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Collective excitations of a harmonically trapped, two-dimensional, spin-polarized dipolar
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The collective excitations of a zero-temperature, spin-polarized, harmonically trapped, two-dimensional dipolar
Fermi gas are examined within the Thomas-Fermi–von Weizsäcker hydrodynamic theory. We focus on repulsive
interactions and investigate the dependence of the excitation frequencies on the strength of the dipolar interaction
and particle number. We find that the mode spectrum can be classified according to bulk modes, whose frequencies
are shifted upward as the interaction strength is increased, and an infinite ladder of surface modes, whose
frequencies are independent of the interactions in the large particle limit. We argue quite generally that it is
the local character of the two-dimensional energy density that is responsible for the insensitivity of surface
excitations to the dipolar interaction strength and not the precise form of the equation of state. This property
will not be found for the collective excitations of harmonically trapped, dipolar Fermi gases in one and three
dimensions, where the energy density is manifestly nonlocal.
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I. INTRODUCTION

In a recent paper [1] we presented a fully self-consistent,
density-functional theory [2] for the description of the equi-
librium properties of a harmonically trapped, two-dimensional
(2D) spin-polarized dipolar Fermi gas (DFG) at zero tempera-
ture (T = 0). For dipoles oriented perpendicular to the 2D x-y
plane, the dipole-dipole interaction is isotropic and strictly
repulsive.

At the heart of the formulation is the Thomas-Fermi–von
Weizsäcker (TFvW) energy functional, viz.,

E[n] =
∫

d2r
{

1
2CK [n(r)]2 + 2

5Cdd [n(r)]5/2
}

+
∫

d2r λvW
�

2

8M

|∇n(r)|2
n(r)

+
∫

d2r vext(r)n(r)

≡
∫

d2r εloc[n] +
∫

d2r εvW[n]

+
∫

d2r vext(r)n(r), (1)

where CK ≡ 2π�
2/M , Cdd ≡ (32/9

√
π )μ0D

2, and D is the
magnetic moment of the neutral atoms. The external potential
is given by vext(r) = 1

2Mω2
0r

2, where ω0 is the isotropic 2D
trap frequency and M is the mass of an atom. The first
term of the local energy density εloc[n] corresponds to the
noninteracting kinetic energy of a uniform 2D Fermi gas.
The second term in εloc[n] is associated with the total dipole-
dipole interaction energy in the Hartree-Fock approximation
[2], which, as shown previously [1,3], can be accurately
represented in two dimensions as a purely local function
of the spatial density n(r). This is in contrast with the
situation for 1D and 3D systems, where the total dipole-dipole

interaction energy functional is always nonlocal. Finally, the
von Weizsäcker (vW) energy density εvW[n] is included to
account for the increase in the kinetic energy associated
with the spatial inhomogeneity introduced by the external
trapping potential [4]. The parameter λvW is the so-called vW
coefficient, which takes the value λvW � 0.02–0.04 for particle
numbers in the range N ∼ 102–106 [1].

Introducing the vW wave function ψ(r) ≡ √
n(r) and

performing the variational minimization of Eq. (1) with respect
to the density, we obtain the Schrödinger-like equation

−λvW
�

2

2M
∇2ψ(r) + veff(r)ψ(r) = μψ(r), (2)

where veff(r) is the effective one-body potential given by

veff(r) = dεloc[n]

dn
+ 1

2
Mω2

0r
2

= CKψ2(r) + Cddψ
3(r) + 1

2
Mω2

0r
2. (3)

Since veff(r) itself depends on ψ(r), the solution of Eq. (2) must
be determined self-consistently. The ground-state solution
ψ0(r) determines the self-consistent ground-state density
n0(r) = ψ2

0 (r) and the chemical potential μ is fixed by the
normalization condition∫

d2r ψ2
0 (r) = N. (4)

Once the solution to Eq. (2) is obtained, we have a complete
description of the equilibrium properties of the system. The
numerical scheme used to solve for the self-consistent ground-
state density is outlined in Ref. [1]. We note that the inclusion
of λvW results in an equilibrium density profile that decays
smoothly into the classically forbidden region.
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In this paper we extend our earlier work [1] to consider the
collective excitations that are induced by driving the system
away from its equilibrium ground-state density n0(r). The
main motivation of this study is the recent realization of a
degenerate, spin-polarized gas of 161Dy atoms [5]. In view
of the reasonable expectation that the quasi-2D analog of
this experiment is possible, along with foreseeable studies
of the collective excitations, a theoretical investigation of
the collective modes is of interest. Although a variety of
theoretical techniques have been used to investigate the
collective excitations of trapped DFGs in three- [6–13] and
lower-dimensional geometries [14–17], we feel that it is useful
to present another, relatively unknown approach, namely, the
TFvW hydrodynamic theory.

The TFvW approach in fact has its roots outside of cold-
atom physics. It has had a long and successful history in the
description of the collective excitations of degenerate electron
gases in three [18,19] and lower dimensions [20–24]. Owing
to the fact that the TFvW theory is not fundamentally linked to
any particular form of the interparticle interactions, there is no
a priori reason to believe that it should not be equally effective
for studying the dynamics of a degenerate DFG, provided the
system is assumed to be in the hydrodynamic (HD) regime. In
addition, the TFvW theory is numerically easy to implement
for any number of atoms N and has the virtue of treating the
dynamics of the system in a way that is consistent with the
equilibrium properties.

The outline of the rest of the paper is as follows. In Sec. II
the TFvW hydrodynamic theory is presented, along with a
numerical analysis of the collective modes of the system as
the strength of the dipolar interaction and the particle number
are varied. In Sec. III we provide analytical support for our
numerical calculations. In Sec. IV we summarize and present
our conclusions.

II. THOMAS-FERMI–VON WEIZSÄCKER
HYDRODYNAMICS

The essence of the TFvW hydrodynamic theory for the
collective excitations [18] is to treat the system as a classical
fluid obeying the usual continuity equation

∂n

∂t
+ ∇ · (nv) = 0 (5)

and the momentum equation

M

[
∂v
∂t

+ v · ∇v
]

= F, (6)

where F accounts for total force acting on the atoms

F(r,t) = −∇
[
veff(r,t) − λvW

�
2

2M

∇2ψ(r,t)
ψ(r,t)

]
. (7)

Here veff(r,t) is defined by Eq. (3) with the replacement of
ψ(r) by the dynamic wave function ψ(r,t). Note that when
the bracketed quantity in Eq. (7) is evaluated for the (static)
ground state ψ0(r), it is equal to a constant, the chemical
potential μ. Thus the total force vanishes for the equilibrium
situation.

The collective modes of the system correspond to small-
amplitude oscillations around the ground-state distribution

n0(r). Introducing the density fluctuation δn(r,t) = n(r,t) −
n0(r) = 2ψ0(r)δψ(r,t) and linearizing the hydrodynamic
equations in the fluctuating variables, we have

∂δn

∂t
+ ∇ · (n0v) = 0 (8)

and

∂v
∂t

= δF
M

, (9)

where the fluctuating force is given by

δF(r,t) = −∇
[
δveff(r,t) − λvW

�
2

2Mψ0
∇2δψ(r,t)

+ λvW
�

2

2M

∇2ψ0

ψ2
0

δψ(r,t)
]
, (10)

with

δveff(r,t) = d2εloc[n]

dn2

∣∣∣∣
n=n0

δn(r,t)

= 2CKψ0δψ(r,t) + 3Cddψ
2
0 δψ(r,t). (11)

Defining the ground-state TFvW Hamiltonian

ĥ ≡ −λvW
�

2

2M
∇2 + v0

eff − μ, (12)

where v0
eff is the effective potential evaluated at ψ0, we have

δF(r,t) = −∇
[
δveff(r,t) + 1

ψ0
ĥδψ(r,t)

]
. (13)

Keeping in mind that we are considering an isotropic
harmonic-oscillator (HO) confinement potential, it is useful to
scale all energies and lengths by �ω0 and aHO = √

�/Mω0,
respectively. In particular, we define the dimensionless
variables

ψ̄ = aHOψ, C̄K = CK

�ω0a
2
HO

= 2π,

C̄dd = 2π

aHO

Cdd

CK

, ω̄ = ω

ω0
. (14)

Unless it is needed for clarity, we will for simplicity drop
the bar notation in the following. Assuming a harmonic time
dependence e−iωt for the fluctuating quantities, Eqs. (8) and
(9) may be combined to yield

−ω2δn(r) − ∇ · [n0(r)∇f (r)] = 0, (15)

where

f (r) ≡ δveff(r) + 1

ψ0
ĥδψ(r). (16)

Equation (15) may be cast in the form of a matrix eigenvalue
problem by introducing the orthonormal basis defined by

ĥφi(r) = εiφi(r), (17)

with ∫
d2r φ∗

i (r)φj (r) = δij . (18)
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Expanding the wave function fluctuation as

δψ(r) =
∑

i

ciφi(r), i = 1, . . . ,pmax, (19)

the eigenvalue problem for the modes can be shown to take
the form [18]

ω2ci = εi

λvW

∑
j

Mij cj , (20)

where

Mij ≡
∫

d2r φ∗
i (r)

[
2CKψ2

0 (r) + 3Cddψ
3
0 (r) + εj

]
φj (r).

(21)

The collective mode frequencies are given by ω and the
corresponding mode densities δn(r) are obtained from Eq. (19)
using δn(r) = 2ψ0(r)δψ(r). Since the basis set {φi(r)} in-
cludes ψ0 as one of its elements, we see that

∫
d2r δn(r) ∝ c0.

The requirement that the mode density integrates to zero
implies c0 = 0. In the case of 2D isotropic HO confinement,
the circular symmetry allows us to take φi(r) → φnm(r,θ ) =
umn(r)eimθ such that∫

d2r φ∗
nm(r)φn′m′(r) = δnn′δmm′ , (22)

which implies that the modes for different m values are
decoupled.

We observe that the solution method described above
relies on the smooth behavior of the vW wave function
and corresponding equilibrium density. The smoothness of
these quantities also results in the smooth decay of the
density fluctuations into the classically forbidden region. One
numerical advantage that follows from this behavior is that
there is no need to specify additional boundary conditions
[20] in the numerical solution of the hydrodynamic equations
(5) and (6). In our numerical calculations we have considered
modes with angular momentum m up to a maximum of 9
and a nodal index n up to 4. For all of these modes and the
ranges of Cdd and N considered, a value of pmax = 2500 was
found to be sufficiently large to obtain convergence for the
eigenfrequencies and mode densities.

Numerical results

While the TFvW theory can, in principle, be used to
calculate the modes for any number of particles, the results
are only meaningful for a trapped DFG in the HD regime. In
Ref. [15] it was shown that the inequality

N

(
add

aHO

)2

� 1 (23)

is the condition determining whether the system is in the HD
regime. In Eq. (23) we have introduced the dipolar length
add ≡ μ0D

2M/4π�
2. Taking, for example, a value of ω0 =

2π × 1500 Hz gives (add/aHO)2 ∼ 10−2 for 161Dy and we
are just in the HD regime for N � 103. As the value of ω0

increases, the HD region can be reached for smaller values of
N . We will be interested primarily in particle numbers in the
range N ∼ 103–105, for which experiments on, e.g., 161Dy,
may sensibly be compared with the TFvW theory.
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FIG. 1. Collective excitation frequencies ωm,n for N = 103

atoms. Here Cdd is dimensionless, as defined in Eq. (14), and the
curves are labeled by (m,n). Note that for this particle number, the
ωm,0 modes appear to be independent of the interaction strength on
the scale of the plot.

In Fig. 1 we present a subset of the collective mode spectra
corresponding to N = 103 atoms, with Cdd ∈ [0,40] defined
in Eq. (14). The value Cdd = 0 is only of academic interest as
it corresponds to the noninteracting limit and the HD regime
cannot be reached for any number of particles. The various
collective mode frequencies ωm,n are labeled by m, the angular
momentum quantum number, and n, the radial node index. It
is clear from Fig. 1 that the n = 0 modes exhibit a behavior
as a function of Cdd that is different from the n = 0 modes.
In particular, the modes for n = 0 shift up in frequency as
Cdd is increased, eventually saturating to a constant value.
In contrast, the ωm,0 modes appear to be independent of the
interaction strength Cdd on the scale of the plot.

Apart from the ω1,0 mode, the n = 0 modes do in fact
exhibit a weak dependence on N and Cdd . This can be seen
more clearly in Fig. 2, which shows the dependence of these
modes on Cdd for N = 102 and 105. The behavior of the ω1,0

mode is special since it is governed by the generalized Kohn
theorem [25], which states that, for harmonic confinement,
the lowest-lying dipolar mode frequency is exactly equal to
the trap frequency, independent of the interactions or particle
number. It is therefore noteworthy that the TFvW theory
captures this important property for all N and for arbitrary
interaction strengths. On the other hand, the frequencies ωm,0

of the m > 1 modes are generally not independent of Cdd

and exhibit a softening with increasing interaction strength
and eventually saturate to a constant value as Cdd → ∞. This
behavior is most evident for N = 102, but as Fig. 1 indicates,
by N = 103 the n = 0 modes are virtually flat. In Fig. 3 we
show results for N = 105; by this point, the flat dispersion of
the n = 0 modes is well established and the Cdd dependence of
all the modes has reached a limiting behavior that corresponds
to the Thomas-Fermi (TF) limit (λvW = 0).

Of all the n = 0 modes, the m = 0,n = 1 breathing mode is
of particular interest. The frequency of this mode ω0,1 starts out
at 2ω0 and eventually saturates to

√
5ω0 as Cdd is increased.

This behavior is significant since it is known that for a
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FIG. 2. Collective excitation frequencies ωm,0 for N = 102 (solid curves) and N = 105 (dashed curves) atoms. This figure illustrates that
for large particle numbers, the ωm,0 modes become independent of the interaction strength. As shown in Eq. (47), the dashed curves have the
frequency ωm,0 = √

m.

harmonically trapped quantum gas, with a two-body interac-
tion obeying the scaling relation V (βr) = β−2V (r), there is an
underlying SO(2,1) symmetry that ensures the existence of a
breathing oscillation at exactly 2ω0, independent of the details
of the interaction [26–28]. When we turn off interactions, the
TFvW theory has a local kinetic energy density proportional
to n2(r) that is of the same form as a contact interaction at
the mean-field level. Therefore, the presence of the breathing
mode at 2ω0 with Cdd → 0 is entirely expected. However,
when Cdd differs from zero, its n5/2(r) contribution to the
local energy density breaks the scale invariance and, as a
result, the breathing mode is no longer pinned to 2ω0.

In Fig. 4 we display a selection of the collective mode
frequencies as a function of the number of particles N . With
a view to future experiments on 161Dy, we have fixed Cdd =
2.6. Although modest, the dependence of the collective mode
frequencies on particle number is a direct result of the vW
term in the full TFvW theory.

III. ANALYTICAL RESULTS

In this section we present analytical calculations for the
collective modes, in both the weakly (Cdd → 0) and strongly
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FIG. 3. Same as in Fig. 1 but for N = 105 atoms.

(Cdd → ∞) interacting regimes, within the TF approximation
(TFA), viz., N � 1. Of particular interest will be an exam-
ination of the ωm,0 modes (m > 1), which in Sec. II were
numerically found to be almost independent of the interaction
strength Cdd for N � 103.

The TFvW theory is reduced to the TFA by simply setting
the vW parameter λvW in Eq. (2) to zero. The TFA equilibrium
density profile [n0(r) = ψ2

0 (r)] is then determined by

2πψ2
0 + Cddψ

3
0 + r2

2
= μ. (24)

While this cubic equation can be solved in closed form for
arbitrary Cdd , it is difficult to make analytic progress with this
form of the equilibrium wave function.

However, the collective mode spectra can be obtained
analytically in the two limiting cases Cdd → 0 and Cdd → ∞.
In these limits, the equilibrium wave function takes the form

ψ0(r) =
(

R2 − r2

2Cα

)1/α

, (25)
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FIG. 4. Collective excitation frequencies ωm,n at fixed Cdd = 2.6
as a function of the particle number. We have not displayed the ωm,0

modes here as they exhibit no dispersion on the scale of the plot.
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where α = 2 for Cdd → 0 (C2 = CK ) and α = 3 for Cdd →
∞ (C3 = Cdd ). The constant R is the TF radius, which is fixed
by normalizing the density to the correct number of particles
N , viz.,

R =
(

(2 + α)(2Cα)2/αN

απ

)α/(4+2α)

. (26)

One can view Eq. (25) as arising from a polytropic local energy
density of the form

εloc[n] = Cα

2

2 + α
n(2+α)/2, (27)

with an effective potential given by

v0
eff(r) = dεloc[n]

dn

∣∣∣∣
n=n0

+ 1

2
r2 = Cαn0(r)α/2 + 1

2
r2. (28)

In the TF limit, the hydrodynamic equation for the density
fluctuation [Eq. (15)] reads

− ω2δn(r) − ∇ · [n0(r)∇δveff(r)] = 0 (29)

or

−ω2δn(r) − ∇n0(r) · ∇δveff(r) − n0(r)∇2δveff(r) = 0. (30)

Equation (27) gives for the fluctuating effective potential

δvveff(r) = αCα[ψ0(r)]α−1δψ(r). (31)

To obtain a solution of Eq. (30), we use the wave function
fluctuation as the dependent variable, which we write as
δψ(r) = [ψ0(r)]1−αy(r)rmeimθ . With the change of variable
x = r2/R2, Eq. (30) takes the form of the hypergeometric
differential equation [29]

x(1 − x)y ′′(x) + [c − (a + b + 1)x]y ′(x) − aby(x) = 0,

(32)

where primes denote differentiation with respect to the
argument and we have identified

a = 2 + mα − √
4 + m2α2 + 4αω2

2α
, (33)

b = 2 + mα + √
4 + m2α2 + 4αω2

2α
, (34)

c = m + 1. (35)

Note that Cα does not appear anywhere in Eq. (32), implying
that the mode frequencies ω are independent of Cα for a
polytropic energy density.

Equation (32) has two linearly independent solutions. The
appropriate solution is determined by the requirement that
the velocity field be finite at both x = 0 and x = 1. This is
equivalent to demanding that the density fluctuation be regular
at x = 0 and the outgoing current density vanish at x = 1. It
is straightforward to show from Eq. (9) that the velocity field
is given by

v ∝ eimθx(m−1)/2[2xy ′(x)r̂ + my(x)(r̂ + iθ̂ )]. (36)

Equation (36) is finite at both x = 0 and x = 1 if and only if
the function y(x) and its derivative y ′(x) are regular at both

x = 0 and x = 1. In order to satisfy this condition, the correct
solution to Eq. (32) is

y(x) = 2F1[a,b,c; x], (37)

where we must choose a = −n (or, equivalently, b = −n),
with n a non-negative integer, in order that the power-series ex-
pansion of the hypergeometric function y(x) = 2F1[a,b,c; x]
terminate. It follows immediately that the mode frequencies
are given by

ω(α)
m,n =

√
αn2 + αmn + 2n + m. (38)

As stated earlier, the discrete mode spectrum is indeed
independent of Cα but depends on the polytropic index α.
For α = 2 we are in the Cdd → 0 limit and we obtain

ω(2)
m,n =

√
2n2 + 2mn + 2n + m, (39)

while for α = 3 we approach the Cdd → ∞ limit, for which
the mode spectrum is given by

ω(3)
m,n =

√
3n2 + 3mn + 2n + m. (40)

Equations (39) and (40) agree perfectly with the numerical
TFvW mode spectra for large N in the appropriate limits.
Since ω(3)

m,n > ω(2)
m,n, we can now also qualitatively understand

the reason why the frequencies of all of the n = 0 modes are
shifted up in frequency as Cdd is increased from zero to infinity.

Finally, the density fluctuations are given by

δnm,n(r) ∝ [ψ0(r)]2−α

× 2F1[−n,2/α + m + n,m + 1; r2/R2]rmeimθ .

(41)

Owing to the vanishing of ψ0(r) at the edge of the cloud in the
TFA, this result shows that the density fluctuation is regular at
r = R for α � 2, but irregular for α > 2. Thus the requirement
that the density fluctuation be regular at r = R is not always
the correct boundary condition to impose in order to obtain
the discrete mode spectrum (38). It is also worth noting that,
for λvW = 0, the numerically obtained mode densities do not
exhibit any singular behavior. However, in the N → ∞ limit
they asymptotically approach the TFA solutions.

Nodeless excitations

We observe from Eq. (38) that the n = 0 mode frequencies
are given by ω

(α)
m,0 = √

m for arbitrary values of the polytropic
index α. However, this does not account for the flat dispersion
of the n = 0 modes found numerically in the large-N limit
(see dashed curves in Fig. 2) since the local energy density
is not of the polytropic form for arbitrary values of the
interaction strength Cdd . Although the mode frequencies must
be pinned to

√
m in the weakly and strongly interacting limits,

they in principle could exhibit some dispersion as a function
of Cdd . The flat dispersion of the n = 0 modes for N � 1
and arbitrary Cdd is not obvious and merits some additional
discussion.

When n = 0, 2F1[0,2/α + m,m + 1; r2/R2] = 1 ∀m ∈
Z+ and ∀x ∈ [0,1] and it follows from Eq. (41) that

δnm,0(r) = A
dn0(r)

dr
rm−1eimθ (m � 1), (42)
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FIG. 5. Density fluctuations corresponding to the ω1,0 dipolar (Kohn) mode. The left panel corresponds to N = 102 particles and the right
panel to N = 105 particles. Within each panel, from left to right, we have Cdd = 0,5,10,20,40, respectively.

where A is a constant. The fact that the density fluctuation has
this form follows from the assumption of a polytropic local
energy density, viz., Eq. (27), but its validity is in fact more
general. Assuming that Eq. (42) is valid for an arbitrary local
energy density, the fluctuating effective potential is given by

δveff(r,θ ) = d2εloc[n]

dn2

∣∣∣∣
n=n0

δnm,0

= Arm−1eimθ d

dr

(
dεloc

dn

∣∣∣∣
n=n0

)

= −Armeimθ , (43)

where in going from the second to third line in Eq. (43) we
have made use of the fact that in the TFA with harmonic
confinement, the spatial density is defined by

dεloc[n]

dn

∣∣∣∣
n=n0

+ 1

2
r2 = μ. (44)

Since rmeimθ is a solution to Laplace’s equation in two
dimensions, it follows that ∇2δveff = 0 and

∇ · (n0∇δveff) = −mδnm,0. (45)

Equation (30) thus reduces to

−ω2
m,0δnm,0 + mδnm,0 = 0, (46)

which immediately yields

ωm,0 = √
m. (47)

We have therefore demonstrated that the n = 0 density fluctu-
ation in Eq. (42) is indeed a solution of the TF hydrodynamic
equations with a mode spectrum that is independent of
the explicit form of the local energy density εloc[n]. This
conclusion was arrived at earlier using a different approach
[30,31].

A similar result was also found for a two-component Fermi
gas interacting via an s-wave contact interaction by Amoruso
et al. [32]. However, in this latter work, the fact that the
nodeless density fluctuations have a frequency ωm,0 = √

m

was only established in the weak-coupling limit.

In the TFvW theory the nodeless excitations are not
precisely of the form given in Eq. (42), except for m =
1. According to the generalized Kohn theorem, the lowest
dipolar excitation corresponds to a rigid oscillation of the
equilibrium density. Thus, for small oscillation amplitudes,
the density fluctuation is proportional to the radial derivative
of the equilibrium density. In Fig. 5 we display the density
fluctuations δn1,0(r) for N = 102 (left panel) and N = 105

(right panel) for a variety of interaction strengths Cdd . In all
cases, the density fluctuations are found to be proportional to
dn0(r)/dr to within numerical accuracy. For N = 102 it can
be seen that the density fluctuation is smooth through the edge
of the cloud. The same is true for N = 105, but is less apparent
due to the scale along the r axis. On an expanded scale, the
sharp feature at the edge of the cloud looks very similar to
the behavior in the N = 102 curves. This feature arises from
the vW term in the energy functional and would be absent
in the strictly TFA calculation. For example, δn1,0(r) ∝ r for
Cdd = 0 in the TFA. Figure 6 illustrates the density fluctuation
δn5,0 for the ω5,0 mode for N = 102 (left panel) and N = 105

(right panel). Similar curves are found for all of the m > 1
excitations; with increasing m, the factor rm−1 leads to an
increased localization of the density fluctuation to the edge of
the cloud.

IV. CLOSING REMARKS

We have applied the TFvW hydrodynamic theory to exam-
ine the T = 0 collective modes of a harmonically confined,
spin-polarized 2D DFG with purely repulsive interactions.
Our numerical analysis reveals a rich mode spectrum, with
the surface modes (n = 0) being of particular interest owing
to their independence of the interaction strength, even for
relatively few particles. We have argued quite generally that
this behavior arises from the local nature of the energy density
of the 2D DFG with repulsive interactions and will not be
found in the 1D or 3D DFG, where the interaction is nonlocal.
While the bulk modes (n = 0) are sensitive to the interaction
strength, for N � 1, they quickly saturate to a constant value,
given by Eq. (40). We have also provided a detailed analytical
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FIG. 6. Same as in Fig. 5 but for the ω5,0 mode.

analysis of the system in the TFA, viz., N � 1, which has
provided insight into the numerical results found in the full
TFvW theory.

We anticipate that future experiments on 161Dy in the
quasi-2D limit will be faithful realizations of the system
discussed in this paper and be able to examine the collective
excitations with purely repulsive interactions. Given that
current experiments can readily excite the quadrupole ω2,0

and breathing modes ω0,1 of trapped quantum gases, it will be
of interest to see if our theoretical predictions for the surface
and breathing mode are verified experimentally. Specifically,
in the case of 161Dy, C̄dd ≈ 2.6 and for N ∼ 105 atoms (i.e.,
well into the HD regime) we predict the quadrupole mode to
have a frequency of

√
2ω0, while the breathing mode should

have its frequency shifted up by approximately 6% from its
scale-invariant value of 2ω0.

Finally, a worthwhile extension of this work would be
to examine both the equilibrium state and the collective
excitations when the dipoles are oriented at some an-
gle relative to the z axis, in which case the interaction
will be nonlocal and anisotropic. The inclusion of finite-
temperature effects in the formalism would also be of some
interest.
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