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Flat-band ferromagnetism in the multilayer Lieb optical lattice
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We theoretically study magnetic properties of two-component cold fermions in half-filled multilayer Lieb
optical lattices, i.e., two, three, and several layers, using the dynamical mean-field theory. We clarify that the
magnetic properties of this system become quite different depending on whether the number of layers is odd
or even. In odd-number layers in an odd-number-layer system, finite magnetization emerges even with an
infinitesimal interaction. This is a striking feature of the flat-band ferromagnetic state in multilayer systems as
a consequence of the Lieb theorem. In contrast, in even-number layers, magnetization develops from zero on
a finite interaction. These different magnetic behaviors are triggered by the flat bands in the local density of
states and become identical in the limit of the infinite-layer (i.e., three-dimensional) system. We also address how
interlayer hopping affects the magnetization process. Further, we point out that layer magnetization, which is a
population imbalance between up and down atoms on a layer, can be employed to detect the emergence of the
flat-band ferromagnetic state without addressing sublattice magnetization.
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I. INTRODUCTION

Cold atoms loaded into an optical lattice have opened up
a new field dedicated to the study of quantum magnetism,
which has been a long-standing problem in condensed-matter
physics [1,2]. According to the well-known Stoner criterion,
the interaction strength and the band structure at the Fermi
energy determine whether the magnetic transitions occur
or not. The key advantage of cold atoms over condensed
matter is controllability of the interactions between atoms
and the lattice geometry characterizing the energy-band
structure. These advantages encourage us to regard this system
as a quantum simulator of magnetism. By controlling the
interactions, the Mott transition of fermionic atoms has been
successfully demonstrated [3,4], which is an important step in
the investigation of quantum magnetism. In addition, recent
experimental techniques allow us to create various complex
lattices, such as honeycomb, kagomé, and Lieb lattices [5–10].

The Lieb lattice is a prominent example of lattices that
provide interesting topics related to magnetism. Part of the
energy-band structure of this lattice is dispersionless, which is
called a flat band. When the flat band is at the Fermi energy,
the magnetic transition can occur with infinitesimally small
(positive) interactions because the density of states (DOS)
of atoms at the Fermi energy is infinitely large. This strong
instability toward the magnetic phase transition can be easily
understood from the Stoner criterion. From another point of
view, the occurrence of the magnetic transition of this lattice
has been mathematically demonstrated by Lieb [11], in what
is called the Lieb theorem. Although many theoretical studies
on this flat-band magnetism have been performed [12–15],
the experimental realization of this lattice has not yet been
achieved in condensed matter. Recently, Refs. [16,17] have
theoretically proposed a laser configuration to construct a Lieb
optical lattice, and the Kyoto University group has successfully
achieved its construction [18].

*noda.kazuto@lab.ntt.co.jp

Most of the previous studies on the Lieb lattice have been
done in two dimensions [16,17,19–23], whereas experiments
will be performed in a three-dimensional laser configuration.
A realistic Lieb optical lattice structure is a stack of two-
dimensional lattices. However, such a feature specific to cold
atoms has not been well discussed. This stimulates us to in-
vestigate how the interlayer correlation affects the magnetism.
On the other hand, in condensed matter, the layered materials
are now attracting much interest thanks to the experimental
progress in this field, e.g., heterostructure materials of the
correlated electron systems [24] and multilayer graphene with
control of the number of layers [25]. Various studies on such
systems have clarified that multilayer systems contain rich
physics beyond single-layer or bulk material [26]. Layered
optical lattices [10] can also be regarded as quantum simulators
for investigating such a current topic in condensed matter.

In this study, we investigate the magnetic properties of two-
component fermions in a multilayer Lieb lattice at half-filling
and at zero temperature. We study the interlayer correlation
effects in detail by systematically changing the number of
layers. We elucidate that the magnetic processes for the even
and odd number of layers are completely different when
the interaction is small. This difference disappears when the
number of layers is infinite, namely, at the three-dimensional
limit. We also discuss how interlayer hopping affects the
magnetism by changing the magnitude of this parameter.
We find that this additional energy scale not included in the
two-dimensional system characterizes whether or not an exotic
crossover specific to the layered system occurs.

Our paper is organized as follows. In Sec. II, we derive the
model Hamiltonian from the experimental laser potential. In
Sec. III, we briefly explain our theoretical method. In Sec. IV,
we discuss the magnetic properties in multilayer Lieb lattice
systems. In Sec. V, we briefly summarize our results.

II. MODEL

We start by explaining the structure of the multilayer Lieb
lattices. Figure 1(a) depicts the two-dimensional Lieb lattice,
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FIG. 1. (Color online) (a) Lieb lattice is constructed by sites H ,
A, and B. Because this lattice is αβ bipartite, site H (A, B) belongs
to sublattice α(β). The dashed line shows the unit cell. (b) Schematic
picture of the multilayer system. tz represents interlayer hopping.
Note that site H does not always belong to sublattice α, while the
multilayer system is also αβ bipartite.

where the sites at hubs and spokes are labeled H and A or B,
respectively. The dotted square in Fig. 1(a) represents the unit
cell. Figure 1(b) schematically describes the multilayer lattice
with the number of layers L of 3, where the sites in the unit cell
are only shown. As illustrated in these figures, the multilayer
Lieb lattices are bipartite, where all sites can be classified into
sublattice α or β that have intersublattice (α-β) connections
only while no intrasublattice (α-α or β-β) connections. These
sublattices are represented as (red) solid and (green) dashed
circles in Fig. 1. In general, the magnetism in such bipartite
structural lattices can be discussed on the basis of the Lieb
theorem.

The Lieb theorem states that, in bipartite lattices, two-
component fermions show a finite magnetization with an
infinitesimal repulsive interaction at half-filling and at zero
temperature [11]. The magnitude of the total magnetization
is given by Mtot = 1/2(Nα − Nβ), where Nα (Nβ) is the total
number of the sites in sublattice α(β). Figure 1 clearly shows
that, for the multilayer Lieb lattice, sublattice α (β) includes
sites H (A and B) in the odd-number layers and sites A and B

(H ) in the even-number layers. The Lieb theorem predicts that
the values of Mtot per unit cell are 0.5 for odd L and 0 for even
L in the multilayer Lieb lattices. Note that this theorem does
not provide any concrete information about local quantities,
such as local magnetization, which can be calculated with the
aid of numerical methods.

Our present study is primarily concerned about how the
interlayer correlations induce the interesting phenomena
beyond the predictions of the Lieb theorem. We next
show that layered Lieb optical lattices can be derived
straightforwardly from the ingenious configuration of lattice
lasers. As discussed in Refs. [16,17], the single-layer
(two-dimensional) Lieb lattice can be created by the potential
VLieb(x,y) = V [cos(2πx/a) + cos(2πy/a) + cos(πx/a) +
cos(πy/a) + 1/2 sin (π (x + y)/a) + 1/2 sin (π (x − y)/a)],
where a is the lattice distance and V is the lattice potential
depth. The implementation of this complex potential requires
several lasers with different wavelengths, e.g., 2a, 4a, and
2
√

2a [16,17]. On the other hand, we usually apply the
additional potential along the z direction to confine cold atoms
three dimensionally in the real experiments. As a result, a
total potential is

V (x,y,z) = VLieb(x,y) + Vz cos(2πz/az), (1)

where az and Vz are the distance and depth, respectively, for
the lattice potential along the z direction.

The model Hamiltonian of cold atoms in the potential in
Eq. (1) is naturally given by Hubbard Hamiltonian on the
layered Lieb lattice, H, when V and Vz are much larger than
the recoil energy of atoms Er [1]:

H = HLieb + Hz + HU , (2)

HLieb = −t
∑
mσ

∑
〈i,j〉

c
†
miσ cmjσ , (3)

Hz = −tz
∑
iσ

∑
〈m,m′〉

c
†
miσ cm′iσ , (4)

HU = U
∑
m

∑
i

nmi↑nmi↓, (5)

where cmiσ (c†miσ ) is an annihilation (creation) operator
of an atom with spin σ at site i on the mth layer,
and the number operator is defined as nmiσ = c

†
miσ cmiσ .

The subscript 〈i,j 〉(〈m,m′〉) denotes the summation over
the nearest-neighbor sites in the xy plane (z direction).
The potentials in Eq. (1), VLieb(x,y) and Vz cos(2πz/az),
determine the intralayer and interlayer hopping amplitude, t

and tz, respectively. We assume the present Hamiltonian to
be uniform and neglect inhomogeneity due to the trapping
potential, which will not change our results qualitatively and
just modify them quantitatively. In this paper, we only consider
the system at half-filling without an external field and at zero
temperature as a first step. We set t = 1.0 as a unit of energy.

To clearly discuss the interlayer correlation effects on
the flat-band magnetism, we investigate the L-layer Lieb
lattices as shown in Fig. 1(b) by systematically changing the
number of layers as L = 2,3, . . .. Here, we set the periodic
boundary conditions along the x and y directions, while
an open boundary condition for the z direction, which is a
natural extension of our previous study for L = 1 [19]. We
also investigate the system with L = ∞, which corresponds
to a three-dimensional layered Lieb lattice with periodic
conditions for all three directions. Then, we discuss the
asymptotic behavior from finite to infinite layers, which
will show dimensional crossover from the two (L = 1) to
three dimensions (L = ∞) through quasithree dimensions
(1 < L < ∞).

The two-dimensional Lieb lattice can also be realized in
the limit of tz → 0. Note that this limit is more realistic in
experiments, which can be achieved by setting Vz 
 V 

Er . However, we can at most create an ensemble of the two-
dimensional Lieb lattices, and the magnitude of Vz, which is
proportional to the laser intensity, is limited for some practical
reasons, such as a limitation on the laser power. Therefore,
to study the effects of the interlayer correlations on such an
ensemble, we investigate the present model Hamiltonian by
changing tz toward a small value. Then, we discuss another
dimensional crossover from the (quasi)three dimensions (tz �=
0) to the two dimensions (tz = 0).

The finite-L-layer systems can be implemented using the
standard experimental techniques. One of the methods is
the selection of the layers. For instance, the atoms except

043624-2



FLAT-BAND FERROMAGNETISM IN THE MULTILAYER . . . PHYSICAL REVIEW A 90, 043624 (2014)

for those in the selected layers will be taken away from
the lattice with the radio frequency knife. Another method
without the loss of atoms is as follows. We can create
an ensemble of the finite-L-layer lattices by superimposing
extra lattice potentials with commensurate wavelengths along
the z direction. For example, the potential Vz cos2(πz/az) +
V ′

z cos2(2πz/az)[+V ′′
z cos2(3πz/az)] can provide the two-

layer (three-layer) Lieb lattice. These simple methods allow
us to systematically study the interlayer correlation effects as
will be discussed in Sec. IV.

III. METHOD

We use the dynamical mean-field theory (DMFT) [27,28]
to investigate the magnetic properties of multilayer Lieb
lattices. In the DMFT framework, each site in the original
lattice problem is mapped onto an impurity with hybridization
from a dynamical heat bath that effectively describes a
connection to surrounding sites. By solving this effective
impurity problem in a self-consistent manner, we can precisely
deal with local correlation effects, which are essentials for
various quantum many-body phenomena, such as the Mott
transitions, magnetism, and superconductivity. In fact, the
DMFT used for layered systems [29,30] has successfully
demonstrated various phenomena experimentally observed in
layered matter, such as a metal-insulator transition at the
interface of a heterostructure of transition-metal oxides [24].
We comment about our application of DMFT to the Lieb
lattice, which consists of different coordination number sites.
With the infinitesimal interaction, our DMFT calculations for
magnetization, detailed in the next section, are consistent with
analytical results described in the Appendix. This indicates
that our DMFT treatment is efficient to describe the flat-band
ferromagnetism, which is one of the main topics of our paper.

To obtain actual DMFT solutions, the effective impurity
problem should be solved with the aid of some numerical
methods. The solver used in this study is the numerical
renormalization group (NRG) [31,32]. This nonperturbative
method can provide numerically exact solutions of the im-
purity problem in terms of thermodynamic properties at low
temperatures. In addition, it can very accurately calculate the
low-energy spectral properties at around the Fermi energy. The
spectral anomaly of the flat band just at the Fermi energy is
the origin of the instability toward magnetic ordering. Thus
the NRG solver can capture the essence of the flat-band
magnetism [19].

Before detailing our DMFT approach, we should mention
the unit cells of the present lattices. A unit cell for the
two-dimensional Lieb lattice comprises the three sites shown
in Fig. 1(a), and those for the L-layer lattices consist of
3 × L sites. For L = ∞, the unit cell reduces to six sites
because of the two-site-period translational symmetry along
the z direction resulting from the antiferromagnetic ordering
along this direction. Note that the ordering pattern we take
into account in this study is easily determined from the fact
that the layered Lieb lattice is bipartite. The size of the unit
cells determines the matrix dimensions of the Green’s function
mentioned below.

We explain our DMFT calculations. Here, we self-
consistently calculate Gmγσ (ω) the local Green’s function of

atoms with spin σ (=↑,↓) at the site γ (=H,A,B) on the mth
layer (m = 1,2, . . . ,L):

Gmγσ (ω) =
[∫

dk Ĝk,σ (ω)

]
mγ,mγ

, (6)

where k is a wave vector k = (kx,ky), and Ĝk,σ (ω) is the
following matrix with a dimension of 3L × 3L:

Ĝk,σ (ω) = [ωÎ − ĤLieb(k) − Ĥz − �̂σ (ω)]−1, (7)

where Ĥz and ĤLieb(k) are the matrix representation of
the Hamiltonians Hz and the Fourier transform of HLieb,
respectively, and Î is the identity matrix. The self-energy
matrix �̂σ (ω) is diagonal within the DMFT framework, and it
is now defined as

�̂σ (ω) = diag(�1Hσ (ω),�1Aσ (ω),�1Bσ (ω), . . . ),

where �mγσ (ω) is the self-energy of an atom with spin σ at
site γ on the mth layer, which can be obtained as mentioned
below. Furthermore, we set these self-energies to be zero at
the first step of iterations. On the other hand, from the Dyson
equation, we obtain a cavity Green’s function [28]:

Gmγσ (ω) = [Gmγσ (ω)−1 + �mγσ (ω)]−1, (8)

which characterizes the dynamical heat bath connected to an
effective impurity that corresponds to an atom with spin σ

at site γ on the mth layer in the original lattice. By solving
such effective impurity problems with the NRG, we obtain
self-energy �mγσ (ω), which allows us to again calculate local
Green’s function Gmγσ (ω) in Eqs. (6) and (7). This again
yields a new Gmγσ (ω), which leads to a new �mγσ (ω). We
perform these calculations repeatedly until convergence. Note
that each layer is described by the corresponding three effective
impurity problems. Our DMFT formulation for multilayers,
which have several sites in the unit cell, is a straightforward
extension of the Hubbard model with the antiferromagnetic
order in bipartite lattices [19,28].

For L = ∞, we can straightforwardly extend the above
treatment by replacing wave vector k in Eqs. (6) and (7) with
k = (kx,ky,kz) and replacing Ĥz in Eq. (7) with the Fourier
transform Ĥz(k). Here all matrices have a dimension of 6 × 6.

The self-consistently obtained Gmγσ (ω) and NRG solutions
provide us with various dynamical and thermodynamical
quantities. We calculate the magnetization Mmγ = (〈nmγ↑〉 −
〈nmγ↓〉)/2, which is the order parameter of the magnetic
transition. In experiments, we can obtain these magneti-
zations from site- and spin-resolved observations of the
number density, e.g., which can be achieved by microscopy
and/or spectroscopy. We also calculate the local DOS of the
atoms, ρmγσ (ω) = −(1/π )ImGmγσ (ω + iη), which describes
the single-particle excitation spectra. The local DOS clearly
explains various phenomena. For instance, the opening of
a spectral gap clarifies the appearance of a metal-insulator
transition. This excitation spectra were successfully measured
in cold Fermi gases (without lattice potential) by JILA
group [33]. We can expect that this technique will be applicable
to lattice systems. When we obtain the complete k-resolved
excitation spectrum in a lattice, we can construct local DOS
that we will discuss in the next section. Furthermore, we
note here that the above quantities Mmγ and ρmγσ (ω) satisfy
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the symmetric relations with respect to m and γ , reflecting
a particle-hole symmetry on the bipartite lattice under the
condition that filling is exactly half in the absence of an external
field. These relations are broken when the system is away from
at half-filling or subject to any external fields, which is beyond
the scope of our present study.

IV. RESULTS

A. Noninteracting DOS

Before discussing magnetism based on the DMFT calcula-
tions, to see our way clearly, we first provide the flat-band
structures of noninteracting atoms in the multilayer Lieb
lattice. Figure 2 shows ρmγσ (ω) the DOS for noninteracting
atoms at the site γ (= H,A,B) on the mth layer (m =
1,2, . . . ,L) in the L-layer lattice for L = 1, 2, and 3. Note
that the noninteracting DOS is independent of spin σ , and the
mirror symmetries through x = y and z = 0 planes impose the
relations ρmAσ (ω) = ρmBσ (ω) and ρmγσ (ω) = ρL−m+1,γ σ (ω),
respectively. Here, we set tz = t = 1.0.

Figure 2(a) shows ρmγσ (ω) for the two-dimensional Lieb
lattice (L = 1). We find that the flat-band structure, namely,
a δ function resulting from the dispersionless band structure,
appears at Fermi energy ω = 0 in the DOS for site A, while
no flat band appears for site H . The flat band at the Fermi
energy induces strong instability toward the magnetic ordering,
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FIG. 2. (Color online) DOS for (a) L = 1, (b) L = 2, and
(c) L = 3 with tz = 1.0. “1A” means site A on the first layer. Note that
the relation ρmA(ω) = ρmB (ω) (m = 1, . . . ,L) exists for all layers.
Additionally, ρ1γ (ω) = ρ2γ (ω) for L = 2 and ρ1γ (ω) = ρ3γ (ω) for
L = 3 (γ = H,A,B) exist. t is a unit of energy.

and thus the ferromagnetism appears with the infinitesimal
interaction δU , which can be understood from the well-known
Stoner criterion. Note that this mechanism of the flat-band
ferromagnetism is consistent with the statement in the Lieb
theorem as mentioned in Sec. II.

For multilayer lattices, interlayer hopping tz affects the flat-
band structure in the DOS for site A, while it never moves the
flat bands to the DOS for the site H . As shown in Fig. 2(b),
for L = 2, two flat bands appear away from the Fermi energy.
Their spectral positions are located at ω = ±tz, the estimations
of which are detailed in the Appendix. For larger L(>2), such
spectral features depend on layer number m. Figure 2(c) shows
that the first layer (m = 1) in the three-layer lattice has three
flat bands at ω = 0 and ±√

2tz, while the second layer (m = 2)
has two flat bands at ±√

2tz. This difference in the flat-band
structure is a key to the magnetism in multilayer lattices, as
will be discussed in Secs. IV B and IV C.

Generally, the DOSs for the odd-number layers in odd-
L-layer lattices have the flat band at ω = 0, while those for
the even-number layers in odd-L-layer lattices and all of the
layers in the even-L-layer lattices do not have the flat band at
ω = 0. The Appendix explains this general important feature
of the noninteracting DOS in details, and Sec. IV D presents the
DMFT calculations for general odd- and even-L-layer lattices.

For L = ∞, the spectral positions of the (infinite) flat
bands become continuous, meaning that the flat-band structure
becomes dispersive with the broadening of W = 4tz. However,
we find that the instability toward flat-band magnetism still
remains in this limit. This striking feature is discussed in
Sec. IV D.

A change in tz moves the spectral positions of flat bands
as mentioned above. We should note that some energy
scales related to the flat-band positions are important for
understanding the quantitative properties of the magnetic
phase transition or crossover in the present system. This point
is mainly discussed in Secs. IV D and IV E.

B. Three-layer system as a typical example of odd L

Next, we discuss the magnetism in the odd-L-layer lattices
on the basis of the DMFT calculations explained in Sec. III.
The noninteracting DOSs of these lattices have the flat band at
ω = 0 as discussed in Sec. IV A. In particular, we first pick up
the three-layer lattice as a typical example. We set tz = t = 1.0.

Figure 3 shows sublattice (local) magnetization Mmγ ,
where M1γ = M3γ and MmA = MmB because of the mirror
symmetries. For the magnetization on site mγ = 1A, we
find characteristic behavior as follows: magnetization M1A

suddenly becomes a finite value of −0.125 with the infinites-
imal interaction (δU ), and then its magnitude continuously
increases with increasing U , whereas M1H starts from zero
and gradually grows as U increases. The singular behavior,
namely, a jump in M1A at δU , signals the emergence of the
ferromagnetic state. In contrast, the second layer (m = 2)
shows no characteristic behavior: M2γ gradually changes in
the same manner as M1H .

The mγ -dependent magnetization processes result from the
difference in the flat-band structures of the noninteracting DOS
as mentioned in Sec. IV A. Because of the instability resulting
from the flat band at the Fermi energy, ferromagnetic ordering
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FIG. 3. (Color online) Sublattice magnetization of site
γ (=H,A,B) on m(=1,2,3)th layer in the three-layer system
(L = 3) with tz = 1.0. Filled (blank) symbols denote the first
(second) layer. Note that relations MmA = MmB and M1γ = M3γ

exist. t is a unit of energy.

immediately occurs with the infinitesimal interaction δU in
the first layer, which leads to a jump in M1A at δU . On the
other hand, all sites in the second layer and also site H in
the first layer have no flat bands as shown in Fig. 2(c). The
magnetization on these sites is caused by the antiferromagnetic
correlation between adjacent sites. Thus the magnitude of M2γ

(MmH ) gradually increases with a sign opposite to M1γ (MmA).
The magnetic ordering for mγ = 1A caused by the instability
of the flat band triggers inter- and intralayer antiferromagnetic
correlations.

To further discuss the above magnetization process through
the dynamical quantities, we calculate the local DOS by
changing interaction U from weak to strong. We show
the results for U = 1.0, 5.0, and 9.0 in Fig. 4, and we
also show the noninteracting DOS for comparison, where
ρ1γ σ (ω) = ρ3γ σ (ω) and ρmAσ (ω) = ρmBσ (ω) because of the
mirror symmetries.

We first focus on the DOS for the weak interaction U =
1.0, which are shown in the second spectra from the top in
Figs. 4(a)–4(d). By comparing these DOSs with those for U =
0, we find that ρ1A(ω) for U = 1.0 shows split flat bands
at around the Fermi energy, which is clear evidence of the
emergence of the ferromagnetic ordering. Importantly, the flat
bands away from the Fermi energy are hardly split at all,
suggesting that only one flat band just at the Fermi energy can
be regarded as the origin of the flat-band instability toward
magnetism. We find that the other DOSs for U = 1.0 also show
the gapped structures at the Fermi energy. However, note that
these gap structures caused by another mechanism different
from the flat-band instability. In fact, as shown in the insets,
all gapped structures of the DOS except for ρ1A(ω) show van
Hove singularities at the edges of the gaps. The appearance of
such band structures after the magnetic transition results from
the change of the band structure (band folding) due to the
symmetry breaking caused by the antiferromagnetic ordering.
Note that for L = 1 we do not observe this singularity at gap
edges [19] because of the Dirac-semimetallic feature of the
ρ1H (ω) that has no DOS at the Fermi energy [see Fig. 2(a)].
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FIG. 4. (Color online) Local DOS ρ(ω) of (a) site H [(b) A] on
the first layer and (c) site H [(d) A] on the second layer in the three-
layer system (L = 3) with tz = 1.0. Insets show ρ(ω) with U = 1.0
near the Fermi energy, where vertical ranges are as the same as in the
large panel. For comparison, the DOS at U = 0.0 is extracted from
Fig. 2(c). Note that relations ρmAσ (ω) = ρmBσ (ω) (m = 1,2,3) and
ρ1γ σ (ω) = ρ3γ σ (ω) (γ = H,A,B) exist. t is a unit of energy.

In the insets of Fig. 4, we find another interesting feature:
the gap energies of the DOSs for the sites labeled mγ = 1A

and 2H are larger than those for 1H and 2A. The former
(latter) sites are dominantly occupied σ = ↓(↑) atoms (cf.
Fig. 3), and the total number of ↓-spin atoms are large as a
result of the ferromagnetic ordering. These facts imply that
the majority atoms with σ =↓ require a larger energy for the
single-particle excitation than the minorities. This feature can
be seen only in the weakly interacting region as mentioned
below.

As U increases, for U = 5.0 and 9.0, the DOS for all
sites loses the detailed structures and finally exhibits similar
structures that recall upper and lower Hubbard bands. The
change in the band structures indicates that the mechanism of
the magnetic ordering changes from the flat-band picture to
the localized Heisenberg picture, as discussed in the previous
study [19]. The occurrence of this crossover can be confirmed
from the magnetizations in Fig. 3, where Mmγ for the strongly
interacting region (U � 8) shows saturation behavior. We note
that, in contrast to the weakly interacting region, the DOS for
the strongly interacting one shows no gap-energy difference
depending on the site.

We should comment that the magnetism in the general-
odd-L layers can be understood from the simple extension of
the above discussions. This is because, qualitatively, the keys
to the magnetism are the flat-band structures as mentioned in
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FIG. 5. (Color online) Sublattice magnetizations of site γ (=
H,A,B) on m(=1,2)th layer in the two-layer system (L = 2) with
tz = 1.0. Only the first layer results are shown because of M1γ =
−M2γ and MmA = MmB . t is a unit of energy.

Sec. IV A. The quantitative difference will be discussed below
in Sec. IV D, which also addresses the important question of
how the magnetism is on the infinite-layer lattice (L = ∞).

C. Two-layer system as a typical example of even L

Next, we discuss the magnetism on the even-L-layer
lattices, where the noninteracting DOSs have no flat bands at
the Fermi energy. We investigate the two-layer (L = 2) lattice
with tz = 1.0 as a typical example of them. The following
discussion can be easily extended to general even-L-layer
lattices in the same manner as the odd-L case.

Figure 5 shows sublattice magnetizations Mmγ for L = 2,
where M1γ = −M2γ and MmA = MmB because of the mirror
symmetries. The magnetization Mmγ stays zero for the weakly
interacting region, and it becomes finite at critical interaction
Uc ∼ 2, where a magnetic transition occurs. The suppression
of the magnetic ordering for U < 2 is a consequence of the
following facts: since the DOSs for all mγ have no flat bands at
the Fermi energy as discussed in Sec. IV A, there is no flat-band
instability toward magnetic ordering for small U . In addition,
we should note that other kinds of instabilities, such as the
nesting, also do not exist. We find that the phase transition
occurs when U becomes comparable to a specific energy scale
�, i.e., the difference in the spectral positions of the flat bands
� = 2tz for L = 2 [see Fig. 2(b) or the Appendix]. This can
be intuitively understood as follows; an (inelastic) excitation
caused by U restores the instability of the two flat bands at
ω = ±�/2 under the condition U ∼ �.

The above points can be confirmed by the DOS shown
in Fig. 6, where symmetries impose ρ1γ σ (ω) = ρ2γ σ̄ (ω) and
ρmAσ (ω) = ρmBσ (ω), where σ̄ is the opposite spin of σ .

For weak interaction U = 1.0, we find no spectral gap,
suggesting no magnetic ordering, while for U = 3.0, we find
a gap accompanied by van Hove singularities, which suggests
the magnetic ordering with band folding. We can thus conclude
that at Uc ∼ 2 this is a phase transition from a paramagnetic
metal to an antiferromagnetic insulator. Interestingly, the
gap structure caused by the restored flat-band instability is

-6 -4 -2  0  2  4  6

ρ (
ω

)

ω

(a) 1H

U=0.0

U=1.0

U=3.0

U=5.0

↑
↓

-6 -4 -2  0  2  4  6

ω

(b) 1A

U=0.0

U=1.0

U=3.0

U=5.0

↑
↓

-0.2  0  0.2 -0.2  0  0.2

FIG. 6. (Color online) Local DOS of (a) site H [(b) A] on
the first layer in the two-layer system (L = 2) with tz = 1.0. For
comparison, the DOS at U = 0.0 is extracted from Fig. 2(b). Note
that relations ρmAσ (ω) = ρmBσ (ω) (m = 1,2) and ρ1γ σ (ω) = ρ2γ σ (ω)
(γ = H,A,B) exist. t is a unit of energy.

analogous to those in the DOS for the sites having no flat
bands for L = 3 (see Fig. 4).

As U further increases, the DOS becomes the upper and
lower Hubbard bands, suggesting that the localized Heisenberg
picture governs the magnetism. By comparing this result
with that shown in Fig. 4, we find that the difference in the
magnetism between even- and odd-L lattices disappears in the
Heisenberg limit. This is because the band structure in the k
space is irrelevant to the magnetism in this limit, whereas the
bipartite structure in the x space is important. The bipartite
structure is the same for all L, while the flat-band structure
at around the Fermi energy strongly depends on L. Note that,
even though the odd-even difference in the DOS disappears,
the difference in the total magnetization ensured by the Lieb
theorem, Mtot = 0.5 for odd L and 0 for even L, is still satisfied
due to the alternating ordering along the z direction.

D. L dependence and the L = ∞ limit

We further investigate the L dependences of magnetism,
and we also address the infinite-layer lattice that corresponds
to the three-dimensional layered Lieb lattice. In Fig. 7, we
show the L dependence of the Mave − U curves, where Mave

is the average magnetization defined as

Mave = −
∑

γ=A,B,H

∑
m=1,...,L

|Mmγ |/3L. (9)

Here, we add an overall minus sign in Eq. (9) to use the
same sign of magnetization of sites where the flat-band ferro-
magnetic behavior appears in L = 3 (see site 1A in Fig. 3).
Figure 7(a) shows that, for odd L, average magnetizations in
the weak-coupling region decrease as L increases. On the other
hand, Fig. 7(b) shows that, for even L, the critical interaction
Uc decreases as L increases. In the strongly interacting region,
the Mave − U curves show the similar behavior irrespective of
whether L is even or odd. We confirm the disappearance of the
odd-even difference again, which we have already discussed in
terms of the DOSs at the Heisenberg limit in the last paragraph
in Sec. IV C. We also find that the curves for both odd- and
even-L-layer lattices naturally approach those in the same limit
of L = ∞ (the three-dimensional limit).
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FIG. 7. (Color online) Average of magnetization as a function of
U with the condition tz = 1.0. (a) Odd-layer systems. (b) Even-layer
systems. t is a unit of energy.

As shown in Fig. 7, in the three-dimensional layered
Lieb lattice (L = ∞), we find that the magnetic ordering
appears at infinitesimal U . The asymptotic behavior of odd-
L-layer lattices indicates that this magnetism for L = ∞
is a consequence of the flat-band instability. On the other
hand, in the even-L layer lattices without flat-band instability,
the curious asymptotic behavior (i.e., the decrease in Uc

with increasing L) reflects the following striking feature: the
flat-band instability is restored with infinitesimal U at l = ∞
with L = 2l. This completely contradicts our naive expectation
that the three-dimensional lattice (L = ∞) will show a finite
critical Uc, because the flat band becomes dispersive with a
broadening of 4tz as mentioned in Sec. IV A (and also in the
Appendix).

We discuss the asymptotic behavior with increasing L

in more detail. We first show the results for the odd-L-
layer lattices and focus on a characteristic quantity MδU

mA,
the magnetization at infinitesimal δU . Figure 8 shows MδU

mγ

calculated by changing the natural number l with L = 2l − 1,
where we set δU to a rather large value of 0.2 because of the
numerical limitation. We find MδU

mA for odd m is proportional
to 1/l, while MδU

mA for even m and MδU
mH for all m stay

zero (within the present numerical precision). This difference
between even and odd m is attributed to the noninteracting
DOS. We can simply explain the origin of ∝1/l behavior for
odd m as follows: the L-layer lattices have 3 × L multibands,
and only one of the 3 × L bands, that is, the flat band
at the Fermi energy, takes part in the ferromagnetism with
infinitesimal U . This means that the weight of the flat band
related to the ferromagnetism decreases with increasing l as
∝1/l. The dotted line shows the asymptotic behavior 1/4l,
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FIG. 8. (Color online) Magnetization of site A (a) and site H (b)
in L = 3,5,7,9 for U = 0.2. The dashed line shows −0.5/(L + 1),
which is equal to −0.25/l in the L = 2l − 1 layered system.

which is evaluated analytically beyond the above intuitive
discussions (see the Appendix). The Lieb theorem provides the
same conclusion: the difference in the number of sublattices
Nα − Nβ stays one as L increases even though the unit-cell
size increases as 3 × L.

We also explain the asymptotic behavior in the even-L-
layer lattices. The characteristic of even-L lattices is the
finite critical interaction Uc. As mentioned in Sec. IV C,
the magnetism occurs when the strength of interaction U

becomes comparable to � the energy difference in the spectral
positions of the two flat bands nearest to the Fermi energy,
where the flat-band instability is restored as discussed in
Sec. IV C. As derived in the Appendix, we find � ∝ 1/l,
which determines the asymptotic behavior of the even-L-layer
lattices shown in Fig. 7(b). This clearly shows that the flat-band
instability is restored with infinitesimal U at L = ∞, and
the difference between even and odd L naturally disappears
at L = ∞.

E. tz dependence and the tz = 0 limit

We finally investigate the tz dependence of the magnetism
by changing tz toward ∼0. In the limit of tz → 0, the present
system for all L becomes equivalent to the two-dimensional
lattice that has already been investigated in Ref. [19]. We thus
perform the calculations on the three-layer lattice for small
tz = 0.1 and compare these results with those for tz = 1.0
already shown in Fig. 3.

Figure 9(a) shows the sublattice magnetization Mmγ for
tz = 0.1 as a function of U . We find that Mmγ for γ = A
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FIG. 9. (Color online) Magnetization as a function of U with the
condition tz = 0.1 for L = 3. (a) Sublattice magnetization. (b) Layer
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for comparison. Note that relations MmA = MmB (m = 1,2,3), M1γ =
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3 exist. t is a unit of energy.

steeply grows for U < 1.0, and then it gradually grows for
U > 1.0 and shows saturation at around U ∼ 8.0. On the other
hand, Mmγ for γ = H shows no characteristic behavior at
around U = 1.0 and shows saturation similar to the above at
around U ∼ 8.0. The difference between Mmγ for γ = A and
H sites is attributed to the flat bands that appear only in ρmA(ω).
The saturations for both γ = A and H suggest the crossover
from the flat band to the Heisenberg magnetisms as already
mentioned above. For small tz = 0.1, at around U = 1.0, we
observe the characteristic behavior not observed in Mmγ for
tz = 1.0 (see Fig. 3).

To clarify the difference between the results for smaller and
larger tz, we also show in Fig. 9(b) the layer magnetization
defined as M

lay
m = ∑

γ=H,A,B Mmγ , which characterizes the
(macroscopic) population imbalance between the σ =↑ and
↓ atoms in the corresponding layer m. Note that, with
the infinitesimal interaction, this layer magnetization also
shows a clear jump, which is a feature of the flat-band
ferromagnetic state. We find that M

lay
m shows saturation

behavior at around U = 1.0. This suggests that the layer

magnetization clearly signals the crossover. The saturated layer
magnetization shows antiferromagnetic alternating behavior:
M

lay
m = (−1)m0.5. Note that, in the two-dimensional Lieb

lattice (tz = 0), the layer magnetization always stays at 0.5
when U is finite, which is a manifestation of the Lieb theorem.
From this point, we can understand the origin of the crossover
at around U = 1.0 as follows: for U < 1.0, only one of the flat
bands at the Fermi energy takes part in the flat-band magnetism
as discussed above (see Fig. 4 and related discussions in
Sec. IV B). In contrast, for U > 1.0, all of the flat bands join
the magnetic ordering, even though they are not at the Fermi
energy. The latter situation can be regarded as analogous to the
flat-band magnetism seen in the ensemble of two-dimensional
Lieb lattices. We should note that the interlayer hopping
still causes antiferromagnetic correlations between the Lieb
lattices.

We can thus conclude that the crossover at U = 1.0 for tz =
0.1 originates from the change in the picture of the magnetism
from that in the quasi-three-dimensional layered Lieb lattice
to that in the correlated ensemble of the two-dimensional Lieb
lattice. We can now evaluate that the crossover occurs when
U becomes much larger than W = 2

√
2tz, which corresponds

to the energy difference between the two flat bands farthest
from the Fermi energy (see the Appendix). For tz = 1.0
(and also larger tz), this crossover cannot be seen, because
it is covered by the flat-band to Heisenberg crossover that
occurs when U becomes comparable to the bandwidth of the
two-dimensional Lieb lattice 4

√
2t(∼6). In the Heisenberg

limit, the flat-band structure is irrelevant to the magnetism,
which can be confirmed from the fact that the DOS for
strong U shows no band structures except for the upper
and lower Hubbard bands as mentioned above and also in
Ref. [19].

V. CONCLUSIONS

We investigate the magnetic properties of two-component
fermions in a multilayer Lieb lattice at half-filling and at
zero temperature using the DMFT combined with the NRG.
We elucidate that even- and odd-L layers show different
magnetization behaviors. The flat-band ferromagnetic state
appears only in odd-L layers. For even-L layers, the transition
occurs when the interaction restores the flat-band instability
toward the antiferromagnetic ordering. This odd-even differ-
ence disappears in the limit of L = ∞. On the other hand, as
common features seen in all layers, the magnetic properties in
the weak interaction region are dominated by flat bands, while
those in the strong interaction region can be well understood by
the Heisenberg spin picture. We further elucidate the interlayer
correlation effects, which induce another crossover and the
antiferromagnetic correlations between layers.

In this paper, we restrict our calculations to zero tem-
perature. It is also important to briefly discuss the property
at finite temperatures. We expect that we can observe finite
transition temperatures in the present multilayer Lieb lattices
thanks to the weak three-dimensional effects, although the
Mermin-Wagner theorem theoretically prohibits the transition
in such quasi-two-dimensional systems. From the numerical
results, we have revealed the crossover from the flat-band
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to the Heisenberg picture with increase in the interaction
strength. This clearly indicates that the transition temperature
is the highest in the crossover region by noting the same
mechanism appearing in the cubic lattice [34]. An interesting
future work is to extend our theory to the case at finite
temperatures. We will address this problem and publish it
elsewhere.

We mention experimental advantages of making the mul-
tilayer structure. First, we can detect the flat-band ferromag-
netic state by only measuring layer magnetizations without
addressing sublattice magnetization as shown in Fig. 9(b).
This is a specific property of the multilayer Lieb lattice.
Second, magnetic correlations in a multilayer system can
be enhanced by the following experimental technique. In
Ref. [35], the ETH group adiabatically changed the cubic
lattice to an anisotropic or dimerized cubic lattice. This process
causes local redistribution of entropy, leading to a great
enhancement of the short-range magnetic correlation. They
successfully observed the enhanced magnetic correlation. For
multilayer Lieb lattices, we can also adiabatically induce
anisotropic interlayer hopping by applying additional lasers in
the z direction. The entropy redistribution similarly enhances
the magnetic correlation inside the multilayer system. These
two advantages encourage us to consider the multilayer
lattices as promising candidates for observing the flat-band
ferromagnetic state.
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APPENDIX

This appendix shows simple analytical discussions about
the local DOS of the noninteracting atoms in the L-layer Lieb
lattices with an open boundary condition along the z direction.
We calculate the spectral positions and weights of flat bands in
the noninteracting local DOS, and we simply explain why the
difference between odd and even L appears. We also address
what determines the asymptotic behavior from the finite-L-
layer to the three-dimensional (infinite) layer Lieb lattices for
both even and odd L.

Here, we discuss the noninteracting local DOS ρL,mγ (ω)
for L = 1,2,3, . . . with γ = A,B,H and m = 1,2, . . . ,L.
The DOS for L = 1 is of the well-known two-dimensional
Lieb lattice [see Fig. 2(a)]. It is convenient to use the
following expression for them: ρ2D

γ (ω)[≡ ρ1,1γ (ω)]. The
DOS for multilayer lattices with L � 2 can be obtained
by the simple extension from the two-dimensional case
because the noninteracting Hamiltonian, HLieb + Hz, can be
solved by variable separation. Namely, ρL,mγ (ω) is written
as follows:

ρL,mγ (ω) =
L∑

n=1

|um,n|2ρ2D
γ (ω − λn), (A1)

where λn and um,n are eigenvalues and corresponding
eigenvectors of the following matrix Ĥ ′

z with a dimension

of L × L:

Ĥ ′
z =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 tz

tz 0 tz

tz
. . .

. . .
. . .

. . . tz
tz 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A2)

This matrix is the submatrix of Ĥz defined in the main text.
Figure 2 confirms the above discussion. This matrix can be
solved analytically, which is shown in detail with our physical
interpretation in the following several paragraphs. Those who
are familiar with this solution can skip those paragraphs.

In what follows, for simplicity, we only focus on the flat
bands and neglect the other DOS structures. This simplification
is very rough but well describes the physics of the flat-band
magnetism that occurs at the infinitesimal U . This simplifi-
cation yields ρ2D

A (ω) = ρ2D
B (ω) = (1/2)δ(ω) and ρ2D

H (ω) = 0.
The positions (weights) of the flat bands in ρL,mA(B)(ω)
are determined from λn (|um,n|2). Note that the sum rule∑

mγ

∫
dω ρL,mγ (ω) = L should be satisfied because we now

consider only L flat bands and neglect the other 2L bands.
The eigenvalues λm in energy units of tz can be calculated

from the following recurrence relation:

pk(λ) = λpk−1(λ) − pk−2(λ) (k = 3, . . . ,L),
(A3)

p2(λ) = λ2 − 1, p1(λ) = λ,

where pL(λ) = 0 is equivalent to |λÎ − Ĥ ′
z| = 0 and the

eigenvalues λn satisfy pL(λn) = 0. On the other hand, the
eigenvectors un = (u1,n,u2,n, . . . ,uL,n) can be calculated from
(λnÎ − Ĥ ′

z)un = 0, which can be rewritten as

um+1,n = λnum,n − um−1,n (m = 1,2,3, . . . ,L − 1), (A4)

where u0,n = 0 and u1,n = 1. The obtained eigenvectors
should be normalized as

∑
m |um,n|2 = 1.

Equation (A3) clearly explains why the difference between
even and odd L layers appears. With λ = 0, Eq. (A3) reduces
to pL(0) = pL−2(0) with p1(0) = 0 and p2(0) �= 0. This means
that the flat band at the Fermi energy appears only for odd L.

From Eq. (A4), we can discuss the asymptotic behavior of
MδU

mγ , the magnetization at infinitesimal interaction δU , for
odd L = 2l − 1 with l a natural number. Substituting λn =
0 into Eq. (A4), we obtain the corresponding renormalized
eigenvector as un = 1/

√
l(1,0,−1,0,1,0, . . . ,(−1)l+1), which

means that the weights of the flat band at the Fermi energy in
local DOS are 1/l for odd-number layer and 0 for even-number
layer. This clearly shows that the flat-band magnetism appears
only in the odd-number layers. The weights of the flat bands
determine that MδU

mγ for odd m asymptotically decreases with
1/4l, where the factor of 1/4(=1/2 × 1/2) results from 1/2 in
the definition of Mmγ and 1/2 in ρ2D

mA(B) shown above, while
that for even m stays 0. These are numerically confirmed as
shown in Fig. 8 and discussed in Sec. IV D.

Furthermore, we can discuss the critical interaction strength
U for even L(=2l). As discussed in Sec. IV C, we assume that
the critical U can be determined from the energy difference �

between the two flat bands nearest the Fermi energy. From
Eq. (A3), we can derive the explicit representation of the
eigenvalues as λn = −2tz cos[nπ/(L + 1)] (n = 1,2, . . . ,L).
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We obtain � = λl+1 − λl = 4tz sin[π/(2 + 4l)] = πtz/ l +
O(1/l2) for large L = 2l. This means that the critical
interaction strength U also shows (1/l)-asymptotic behavior as
discussed in Sec. IV D. We should comment that neglecting the
DOS except for the flat band as mentioned above is actually an
oversimplification due to the finite (not infinitesimal) critical
interaction. Nevertheless, our numerical results with tz = 1
show a good agreement with the above simple analysis. For
example, as shown in Fig. 5, the critical U for L = 2 is about
� ∼ 2.

We mention another energy scale W = λL − λ1, which
represents the energy difference between the two flat
bands farthest from the Fermi energy. We can rewrite
W = 4tz sin (π/2 × (L − 1)/(L + 1)), which reduces to 4tz +
O(1/L2) for a large L. Note that W can be regarded
as the bandwidth of broadened flat bands in the limit of
L = ∞, and the total bandwidth of the three bands in this
three-dimensional limit is given by 4

√
2t + 4tz. This energy

scale W determines the characteristic crossover discussed in
Sec. IV E.
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