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We investigate the superfluid phase transition and single-particle excitations in the BCS (Bardeen-Cooper-
Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an unpolarized ultracold Fermi gas with
mass imbalance (where two different species contributing to Cooper pairs have different atomic masses). In
our recent paper [R. Hanai et al., Phys. Rev. A 88, 053621 (2013)], we showed that an extended T -matrix
approximation (ETMA) can overcome the serious problem known in the ordinary (non-self-consistent) T -matrix
approximation that it unphysically gives double-valued superfluid phase transition temperature Tc in the presence
of mass imbalance. However, at the same time, the ETMA was also found to give the vanishing Tc in the
weak-coupling and highly mass-imbalanced case. In this paper, we inspect the correctness of this ETMA result,
using the self-consistent T -matrix approximation (SCTMA). We show that the vanishing Tc is an artifact of the
ETMA, coming from an internal inconsistency of this theory. The superfluid phase transition actually always
occurs, irrespective of the ratio of mass imbalance. We also apply the SCTMA to the pseudogap problem
in a mass-imbalanced Fermi gas. We show that pairing fluctuations induce different pseudogap phenomena
between the light component and heavy component. We also point out that a 6Li-40K mixture is a useful
system for the realization of a heteropairing state, as well as for the study of component-dependent pseudogap
phenomena.
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I. INTRODUCTION

The realization of an unconventional superfluid state be-
yond the 40K [1] and 6Li [2–4] superfluid Fermi gases is one
of the most exciting challenges in cold Fermi gas physics.
Although no one has succeeded in this attempt, various
possibilities have been so far explored, such as a p-wave
superfluid [5–13], the Berezinskii-Kosterlitz-Thouless state
[14–18], a superfluid state with hetero-Cooper-pairs [19–42],
the Sarma phase [39,40,43,44], a Fermi superfluid with a
spin-orbit interaction [45–48], and a dipolar Fermi superfluid
[49,50]. Once one of them is realized, one could clarify its
superfluid properties, maximally using the high tunability
of Fermi gases [51] and various experimental techniques
[52–58]. Since an ultracold Fermi gas is expected as a useful
quantum simulator for strongly interacting Fermi systems, this
challenge would also be important on the viewpoint of this
application.

Among various possibilities, we pick up the heteropairing
state [19–42] in this paper. This unconventional superfluid
state is expected in a 6Li-40K mixture, and is characterized
by Cooper pairs composed of different species [19–42].
Although the superfluid phase transition of this Fermi-Fermi
mixture has not been reported yet, the Fermi degenerate
regime has been achieved [20,24]. In addition, since a tunable
interaction associated with a Feshbach resonance between 6Li
and 40K atoms [19,22,23], as well as the formation of 6Li-40K
heteromolecules [21], has been realized, the observation of
superfluid behaviors seems imminent. Since the condensation
of heteropairs is also discussed in, for example, an exciton gas
[59–63], an exciton-polariton gas [64–67], as well as a dense
quark matter [68,69], the realization of a superfluid 6Li-40K
Fermi gas would give great impact on these fields.

In the current stage of research for the hetero-Fermi
superfluid, the evaluation of the superfluid phase transition

temperature Tc is a crucial theoretical issue. In our recent paper
[42], we showed that the ordinary (non-self-consistent) T -
matrix approximation (TMA) [70], which has been extensively
used to successfully clarify various interesting BCS-BEC
crossover physics in the mass-balanced case [53,54,71–76],
breaks down in the presence of mass imbalance [77], to
unphysically give double-valued Tc in the crossover region,
as shown in Fig. 1. In Ref. [42], we overcame this difficulty
by employing an extended T -matrix approximation (ETMA)
[78,79], which involves higher-order pairing fluctuations
beyond the TMA. However, apart from the recovery of the
expected single-valued Tc (see Fig. 1), the ETMA was found
to give vanishing Tc in the BCS regime when mL/mH � 1, as
shown in Fig. 2(a) [where mL (mH) is a mass of a light (heavy)
atom]. Since this predicts that a 6Li-40K mixture has a critical
interaction strength, below which the superfluid instability is
absent [see the dotted line in Fig. 2(a)], it is a crucial issue to
inspect the correctness of this.

In this paper, we extend the ETMA to the self-consistent
T -matrix approximation (SCTMA) [80–82], to calculate Tc in
a mass-imbalanced Fermi gas. We clarify that the vanishing Tc

seen in Fig. 2(a) is an artifact, originating from an internal
inconsistency of the ETMA. As shown in Fig. 2(b), the
superfluid phase transition actually always occurs in the
presence of mass imbalance, which is one of our main results
in this paper.

Using the SCTMA, we also examine single-particle prop-
erties of a mass-imbalanced Fermi gas. As in the mass-
balanced case, this system is found to exhibit the pseudogap
phenomenon in the BCS-BEC crossover region. However,
details of this many-body phenomenon are shown to be
different between light atoms and heavy atoms. Since such
a component-dependent pseudogap phenomenon never occurs
in a mass-balanced Fermi gas, it is characteristic of a Fermi
gas with mass imbalance.
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FIG. 1. (Color online) Calculated superfluid phase transition
temperature Tc in a mass-imbalanced Fermi gas [42]. We take
mL/mH = 0.9 [where mL (mH) is a mass of a light (heavy) atom], and
NL = NH [where NL (NH) is number of particles in the light (heavy)
component]. TMA: (non-self-consistent) T -matrix approximation.
ETMA: Extended T -matrix approximation. As usual, the interaction
strength is measured in terms of the inverse scattering length (kFas)−1

(where kF is the Fermi momentum). The temperature is normalized by
the Fermi temperature TF = k2

F/(2m), where m−1 = [m−1
L + m−1

H ]/2.

This paper is organized as follows. In Sec. II, we explain
the self-consistent T -matrix approximation in the presence
of mass imbalance. In Sec. III, we examine Tc. Here, we
explain why the ETMA incorrectly gives the vanishing Tc in the
highly mass-imbalanced regime, as well as the reason why this
problem is solved in the SCTMA. In Sec. IV, we calculate the
single-particle density of states, as well as the single-particle
spectral weight, to see how pseudogap phenomena differently
appear in the light component and heavy component. In
Sec. IV, we consider the case of a 6Li-40K mixture. Throughout
this paper, we set � = kB = 1, and the system volume V is
taken to be unity, for simplicity.

II. FORMULATION

We consider a two-component unpolarized Fermi
gas with mass imbalance, described by the BCS-type

Hamiltonian

H =
∑

p,σ=L,H

ξ p,σ c†p,σ c p,σ

−U
∑

q

∑
p, p′

c
†
p+q/2,Lc

†
− p+q/2,Hc− p′+q/2,Hc p′+q/2,L. (1)

Here, c p,L and c p,H describe a light atom with a mass mL and a
heavy atom with a mass mH, respectively. ξ p,σ = p2/(2mσ ) −
μσ (σ = L,H) is the kinetic energy of a Fermi atom, measured
from the Fermi chemical potential μσ . −U (<0) is a pairing
interaction, which is related to the s-wave scattering length as

as

4πas

m
= −U

1 − U
∑

p
m
p2

, (2)

where m = 2mLmH/(mL + mH) is twice the reduced mass. As
in the mass-balanced case, we measure the interaction strength
in terms of as in this paper. The weak-coupling BCS regime
and the strong-coupling BEC regime are then characterized by
(kFas)−1 � −1 and 1 � (kFas)−1, respectively [where kF =
(3π2N )1/3 is the Fermi momentum, and N is the total number
of Fermi atoms]. The BCS-BEC crossover region is given by
−1 <∼ (kFas)−1 <∼ 1.

In this paper, we measure the momentum p, energy ω,
and temperature T , in terms of, respectively, the Fermi
momentum kF = (3π2N )1/3, Fermi energy εF = k2

F/(2m), and
Fermi temperature TF = εF, of a mass-balanced free Fermi
gas with the atomic mass m = 2mLmH/(mL + mH) and the
particle number N . We briefly note that, while kF remains
unchanged in a mass-imbalanced Fermi gas, εF is different
from the Fermi energy εσ

F = k2
F/(2mσ ) of each component in

the presence of mass imbalance.
The single-particle thermal Green’s function is given by

Gσ ( p,iωn) = 1

iωn − ξ p,σ − �σ ( p,iωn)
, (3)

where ωn is the fermion Matsubara frequency. The self-
energy �σ ( p,iωn) describes strong-coupling corrections to
single-particle excitations. In the SCTMA [80], �σ ( p,iωn)
is diagrammatically described as Fig. 3. Summing up the
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FIG. 2. (Color online) Calculated Tc as functions of the interaction strength (kFas)−1 and the ratio mL/mH of mass imbalance, in the case
of NL = NH. (a) Extended T -matrix approximation (ETMA). (b) Self-consistent T -matrix approximation (SCTMA). The dashed line shows
the case of a 6Li-40K mixture (mL/mH = 6/40 = 0.15). The open circles are the BEC phase transition temperature TBEC in an ideal molecular
Bose gas, given by Eq. (18).
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FIG. 3. (a) Self-energy �σ ( p,iωn) in the self-consistent T -matrix
approximation (SCTMA). The double solid line is the dressed Green’s
function Gσ in Eq. (3). (b) Particle-particle scattering matrix �(q,iνn)
is the SCTMA. The dotted line describes the pairing interaction −U .
In this figure, −σ means the opposite component to σ = L,H.

diagrams, we obtain

�σ ( p,iωn) = T
∑
q,νn

�(q,iνn)G−σ (q − p,iνn − iωn). (4)

Here, νn is the boson Matsubara frequency, and −σ denotes
the opposite component to σ = L,H. �(q,iνn) is the particle-
particle scattering matrix describing fluctuations in the Cooper
channel, which is given by, in the SCTMA

�(q,iνn) = −U

1 − U
(q,iνn)
, (5)

where


(q,iνn) = T
∑
p,iωn

GL( p + q/2,iνn + iωn)

×GH(− p + q/2,−iωn) (6)

is the pair correlation function.
As usual, we determine Tc from the Thouless criterion

[�(q = 0,iνn = 0)]−1 = 0 [80,83], which gives

1 = U
(q = 0,iνn = 0). (7)

We solve this Tc equation, together with the equations for the
number of Fermi atoms in the σ component

Nσ = T
∑
p,iωn

Gσ ( p,iωn) = N

2
, (8)

to self-consistently determine (Tc,μL,μH). Since we deal with
the unpolarized case, we take NL = NH = N/2 in Eq. (8).
Above Tc, we only solve the number equation (8) to determine
(μL,μH).

We note that the SCTMA is a consistent theory in the
sense that the dressed Green’s function Gσ in Eq. (3) is
used everywhere in the diagrams in Fig. 3. In this sense, the
ETMA employed in our previous paper [42] has an internal
inconsistency. That is, while the dressed Green’s function is
used in the fermion loop in Fig. 3(a), the bare Green’s function

G0
σ ( p,iωn) = 1

iωn − ξ p,σ

(9)

is used in the particle-particle scattering matrix �(q,iνn) in
Fig. 3(b). Because of this, the ETMA pair correlation function

(q,iνn) in Eq. (5) is in the lowest order with respect to the

pairing interaction −U as


ETMA(q,iνn) = T
∑
p,iωn

G0
L( p + q/2,iνn + iωn)

×G0
H(− p + q/2,−iωn)

= −
∑

p

1 − f (ξ p+q/2,L) − f (ξ− p+q/2,H)

iνn − ξ p+q/2,L − ξ− p+q/2,H
.

(10)

Here f (ε) = [eε/T + 1]−1 is the Fermi distribution function.
Thus, although the number equations in the ETMA use the
dressed Green’s function involving strong-coupling correc-
tions, the Thouless criterion [�ETMA(0,0)]−1 = 0 gives the
BCS-type Tc equation

1 = U

2

∑
p

tanh
ξ p,L

2T
+ tanh

ξ p,H

2T

ξ p,L + ξ p,H
, (11)

where �ETMA(q,iνn) = (−U )/[1 − U
ETMA(q,iνn)]. In
Sec. III, we will find that this inconsistent treatment is the
origin of the vanishing Tc seen in Fig. 2(a). We briefly note
that, when we replace all the dressed Green’s functions in
Fig. 3 by the bare ones, the ordinary non-self-consistent
T -matrix approximation [70] is recovered.

We also examine strong-coupling corrections to single-
particle excitations in a mass-imbalanced Fermi gas. As usual,
we calculate the single-particle density of states ρσ (ω), as
well as the single-particle spectral weight Aσ ( p,ω), from the
SCTMA Green’s function in Eq. (5) as

ρσ (ω) = − 1

π

∑
p

Im[Gσ ( p,iωn → ω + iδ)], (12)

Aσ ( p,ω) = − 1

π
Im[Gσ ( p,iωn → ω + iδ)], (13)

where δ is an infinitesimally small positive number. The
density of states ρσ (ω) equals the momentum summation of
the spectral weight Aσ ( p,ω) for a given energy ω.

III. SUPERFLUID PHASE TRANSITION
AND EFFECTS OF MASS IMBALANCE

As we have already shown in Fig. 2(b), the SCTMA always
gives a finite Tc, even in the presence of mass imbalance.
Thus, the BCS-BEC crossover phenomenon, which has been
already observed in 6Li and 40K Fermi gases, is also expected
in a 6Li-40K mixture (mL/mH = 0.15). We emphasize that the
ETMA gives the different prediction that this Fermi-Fermi
mixture does not exhibit the superfluid phase transition in the
BCS regime [42].

To explain the reason for this difference, we introduce the
effective Fermi momentum k̃F,σ , which is determined from the
equation for the pole of the analytic continued dressed Green’s
function Gσ ( p,iωn → ω + iδ) at ω = 0,

k̃
2
F,σ

2mσ

− μσ + Re[�σ (k̃F,σ ,iωn → ω + iδ = 0 + iδ)] = 0.

(14)
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FIG. 4. (Color online) (a) Effective Fermi momenta k̃F.σ in the
SCTMA. We take (kFas)−1 = −0.5. We also show k̃0

F,σ = √
2mσ μσ

in the SCTMA. The ETMA also gives almost the same result for k̃0
F,σ ,

although we do not explicitly show it here. (b) Tc when (kFas)−1 =
−0.5. SCTMA: Self-consistent T -matrix approximation. ETMA:
Extended T -matrix approximation. MF: Mean-field approximation.

For a free Fermi gas at T = 0, k̃F,σ just equals the Fermi
momentum kF = (3π2N )1/3. Thus, this quantity physically
describes the size of a Fermi surface in the σ component
[84]. As shown in Fig. 4(a), the SCTMA gives k̃F,L � k̃F,H,
indicating that the Fermi surface in the light component
has almost the same size as that in the heavy component,
irrespective of the ratio mL/mH. In a sense, this is reasonable
because the number N/2 of Fermi atoms in the σ component
is roughly estimated as N/2 ∼ (4πk̃3

F,σ /3)/(2π/L)3 (where
L is the system size), which is independent of the atomic
mass mσ . Since the superfluid phase transition in the BCS
regime is dominated by the pair formation between a light
atom with the momentum p(�k̃F,L) and a heavy atom with
− p(� − k̃F,H), the (approximate) coincidence of two Fermi
surfaces is favorable to the superfluid instability. As a result, the
SCTMA, which consistently uses the dressed Green’s function
Gσ ( p,iωn) in both the Tc equation (7) and the number equation
(8), always gives a finite Tc, as shown in Fig. 4(b).

On the other hand, the ETMA uses the bare Green’s function
G0

σ ( p,iωn) in the Tc equation (11). Thus, while the coincidence
of the two Fermi surfaces is included in the number equation, it
is not in the Tc equation (11). Indeed, the bare Green’s function
in Eq. (9) gives the effective Fermi surface size as, not k̃F,σ ,
but

k̃0
F,σ =

√
2mσμσ , (15)

which remarkably depends on σ = L,H, as shown in Fig. 4(a).
Thus, the Tc equation in the ETMA is affected by the mismatch
of two Fermi surfaces (k̃0

F,L �= k̃0
F,H), leading to the suppression

of the superfluid phase transition, as in the case of metallic
superconductivity under an external magnetic field. To see
this pair-breaking effect in a clear manner, it is convenient to

rewrite Eq. (11) in the form

1 = U

2

∑
p

tanh
ξ̃ p,L + h

2T
+ tanh

ξ̃ p,H − h

2T

ξ̃ p,L + ξ̃ p,H
, (16)

where ξ̃ p,σ = (m/mσ )[p2/(2m) − μ], with μ = [μL +
μH]/2. Apart from the factor m/mσ in ξ̃ p,σ , Eq. (16) has the
same form as the Tc -equation in a Fermi gas with an atomic
mass m and the Fermi chemical potential μ, under an external
magnetic field,

h = mLμL − mHμH

mL + mH
. (17)

When (kFas)−1 = −0.5, Fig. 4(b) shows that Tc in the ETMA
disappears at mL/mH � 0.44, at which one obtains k̃0

F,L/kF =
0.85 and k̃0

F,H/kF = 0.61. Substituting these into Eq. (17),
we obtain h = 0.15TF, which is comparable to the value of
the superfluid phase transition temperature Tc = 0.14TF at
mL/mH = 1. This clearly indicates that the absence of the
superfluid phase when mL/mH � 0.44 in Fig. 4(b) is due to
the “magnetic field” h in Eq. (17). However, since h actually
originates from the internal inconsistency of the ETMA, we
conclude that the vanishing Tc seen in Fig. 2(a) is an artifact
of this approximation.

We briefly note that the ETMA becomes consistent, when
the dressed Green’s function Gσ in the number equation (8)
is replaced by the bare one G0

σ in Eq. (9). In this simple
mean-field approximation, the number equation gives k̃0

F.L �
k̃0

F,H, leading to h � 0. Thus, we obtain a finite Tc for an
arbitrary ratio mL/mH of mass imbalance, as shown in Fig. 4(b)
(although the magnitude of Tc is overestimated because of the
neglect of strong-coupling corrections).

In the strong-coupling BEC regime, the system is well
described by a Bose gas of N/2 tightly bound molecules
[85–87], so that the difference between the ETMA and the
SCTMA is not important, as far as we consider Tc. Indeed,
Fig. 2 shows that the both approximations give almost the
same Tc in the BEC regime. In this figure, we also compare
our results with the BEC phase transition temperature TBEC in
an ideal gas of NB = N/2 hetero-molecules with the molecular
mass M = mL + mH, given by

TBEC = 2π

M

( NB

ζ (3/2)

)2/3
. (18)

The good agreement of the SCTMA and ETMA results with
TBEC at (kFas)−1 = 2 supports the validity of the molecular
picture in this regime, even in the presence of mass imbalance.

IV. COMPONENT-DEPENDENT PSEUDOGAP
PHENOMENA IN A MASS-IMBALANCED FERMI GAS

Figure 5 shows the single-particle density of states ρσ (ω)
at Tc in the case of a 6Li-40K mixture (mL/mH = 0.15).
Figure 5(a) clearly shows that the density of states ρL(ω) in
the light component exhibits a dip structure when (kFas)−1 =
−0.5, which becomes wider for a stronger pairing interaction.
Since the superfluid order parameter vanishes at Tc, this is just
the pseudogap associated with pairing fluctuations. This result
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FIG. 5. (Color online) Calculated single-particle density of states
ρσ (ω) in a mass-imbalanced Fermi gas at Tc. We take mL/mH = 0.15
(which corresponds to a 6Li-40K Fermi mixture). (a) Light component.
(b) Heavy component. For comparison, we also show the density of
states ρ(ω) in the mass-balanced case in panel (c).

is qualitatively the same as the mass-balanced case shown in
Fig. 5(c).

Although both light atoms and heavy atoms equally con-
tribute to pairing fluctuations (note that a preformed Cooper
pair always consists of a light atom and a heavy atom.),
Fig. 5(b) shows that the pseudogap in the heavy component
is not so clear as the case of light component. That is, a
dip structure seen at (kFas)−1 = −0.5 no longer exists in the
unitarity limit [(kFas)−1 = 0], although a clear pseudogap is
still seen in Fig. 5(a). In the BEC regime at (kFas)−1 = 1,
exactly speaking, there exists a wide pseudogap around ω = 0,
which is, however, very shallow, so that it is almost invisible
in this figure. This result is also quite different from the
clear pseudogap structure seen in Fig. 5(a) at this interaction
strength.

Strong-coupling corrections to single-particle excitations
can also be seen in the single-particle spectral weight Aσ ( p,ω)
in Eq. (13). In the mass-balanced case, the pseudogap phe-
nomenon appearing in the spectral weight may be understood
as a particle-hole coupling effect by pairing fluctuations [72].
Indeed, in Fig. 6(a1), besides a spectral peak line along the
particle dispersion [ξ p ∼ p2/(2m) − k2

F/(2m)], we slightly see
a broad peak line along the hole branch (ξ h

p ∼ −[p2/(2m) −
k2

F/(2m)]), which crosses the particle branch around ω = 0
to modify the particle dispersion. Since the density of states

ρσ (ω) is obtained from the momentum summation of the
spectral weight Aσ ( p,ω) for a given ω, this modification
around ω = 0 is directly related to the pseudogap structure
in ρσ (ω) around ω = 0 (see Fig. 5).

In the light component, the same effect on the particle
branch occurs in the presence of mass imbalance, as shown
in Figs. 6(a2) and 6(a3). In particular, in the highly mass-
imbalanced case [Fig. 6(a3)], the spectral peak of the particle
branch is remarkably broadened around ω = 0 by the particle-
hole coupling effect, leading to the suppression of the density
of states ρL(ω ∼ 0) = ∑

p AL( p,ω ∼ 0), which gives the
pseudogap structure in Fig. 5(a) at mL/mH = 0.15.

In the case of heavy atoms, on the other hand, the right
panels in Fig. 6 show that the modification of the particle
branch around ω = 0 is less remarkable, compared to the case
of light atoms. This result is consistent with the density of
states shown in Fig. 5(b).

To understand the above component-dependent pseudogap
phenomenon, we explain the following two keys. The first key
is that the light atoms and heavy atoms have different Fermi
temperatures as

T L
F = k2

F

2mL
> T H

F = k2
F

2mH
. (19)

Since thermal effects in a Fermi gas are dominated by, not the
temperature T itself, but the scaled temperature T/T σ

F , heavy
fermions always feel a higher scaled temperature than light
fermions at a temperature T . Thus, the pseudogap in ρH(ω)
may be smeared out thermally, even when the pseudogap is
still seen in ρL(ω). In addition, since the difference of these
scaled temperatures becomes larger for higher temperatures,
the pseudogap in ρH(ω) disappears at a lower temperature than
in ρL(ω). We explicitly confirm this in Fig. 7 (density of states),
as well as in Fig. 8 (spectral weight).

The second key to understanding the component-dependent
pseudogap phenomenon is the particle-hole coupling by
pairing fluctuations. Noting that the particle-particle scattering
matrix �(q = 0,iνn = 0) in Eq. (5) diverges at Tc, the self-
energy �σ ( p,iωn) in Eq. (4) can be approximated to, near
Tc [72],

�σ ( p,iωn) � �Hartree
σ − G−σ (− p,−iωn)�2

pg, (20)

where �Hartree
σ = −UT

∑
p,iωn

G−σ ( p,iωn) is the ordinary
Hartree term, and �2

pg = −T
∑

q,νn
[�(q,iνn) + U ](>0) is

the so-called pseudogap parameter [71]. When we sim-
ply treat the Green’s function G−σ in Eq. (20) within
the Hartree approximation ([G−σ (− p,−iωn)]−1 = −iωn −
ξ p,−σ − �Hartree

σ ), Eq. (3) is approximated to

GPG
σ ( p,iωn) = 1

iωn − ξ p,σ − �2
PG

iωn + ξ p,−σ

. (21)

(The unimportant Hartree term �Hartree
σ has been absorbed into

the Fermi chemical potential μσ , for simplicity.) Equation (21)
indicates that the pseudogap parameter �PG, which physically
describes effects of pairing fluctuations, works as a coupling
between a particle branch (ω = ξ p,σ ) and a hole branch (ω =
−ξ p,−σ ). In addition, because Eq. (21) can be written in the
same form as the particle component of the BCS Green’s
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function as

GPG
σ ( p,iωn) = iωn + ξ p,−σ

[iωn − ξ p,σ ][iωn + ξ p,−σ ] − �2
PG

, (22)

�PG is found to play a similar role to the BCS superfluid
order parameter �. Thus, the approximate Green’s function in
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FIG. 7. (Color online) Single-particle density of states ρσ (ω)
above Tc. We take mL/mH = 0.15 and (kFas)−1 = −0.5. (a) Light
component. (b) Heavy component.

Eq. (21) gives a BCS-like clear gap structure in both ρL(ω)
and ρH(ω) [see ρσ (ω) at γ = 0 in Fig. 9].

The component-dependent pseudogap phenomenon is then
immediately obtained when one phenomenologically includes
finite widths of the peak lines in Figs. 6 and 8 as

G̃PG
σ ( p,iωn → ω + iδ) = 1

ω + iγ − ξ p,σ − �2
PG

ω + iγ + ξ p,−σ

.

(23)

Here, the phenomenological damping rate γ is assumed to
take the same constant value between the two components,
for simplicity. Using Eq. (23), one finds that the pseudogap in
ρH(ω) is more easily smeared out by the damping rate γ than
that in ρL(ω), as shown in Fig. 9. When we simply consider
the spectral weight Aσ ( p,ω = 0) of the phenomenological
Green’s function G̃σ ( p,ω) = [ω + iγ − ξ p,σ ]−1, given by

Aσ ( p,ω = 0) = 1

π

4m2
σ γ[

p2 − k̃2
F,σ

]2 + 4m2
σ γ 2

, (24)

the density of states ρσ (ω = 0) = ∑
p Aσ ( p,ω = 0) is found

to be dominated by the spectral weight in the momentum region

k̃2
F,σ − 2mσγ <∼ p2 <∼ k̃2

F,σ + 2mσγ. (25)

This region is much wider for the heavy component than the
light component, when mL/mH � 1. Thus, in the former,
the modification of the particle dispersion around p = k̃F,H

by the particle-hole coupling effect is easily hidden by the
wider momentum summation, compared with the case of light
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component, leading to the different pseudogap phenomenon
between the two.

V. PHASE DIAGRAM OF A MASS-IMBALANCED
FERMI GAS

To determine the pseudogap region, we conveniently
introduce the pseudogap temperature T ∗

σ as the temperature
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FIG. 9. (Color online) Density of states ρσ (ω), using the ap-
proximate Green’s function G̃PG

σ in Eq. (23). (a) Light component.
(b) Heavy component. We take mL/mH = 0.15, �PG/εF = 0.3, and
μσ = k2

F/(2mσ ).

at which the pseudogap appears in the density of states ρσ (ω)
[72]. As expected, Fig. 10 shows that T ∗

L > T ∗
H.

This result naturally leads to the existence of two pseudogap
regions. In the region Tc � T � T ∗

H (“PG1” in Fig. 10), the
pseudogap appears in both the light component and heavy
component. Besides this ordinary case, we also obtain the
other pseudogap regime where the pseudogap only appears
in the light component (“PG2” in Fig. 10). In Fig. 10, while
PG1 and PG2 exist when mL/mH > 0.15, only PG2 exists
in the highly mass-imbalanced regime when mL/mH � 0.15.
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FIG. 10. (Color online) Pseudogap temperature T ∗
σ in a unitary

Fermi gas, as a function of the ratio mL/mH of mass imbalance. PG1:
Pseudogap regime where a dip structure appears in both ρL(ω) and
ρH(ω). PG2: Pseudogap region where the pseudogap is only seen
in ρL(ω). NF: Normal Fermi gas where the pseudogap phenomenon
is absent. SF: Superfluid phase. T H

F is the Fermi temperature in the
heavy component.
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tion n p,σ = 〈c†p,σ c p,σ 〉.

Since PG2 is absent in the mass-balanced case, this pseudogap
regime is characteristic of a mass-imbalanced Fermi gas.

Figure 10 shows that the pseudogap temperature T ∗
L in

the light component becomes higher than T H
F in the case of

mL/mH � 1. This means that the pseudogap phenomenon can
still occur in the light component, even when the heavy com-
ponent is in the classical regime (T > T H

F ). Indeed, as shown
in Fig. 11, ρL(ω) still exhibits the pseudogap phenomenon,
when T/TF = 0.05 (which satisfies T H

F = 0.025TF < T <

T ∗
L = 0.11TF) [89]. In this case, the inset of Fig. 11 shows that

the particle distribution n p,H = 〈c†p,Hc p,H〉 of heavy atoms is

very broad around p = kF, compared with n p,L = 〈c†p,Lc p,L〉,
reflecting that T H

F < T < T L
F . We briefly note that this result

is in contrast to the case of superfluid phase transition, which
occurs only when both the components are in the Fermi
degenerate regime (Tc < T H

F < T L
F ).

Figure 12 shows the phase diagram of a 6Li-40K mixture
(mL/mH = 0.15). As expected from Fig. 10, most of the
pseudogap regime is dominated by PG2, where the pseudogap
only appears in the light component. In the BEC limit, the

 0
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FIG. 12. (Color online) (a) Phase diagram of a 6Li-40K Fermi
gas mixture (mL/mH = 0.15). The meanings of PG1, PG2, SF,
and NF, are the same as those in Fig. 10. In this figure, we also
draw the line, |μL(Tc) + μH(Tc)|, in the BEC regime when μσ < 0,
which physically represents the binding energy of a two-body bound
molecules. As in the mass-balanced case, the right side of this line
may be regarded as a molecular Bose gas in the normal state (NB),
rather than a Fermi gas [88].

molecular binding energy Ebind is given by

Ebind = μL(Tc) + μH(Tc) = − 1

ma2
s

. (26)

Thus, in Fig. 12, the line |μL(Tc) + μH(Tc)| [where μL(Tc) +
μH(Tc) < 0] drawn in the BEC regime physically gives a
characteristic temperature where two-body bound molecules
start to appear. Thus, the right side of this line (NB) may be
viewed as a normal Bose gas of two-body bound molecules,
rather than a Fermi gas.

Figure 12 indicates that one should measure single-particle
excitations in the light component to observe the pseudogap
phenomenon in a 6Li-40K mixture. Since the achievement of
the superfluid phase transition is a crucial issue in this system,
this observation would be helpful to estimate to what extent
we are approaching the superfluid instability. In addition, since
the pseudogap is almost absent in the heavy component except
for the very narrow temperature region (see Fig. 12), the
appearance of a gap in single-particle excitation spectra in
the heavy component would be a clear signature of the hetero
superfluid state in this system.

We briefly note that, although Fig. 12 indicates the absence
of the pseudogap temperature T ∗

H around the unitarity limit,
it does not necessarily mean that the heavy component
behaves as a simple normal Fermi gas there. Indeed, as
shown in Fig. 13, in the unitarity limit, the density of states
ρH(ω) in the heavy component at ω = 0 is anomalously
suppressed near Tc by strong pairing fluctuations, although
a dip structure does not appear in ρH(ω). Since the pseudogap
is a crossover phenomenon without being accompanied by any
phase transition, the definition of the pseudogap temperature
somehow involves ambiguity. However, even when we define
the pseudogap temperature T ∗

σ as the temperature at which
ρσ (ω = 0) starts to be suppressed, we again obtain the relation
T ∗

L > T ∗
H, as seen in Fig. 13.

Before ending this section, we briefly comment on the
Sarma phase [43], which has been predicted in a highly mass-
imbalanced Fermi gas [39,40]. A characteristic property of
this superfluid state is that the superfluid gap is not centered at
ω = 0, as shown in Fig. 14. Since the pseudogap phenomenon
in an ultracold Fermi gas is a precursor of the superfluid phase
transition, one expects that the pairing fluctuations associated
with the Sarma phase give a dip structure at ω �= 0. However,

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6
T/TF

×4

ρ σ
(0

)/[
m
k F

/(2
π2 )]

ρL(0)
ρH(0)

FIG. 13. (Color online) Calculated density of states ρσ (ω = 0),
as a function of temperature. We take mL/mH = 0.15, and
(kFas)−1 = 0. ρL(ω) is magnified four times.
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such a phenomenon is not seen in Fig. 5, where the pseudogap
always appears around ω = 0. Thus, although this result does
not necessarily exclude the Sarma phase in a mass-imbalanced
Fermi gas, it seems difficult to confirm this possibility from
the viewpoint of the pseudogap phenomenon.

VI. SUMMARY

To summarize, we have discussed strong-coupling proper-
ties of an ultracold Fermi gas with different species with dif-
ferent masses. Extending our previous work using an extended
T -matrix approximation (ETMA) [42] to include higher-order
pairing fluctuations within the framework of the self-consistent
T -matrix approximation (SCTMA), we calculated the super-
fluid phase transition temperature Tc in the presence of mass
imbalance in the whole BCS-BEC crossover region. We also
calculated the single-particle density of states, as well as the
single-particle spectral weight, to see how the presence of mass
imbalance affects the pseudogap phenomenon.

We showed that the superfluid phase transition always
occurs even in the presence of mass imbalance. This result
is quite different from our previous work within the ETMA,
where the superfluid phase transition does not occur in the BCS
regime when mL/mH � 1. We clarified that the ETMA result
is an artifact, originating from the inconsistent treatment of the
Fermi surface size between the Tc equation and the number
equations Nσ (σ = L,H). Our results in this paper predict
that a 6Li-40K mixture always exhibits the superfluid phase
transition, irrespective of the interaction strength. Thus, the
BCS-BEC crossover phenomenon is expected in this system,
as in the cases of 6Li and 40K superfluid gases.

We also showed that the pseudogap phenomena are very
different between the light component and the heavy compo-
nent, in spite of the fact that the both equally contribute to the
formation of preformed Cooper pairs. In the presence of mass

imbalance, the pseudogap structure in the density of states
becomes obscure in the heavy component, compared to that
in the light component. In the highly mass-imbalanced case
(mL/mH � 1), the pseudogap no longer appears in the former.
Since the pseudogap phenomenon always occurs in both
the components in the mass-balanced case, this component-
dependent pseudogap phenomenon is characteristic of a mass-
imbalanced Fermi gas.

The component-dependent pseudogap phenomenon also
gives a higher pseudogap temperature T ∗

L in the light com-
ponent than the pseudogap temperature T ∗

H in the heavy
component, which naturally leads to two pseudogap regions.
That is, while the both components exhibit the pseudogap
phenomena when Tc � T � T ∗

H, the pseudogapped density of
states is only seen in the light component when T ∗

H � T � T ∗
L .

In the highly mass-imbalanced regime (mL/mH � 1), T ∗
H

no longer exists, so that light fermions only exhibit the
pseudogap phenomenon there. We pointed out that that these
component-dependent pseudogap phenomena originate from
(1) different values of the Fermi temperatures between the
two components, and (2) component-dependent particle-hole
coupling effects by pairing fluctuations.

For a 6Li-40K mixture, our results predict that the pseudogap
can be seen much more easily in the 6Li component, rather than
in the 40K component because this system is in the highly
mass-imbalanced regime (mL/mH = 0.15 � 1). Since the
pseudogap phenomenon is a precursor of the superfluid phase
transition, the observation of this many-body phenomenon in
the 6Li component would be helpful to assess to what extent
the system is close to the superfluid instability. In addition,
since the pseudogapped density of states is almost absent
in the 40K component, the observation of a single-particle
excitation gap in this component can be used as a signature of
the heterosuperfluid phase in this system.

In this paper, we have examined a uniform Fermi gas,
for simplicity. In this regard, we note that each component
may feel different harmonic potential in a real trapped Fermi
gas, leading to a local population (spin) imbalance [28,36].
In addition, the photoemission-type experiment developed
by the JILA group [53,54], which is a powerful technique
to experimentally examine single-particle properties of an
ultracold Fermi gas, has no spatial resolution, so that we need
to treat an observed photoemission spectrum as a spatially
averaged one in a trap. Thus, to deal with these realistic
situations, the extension of our work to include effects of a
harmonic trap is necessary.

Fermi superfluids with hetero-Cooper-pairs have been
discussed in various fields, such as an exciton (polariton)
gas in semiconductor physics, and color superconductivity in
high-energy physics. Since the realization of a heteropairing
state seems difficult in metallic superconductivity, once the
superfluid phase transition is achieved in a 6Li-40K mixture,
this superfluid state with a tunable pairing interaction would
become a useful model system for the study of these Fermi
condensates. Since the pseudogap phenomenon is deeply
related to the superfluid phase transition, our results would
contribute to the research toward the realization of a hetero-
Fermi superfluid using ultracold Fermi gases, especially a
6Li-40K mixture.
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