found DW-anti-DWs
patterns are displayed in Fig. 5 for two different values of x0.
One can expect that ansatz (18) is a virtually exact solution
when DW and anti-DW are well separated, e.g., x0 � λ−1.
This is indeed what one observes from the numerical solutions.
More remarkable is the fact that the ansatz provides an almost
exact solution even when the DW and anti-DW are relatively
close to each other, as one can see in Fig. 5 . In this case, the
complex composed of the DW and anti-DW profiles may be
considered as a bubble (sort of a dark soliton [37]) in field
ψ2 coupled to a localized bright profile (droplet) of field ψ1,
which we refer to as BDs. The stability of these complexes was
verified by direct simulations of their perturbed simulations in
the framework of Eq. (12) (not shown here in detail).

The possibility of setting a DW in motion by phase
imprinting a velocity onto it is relevant to the BD states, too.
This is shown in Fig. 6, where simulations of Eq. (12) for
moving DBs are reported. This figure makes it clear that the
BD structures are very robust ones not only in the stationary
form, but also when they are set in motion, thanks to the
repulsive character of all the interactions.

BD solutions can be constructed as well by combining
an asymmetric DW with the corresponding anti-DW on the
ring (not shown here, as their shape is quite obvious). The
asymmetric complexes are stable, too.

FIG. 6. A moving bubble-droplet solution obtained by the phase
imprinting, with initial velocity v = 1.2 velocity, onto the stationary
profiles shown in Fig. 5 for x0 = 8.

It is also interesting to check, in terms of the BD solutions,
the miscibility condition discussed above. For the parameter
values given in the caption of Fig. 4 (left panel), the miscibility
threshold is predicted by Eq. (17) to occur at γ̃12 ≈ 0.344. In
Fig. 7 we display the evolution of the density profiles produced
by the simulations of Eq. (12) for γ12 taken just above and
below the threshold, i.e., in the regions of weak immiscibility
and miscibility, respectively, taking, as initial conditions, a BD
profile constructed from the asymmetric DW corresponding to
the continuous curves in the left panel of Fig. 4. It is seen
that, for γ12 = 0.4, the BD solution (and its DW and anti-
DW constituents) quickly adapt, by emitting small-amplitude
matter waves, to the new value of the interspecies interaction,
keeping the immiscibility, while for γ12 = 0.3 the mixing of
the two components sets in, generating strong density waves
in the two components.

IV. DOMAIN WALLS AND BUBBLE DROPLET
COMPLEXES IN BINARY TONKS-GIRARDEAU GASES

As said in the Introduction, the NLSE with the quintic
nonlinearity emerges in connection to the ground-state prop-
erties of TG gases, both for the single-component ones [14–18]
and binary mixtures [24,25]. In this section we investigate the
existence of DW states at the interface of two interacting TG
gases by means of the NLSE system (1) with only quintic terms
included. The respective equations for stationary states follow
from Eq. (1), substituting ψ1,2 (x,t) = exp

(−iμ1,2t
)
φ1,2(x):[

− �
2

2mj

d2

dx2
+ αj |φj |4 + χ (|φ3−j |4 + 2|φj |2|φ3−j |2)

]
φj

= μjφj , (19)

with m1,2 being the atomic masses of the two bosonic species.
For equal masses m1 = m2 = m and fully symmetric

interactions, α1 = α2 = χ , this model for the TG mixture
can be justified in terms of the density-functional theory,
as discussed in Ref. [25]. In this respect, we recall that the
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FIG. 7. (Top panels) The evolution of densities of the first and
second (left and right columns) components of the BD state for the
same parameters as in the right panel of Fig. 4, except for γ12 = 0.4,
which is taken above the miscibility threshold. (Bottom panels) The
same as above, but for γ12 = 0.3, taken just below the miscibility
threshold.

1D quantum model of two boson species interacting via
the hard-core repulsion is exactly solvable by means of the
Bethe-ansatz method [38]. From that solution, one obtains the
ground-state energy density (in physical units),

ε(ρT ) = π2
�

2

6m
ρ2

T ,

with ρT = ∑
j=1,2 |φj |2 being the total density of the mixture.

In terms of the density-functional theory with the local-density
approximation, this amounts to the consideration of the
following energy functional:

E[ρT ] =
∫ +∞

−∞
dx

⎧⎨
⎩

2∑
j=1

φ∗
j

[
− �

2

2m

d2

dx2

]
φj + ρT ε(ρT )

⎫⎬
⎭ ,

(20)

where chemical potentials μj are introduced as Lagrangian
multipliers to guarantee the conservation of the numbers of
atoms in the two species. In the case of equal masses and fully
symmetric interactions,

α1 = α2 = χ = π2/(2m), (21)

Eq. (19), i.e., in this case,

μ̃jφj = −d2φj

dx2
+ π2(|φj |4 + |φ3−j |4

+ 2|φj |2|φ3−j |2)φj , j = 1,2, (22)

coincide with the equations which provide for the minimiza-
tion of energy functional (20).
In the following we investigate DW and BD solutions of
Eq. (1), both for the fully symmetric interaction strengths and
relatively small deviations from this special case.

A. The variational approach

DWs of Eq. (19) with m1 = m2 ≡ m,α1 = α2 ≡ α, χ1 =
χ2 ≡ χ , but α 
= χ , can be studied by means of a variational
approximation (VA) based on the corresponding Lagrangian,

L = 1

2

∫ +∞

−∞

{[
1

2

(
dφ1

dx

)2

+
(

dφ2

dx

)2]
− μ

(
φ2

1 + φ2
2

)

+α

3

(
φ6

1 + φ6
2

) + χ
(
φ4

1φ
2
2 + φ2

1φ
4
2

) + 2

3
μ3/2

}
dx, (23)

where constant (2/3) μ3/2 is the counterterm, which is added
to cancel the divergence of the integral at |x| → ∞. The DW
solution may be approximated by an ansatz similar to the one
adopted for the BEC mixture in Eq. (4), i.e.,

φ1(x) =
√ √

μ

1 + eλx
, φ2(x) =

√ √
μ

1 + e−λx
, (24)

with λ considered as a free variational parameter. The substitu-
tion of Eq. (24) into Lagrangian (23) yields the corresponding
effective Lagrangian,

Leff =
√

μ

2

[
λ

8
+ (χ − α)

μ

λ

]
. (25)

Finally, the variational equation, ∂Leff/∂λ = 0, produces the
main result of the VA,

λ2 = 8μ(χ − α). (26)

This analysis suggests that, in the TG mixtures with equal
masses and fully symmetric interactions (χ = α), DW states
cannot exist, i.e., they should degenerate into a mixed uniform
background, as one can see from Eq. (26). This prediction
correlates with the fact that the immiscibility threshold in
Eq. (10), in the absence of cubic interactions and for equal
asymptotic densities, reduces to α = χ , hence the TG mixture
with the fully symmetric interactions sits precisely at the
miscibility threshold.

The numerical analysis of the model based on Eq. (22) with
the full interaction symmetry show that DW and BD patterns
indeed decay into uniformly mixed backgrounds. An example
of this is shown in Fig. 8, where a stationary numerical BD
solution and its perturbed evolution are depicted, respectively,
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FIG. 8. (Color online) (Top) Density profiles of a bubble-drop
state, produced by Eq. (22) as a DW-anti-DW complex, in the binary
TG gas with equal masses and fully symmetric interactions [see
Eq. (21)], i.e., exactly at the miscibility threshold. (Bottom) The
stability test by real-time simulations of the configuration depicted
in the top panel. The density profiles remain stationary up to
t � 400. Subsequently, they slowly decay into the uniformly mixed
background with oscillations.

in the top and bottom panels. As seen, such a stationary state
exists at the miscibility threshold, but it turns out to be unstable.
In this connection, it is relevant to mention that, although for
the TG mixture the time evolution governed by the quintic
NLSE may have no direct physical meaning, it can be used as
a mathematical tool to verify if a stationary DW or BD state is
well defined, and also to check if the mixture indeed sits at the
miscibility threshold. This can be done, as usual, by adding a
small random perturbation to the initial stationary profiles and
letting the state evolve according to the time-dependent quintic
NLSEs associated with stationary equations (22). The bottom
panel of Fig. 8 shows that, although the BD remains stationary
for a relatively long time (t ≈ 400), still later the profiles
slowly decay into the uniform mixed background state. This
behavior is consistent with the fact that the TG-TG mixture
finds itself precisely at the miscibility threshold, as predicted
by the above analysis.

However, the simulations demonstrate that, as soon as one
deviates from the fully symmetric-interaction limit defined by
Eq. (21), the DW and BD states become well-defined ground
states, depending on the b.c. This point is further investigated
in the next section.

B. The asymmetric setting

The results of the previous section can be extended for the
binary TG gas with asymmetric interspecies and intraspecies
interaction strengths and/or unequal masses, provided that the
deviation from the fully symmetric setting is not too large. As
the corresponding quantum problem is not exactly solvable in
the absence of the full symmetry, such a model is substantiated
less rigorously than the full-symmetry limit.

In the following, we assume an asymmetric system with
different coefficients of the quintic self-interaction in Eq. (1),
α1 
= α2. The accordingly modified system obviously keeps
Lagrangian (23), making it possible to perform a similar VA
as in the previous section. Due to the asymmetry, however,
the DW solution should be looked for with unequal chemical
potentials, μ1 
= μ2. Then, the DW solution is defined by the
following b.c.:

φ2
1(x = −∞) =

√
μ1/α1, φ2

2(x = −∞) = 0,
(27)

φ2
1(x = +∞) = 0, φ2

2(x = +∞) =
√

μ2/α2.

It is worth mentioning here that direct substitution demon-
strates that the simplest ansatz based on Eq. (4) does not
produce any exact DW solution of Eq. (1). Nevertheless, it
is possible to find an exact relation between μ1 and μ2 which
is necessary for the existence of the DW solution. Indeed,
Eq. (1) may be formally considered as equations of motion for
a mechanical system with two degrees of freedom, φ1(x) and
φ2(x), where x plays the role of formal time. The Hamiltonian
of this mechanical system is

Hmech =
∑
n=1,2

[
1

4mn

(
dφn

dx

)2

+ 1

2
μnφ

2
n

−αn

6
φ6

n − χ

2
φ2

nφ
4
3−n

]
. (28)

Because Hmech must take identical values at x = ±∞, b.c. (27)
demonstrate that μ1 and μ2 are related by

α2μ
3
1 = α1μ

3
2. (29)

By means of obvious rescalings, we can eventually set

α2 = m2 = μ2 ≡ 1, (30)

and Eq. (29) then yields, for the DW solution, the single
admissible value of the chemical potential of species φ1:

μ1 = α
1/3
1 . (31)

Thus there remain three free parameters: coefficient χ of the
interspecies quintic interaction, along with m1 and α1.

We have checked by means of numerical methods that DW
solutions exist for a wide range of values of parameters χ,α1,2

away from the fully symmetric-interaction limit considered in
the previous section. Two typical examples of such numerically
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FIG. 9. (Color online) DW density profiles produced by Eq. (19)
for equal masses m1 = m2 = 1 and interspecies interaction strength
χ = 2. Other parameters are fixed as α1 = α2 = 1 (left panel) and
α1 = 2, α2 = 1 (right panel). Blue and red lines refer to first and
second components, respectively, while the black dashed lines denote
VA results.

found DWs are depicted in Fig. 9 for χ 
= α1 = α2 ≡ α

(left panel) and χ = α1 
= α2 (right panel). Note that in the
former (respectively, latter) case the DW components have
equal (respectively, unequal) backgrounds, as a consequence
of the equality (respectively, inequality) of the intraspecies
interaction strengths. In the same figure are also depicted, by
dashed lines, the predictions of the VA for the two cases,
which demonstrate reasonable agreement with the numerical
findings.

In addition to the DW, a physically relevant state may
be the BD complex similar to those studied above for the
BEC mixture. In the general case, the BD is a spatially even
solution, with φ1,2(−x) = φ1,2 (x), which obeys the following
b.c.:

φ2
1(x = +∞) = 0, φ2

2(x = +∞) =
√

μ2/α2, (32)

φ′
1(x = 0) = φ′

2(x = 0) = 0. (33)

The extreme case of the BD complex is the one with

φ2(x = 0) = 0, (34)

when field φ1 completely ousts φ2 at the central point, x = 0.
The conservation of Hmech along x [see Eq. (28)] has its

bearing for the BD solution, too. Indeed, condition Hmech(x =
+∞) = Hmech(x = 0) yields the following relation for the
densities of the two species at the central point, x = 0 [see
Eq. (33)]:∑

n=1,2

[
μnφ

2
n(x = 0) − αn

3
φ6

n(x = 0)

]
− χφ2

1(x = 0)

×φ2
2(x = 0)

[
φ2

1(x = 0) + φ2
2(x = 0)

] = 2μ
3/2
2

3
√

α2
. (35)

This cumbersome relation simplifies for the extreme type of
the BD defined above by condition (34):

μ1φ
2
1(x = 0) − α1

3
φ6

1(x = 0) = 2μ
3/2
2

3
√

α2
. (36)

The same normalization (30) as used above for the DW may
be adopted for the BD solutions. Then, the general family of

such solutions depends on four independent parameters: χ ,
m1, α1, and μ1 [the latter constant is no longer determined by
an additional condition, such as Eq. (31)].

V. DISCUSSION AND CONCLUSIONS

In this work, we have introduced the concept of DWs
(domain walls) in the two-component TG (Tonks-Girardeau)
gas, as well as in the binary BEC described by cou-
pled GPEs (Gross-Pitaevskii equations) with CQ (cubic-
quintic) nonlinearities. Thus, we have extended the con-
cept of DW previously elaborated for immiscible binary
BEC, described by the system of two coupled GPEs with
cubic terms.

In several cases, exact or approximate analytical solutions
have been found. In particular, for the binary BEC with the
CQ nonlinearity, exact solutions for DWs were obtained in the
symmetric system, with equal intraspecies scattering lengths.
For the existence of these solutions, the presence of the quintic
interactions is necessary. Numerical analysis was used to
prove the existence and stability of asymmetric DWs in the
BEC mixtures with asymmetric CQ interactions in the two
components.

In addition to the DWs, we have also investigated DB
(droplet-bubble) complexes in the same settings, which consist
of a dark (gray) soliton in one component (the “bubble”), and
a bright soliton (the “droplet”) in the other. In the BEC system,
the DWs and DB states are mobile, keeping their shape in the
state of motion.

We have also introduced symmetric and asymmetric DWs
in the binary TG gas, for which the system of two coupled
NLSEs (nonlinear Schrödinger equations) with quintic-only
repulsive terms was adopted. In particular, we have shown that
a TG mixture with equal atomic masses and fully symmetric
interactions [as per Eq. (21)] sits precisely at the immiscibility
threshold, therefore DWs and BDs exist only as metastable
states in this case. The VA (variational approximation) and
numerical analysis, however, demonstrate the existence of
stable DWs ground states at a small deviation from the full
symmetry.

Stability of DWs and BD complexes in BEC mixtures
with symmetric and asymmetric CQ interactions in the two
components has also been demonstrated. In this respect, we
have derived a general condition for the immiscibility, which
is valid for both the BEC and TG settings. The stability of the
DW and BD states is secured if the immiscibility condition is
satisfied.

It is relevant to discuss possible implementations of the
above results in experimental settings. DWs and anti-DWs
can be observed (either being separated, or merged into BD
complexes) in toroidal quasi-one-dimensional traps for gases
with scattering lengths tuned so as to satisfy the immiscibility
condition. Note that toroidal traps are routinely created in
laboratories with the aid of magnetic fields [34], and, as said
above, the scattering length can be easily changed via the
Feshbach-resonance technique. To create BD complexes in
the ring, one can load the gases into two different semicircles
of the trap, initially kept separated by laser sheets, which are
slowly removed after the loading.
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