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Phase separation in a spin-orbit-coupled Bose-Einstein condensate
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We study a spin-orbit (SO)-coupled hyperfine spin-1 Bose-Einstein condensate (BEC) in a quasi-one-
dimensional trap. For an SO-coupled BEC in a one-dimensional box, we show that in the absence of the
Rabi term, any nonzero value of SO coupling will result in a phase separation among the components for a
ferromagnetic BEC, like 87Rb. On the other hand, SO coupling favors miscibility in a polar BEC, like 23Na. In
the presence of a harmonic trap, which favors miscibility, a ferromagnetic BEC phase separates, provided that the
SO-coupling strength and number of atoms are greater than some critical value. The Rabi term favors miscibility
irrespective of the nature of the spin interaction: ferromagnetic or polar.
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I. INTRODUCTION

A Bose-Einstein condensate (BEC) with spin degrees of
freedom, known as a spinor BEC, was first experimentally
realized and studied in a gas of 23Na atoms, with hyperfine
spin F = 1, in an optical dipole trap [1]. This led to a flurry
of investigation on both the theoretical and the experimental
fronts, which has been reviewed in Ref. [2]. In the present
work, we study the ground-state structure of the F = 1 spin-
orbit (SO)-coupled spinor BEC in a quasi-one-dimensional
(quasi-1D) trap [3] within the framework of the mean-field
theory. The mean-field theory to study F = 1 spinor BECs was
developed independently by Ohmi et al. [4] and Ho [5]. The
SO interaction is absent in neutral atoms and engineering with
an external electromagnetic field is needed for its experimental
realization. A variety of SO couplings can be engineered
by counterpropagating Raman lasers coupling the hyperfine
states, and the parameters of this coupling can be controlled
independently [6]. The SO interaction has been achieved
recently with equal strengths of Rashba [7] and Dresselhaus
[8,9] couplings employing a necessary engineering to obtain
experimentally an SO-coupled BEC of two of the existing three
hyperfine spin components of the F = 1 state of 87Rb [10,11]
forming a pseudospinor BEC. This was followed by other
experiments on SO-coupled pseudospinor BECs [12]. In the
case of an F = 1 spinor BEC, there are theoretical proposals to
realize an SO-coupling interaction involving three hyperfine
spin components [13]. SO-coupled degenerate Fermi gases
(40K and 6Li) have also been experimentally realized [14]. A
mean-field Gross-Pitaevskii (GP) equation for the theoretical
study of dynamics in SO-coupled BECs has also been proposed
[2,13,15,16].

The ground states of an SO-coupled two-component
pseudo-spin-1/2 BEC and of a three-component spinor BEC
have been theoretically investigated by Wang et al. [17].
It has further been established that SO-coupled spin-1/2
(pseudospinor), F = 1 and F = 2 spinor BECs in quasi-
two-dimensional (quasi-2D) traps [3] can have a variety of
nontrivial ground-state structures [18–20]. There have been
studies on the intrinsic spin-Hall effect [21], chiral confinement
[22], superfluidity [23], Josephson oscillation [24], vortices
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[25], and solitons [26] in SO-coupled BECs. In general, for
experimentally feasible parameters, the ground state of an F =
1 spinor BEC can host a single vortex or a square vortex lattice
for weak and strong SO coupling, respectively [20]. Addition-
ally, plane- and standing-wave states appear as ground states in
the case of ferromagnetic and polar (antiferromagnetic) BECs,
respectively, for medium strengths of SO coupling [20]. The
ground state of the F = 1 spinor BEC in the presence of a
homogeneous magnetic field has also been studied [27–29]. It
was shown in Refs. [28] and [29] that a uniform magnetic field
can lead to a phase separation in polar BEC. Phase separation
has already been observed in a pseudospinor BEC consisting
of two hyperfine states of 87Rb in quasi-2D geometries [10].

In this paper, we investigate the ground state of an SO-
coupled F = 1 spinor BEC in a quasi-1D trap. For the model
of SO-coupling employed in this work, we find that, compared
to a homogeneous magnetic field, SO coupling leads to a
phase separation in the case of a ferromagnetic BEC, whereas
in the case of a polar BEC, it makes the miscible profile
energetically more stable. Here, we use a numerical solution
of the generalized mean-field GP equation [15,16] to study
the possible phase separation between the different hyperfine
spin components of an SO-coupled BEC. We also study the
possibility of a phase separation in a uniform spinor condensate
in a 1D box employing an analytical model. The results of
this analytical study provide a qualitative understanding of the
numerical findings for a trapped SO-coupled BEC.

The paper is organized as follows. In Sec. II, we describe
the coupled GP equation used to study the SO-coupled F = 1
spinor BEC in a quasi-1D trap. This is followed by an
analytical investigation of an SO-coupled spinor BEC in a
1D box in Sec. III. By comparing the energies of various
competing geometries for both ferromagnetic and polar BECs,
the ground-state structure is determined from a minimization
of energy. In the case of a mixture of two scalar BECs, similar
analysis leads to the criterion for a phase separation [30]. In
Sec. IV, we numerically study the SO-coupled spinor BEC in
a quasi-1D trap. We conclude by providing a summary of this
study in Sec. V.

II. MEAN-FIELD MODEL FOR AN SO-COUPLED BEC

For the electronic states of a hydrogen-like atom the
SO contribution to the atomic spectrum naturally appears
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because of the magnetic energy of this coupling existing
due to electronic charge. In the case of the hyperfine states
of neutral atoms, engineering with external electromagnetic
fields is required for the SO coupling to contribute to the BEC.
We use the SO-coupled interaction from the experiment by
Lin et al. [10] for two hyperspin components of the 87Rb
hyperfine state 5S1/2, realized with strength γ using two
counterpropagating Raman lasers of wavelength λr oriented
at an angle βr : γ = �kr/m, where kr = 2π sin(βr/2)/λr and
m is the mass of an atom. This SO coupling is equivalent to that
of an electronic system with equal contributions of Rashba [7]
and Dresselhaus [8] couplings and with an external uniform
magnetic field. However, here we consider the SO coupling
among the three spin components of the F = 1 state, e.g.,
|F = 1,mF = 1〉, |F = 1,mF = 0〉, and |F = 1,mF = −1〉,
where mF is the z projection of F . It has been shown [31] that
this SO coupling among the three hyperfine spin components
can be generated by engineering as in Ref. [10]. We consider
the three spin components of the F = 1 hyperfine state 5S1/2

of 87Rb and 3S1/2 of 23Na.
We consider such a quasi-1D hyperfine spin-1 SO-coupled

spinor BEC confined along the x axis obtained by making the
trap along the y and z axes much stronger than that along the
x axis. The transverse dynamics of the BEC is assumed to be
frozen to the respective ground states of harmonic traps. Then
the single-particle quasi-1D Hamiltonian of the system under
the action of a strong transverse trap of angular frequencies
ωy and ωz along the y and z directions, respectively, can be
written as [10,32]

H0 = p2
x

2m
+ γpx�z + ��x, (1)

where px = −i�∂x is the momentum operator along the x

axis, � is the Rabi frequency [10,11], and �z and �x are the
matrix representations of the z and x components of the spin-1
angular momentum operator, respectively, and are given by

�z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ , �x = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ . (2)

If the interactions among the atoms in the BEC are taken
into account, in the Hartree approximation, using the single-
particle model Hamiltonian, (1), a quasi-1D [3] spinor BEC
can be described by the following set of three coupled mean-
field partial differential GP equations for the wave-function
components ψj [2,15,16],

i�
∂ψ1

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ1 + c2(ρ1 + ρ0

− ρ−1)ψ1 + c2ψ
∗
−1ψ

2
0 − i�γ

∂ψ1

∂x
+ �√

2
ψ0, (3)

i�
∂ψ0

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ0 + c2(ρ1 + ρ−1)

×ψ0 + 2c2ψ1ψ−1ψ
∗
0 + �√

2
(ψ1 + ψ−1), (4)

i�
∂ψ−1

∂t
=

(
− �

2

2m

∂2

∂x2
+ V (x) + c0ρ

)
ψ−1 + c2(ρ0 + ρ−1

− ρ1)ψ−1 + c2ψ
∗
1 ψ2

0 + i�γ
∂ψ−1

∂x
+ �√

2
ψ0, (5)

where V (x) = mω2
xx

2/2 is the 1D harmonic trap, c0 =
2�

2(a0 + 2a2)/(3ml2
yz), c2 = 2�

2(a2 − a0)/(3ml2
yz), a0 and a2

are the s-wave scattering lengths in the total spin 0 and 2
channels, respectively, ρj = |ψj |2 with j = 1,0, − 1 are the
component densities, ρ = ∑1

j=−1 |ψj |2 is the total density, and

lyz = √
�/(mωyz) with ωyz = √

ωyωz is the oscillator length
in the transverse y-z plane. The normalization condition is

∫ ∞

−∞
dx

1∑
j=−1

|ψj (x)|2 = N. (6)

In order to transform Eqs. (3)–(5) into dimensionless form, we
use the scaled variables, defined as

t̃ = ωxt, x̃ = x

l0
, φj (x̃,t̃) =

√
l0√
N

ψj (x̃,t̃), (7)

where l0 = √
�/(mωx) is the oscillator length along the x axis

and N is the total number of atoms. Using these dimensionless
variables, the coupled mean-field Eqs. (3)–(5) in dimensionless
form are

i
∂φ1

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ1 + c̃2(ρ̃1 + ρ̃0

− ρ̃−1)φ1 + c̃2φ
∗
−1φ

2
0 − iγ̃

∂φ1

∂x̃
+ �̃√

2
φ0, (8)

i
∂φ0

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ0 + c̃2(ρ̃1 + ρ̃−1)

×φ0 + 2c̃2φ1φ−1φ
∗
0 + �̃√

2
(φ1 + φ−1), (9)

i
∂φ−1

∂t̃
=

(
−1

2

∂2

∂x̃2
+ Ṽ + c̃0ρ̃

)
φ−1 + c̃2(ρ̃0 + ρ̃−1

− ρ̃1)φ−1 + c̃2φ
∗
1φ2

0 + iγ̃
∂φ−1

∂x̃
+ �̃√

2
φ0, (10)

where Ṽ = x̃2/2, γ̃ = �kr/(mωxl0), �̃ = �/(�ωx), c̃0 =
2N (a0 + 2a2)/(3l2

yz), c̃2 = 2N (a2 − a0)/(3l2
yz), ρ̃j = |φj |2

with j = 1,0, − 1, and ρ̃ = ∑1
j=−1 |φj |2. The normalization

condition satisfied by the φj ’s is

∫ ∞

−∞

1∑
j=−1

ρ̃j (x̃)dx̃ = 1. (11)

Another useful quantity related to the component densities—
magnetization—is defined by

M =
∫ ∞

−∞
[ρ̃1(x̃) − ρ̃−1(x̃)]dx̃. (12)

Depending on the value of c̃2 (>0 or <0), the system develops
interesting physical properties. The interaction in the 5S1/2

state of 87Rb with c̃2 < 0 is termed ferromagnetic and that in
the 3S1/2 state of 23Na with c̃2 > 0 is termed antiferromagnetic
or polar. For the sake of simplicity of notations, we represent
the dimensionless variables without a tilde in the rest of the
paper.
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The energy of the spinor BEC in the presence of an SO
coupling is [15,16]

E = N

∫ ∞

−∞

{
1

2

∣∣∣∣dφ1

dx

∣∣∣∣
2

+ 1

2

∣∣∣∣dφ0

dx

∣∣∣∣
2

+ 1

2

∣∣∣∣dφ−1

dx

∣∣∣∣
2

+ Vρ

+ c0

2
ρ2 + c2

2
(ρ1 + ρ0 − ρ−1) ρ1 + c2

2
(ρ1 + ρ−1) ρ0

+ c2

2
(ρ0 + ρ−1 − ρ1) ρ−1 + c2

[
φ∗

−1φ
2
0φ

∗
1

+ φ−1(φ∗
0 )2φ1

] + γ

(
−iφ∗

1
dφ1

dx
+ iφ∗

−1
dφ−1

dx

)

+ �√
2

(φ∗
1φ0 + φ∗

0φ1 + φ∗
−1φ0 + φ∗

0φ−1)

}
dx. (13)

Based on the form of this energy functional a few inferences
about the phase separation among the various components
of a spinor BEC with SO coupling can easily be drawn.
The energy term proportional to c0 can never lead to a
phase separation, as it contains terms Nc0

∫
(ρ2

j /2 + ρjρj ′ )dx,
where j,j ′ = 1,0,−1 and j �= j ′, and hence corresponds to
a scenario where inter- and intraspecies interactions are of
equal strengths. The situation is analogous to a binary BEC
with a2

12 = a11a22, where a11 and a22 are intraspecies, and a12

interspecies, scattering lengths. Such a binary BEC has equal
strengths of inter- and intraspecies nonlinearities and is always
miscible in the presence of a 1D harmonic trap [30,33]. Let us
now look at the terms proportional to c2. For a stable solution,
the phases of the three components, say θj ’s with j = −1,0,1,
should satisfy

θ1 + θ−1 + sπ = 2θ0, (14)

where s is an integer [29,34]. Assuming that θ0 = 0 and s = 0,
the interaction energy part of the total energy, (13), can be
written as

Eint = N

∫ ∞

−∞

{
c0

2
ρ2 + c2

2

(
ρ2

1 + ρ2
−1 + 2ρ1ρ0 + 2ρ0ρ−1

− 2ρ1ρ−1 + 4
√

ρ1ρ−1ρ0
)}

dx. (15)

The system will naturally move to a state of minimum
energy, which could have a phase-separated or an overlapping
configuration. A consideration of minimization of energy
could reveal whether the system will prefer a ground state
with an overlapping or a phase-separated profile.

It is evident from Eq. (15) that in the case of a ferromagnetic
BEC (c2 < 0), there is only one term, N

∫ |c2|ρ1ρ−1dx, with
a positive energy contribution representing interspecies repul-
sion, which will favor a phase separation between component 1
and component −1. The minimum contribution from this term
can be 0 when components 1 and −1 are fully phase separated,
whereas, for the rest of the c2-dependent terms in Eint, the
contribution is always less than 0, representing interspecies
attraction. A maximum overlap between the components will
reduce the contribution of these terms to the energy. Hence
these terms will inhibit a phase separation. So, the phase
separation in a ferromagnetic BEC, if ever it occurs, can only
take place between component 1 and component −1.

On the other hand, in the case of a polar or antiferro-
magnetic BEC (c2 > 0), all the terms in Eq. (15) except
−N

∫
c2ρ1ρ−1dx contribute positive energy, representing

interspecies repulsion. For an arbitrary value of magnetization
M, the interaction energy can be minimized in two ways: first,
by making ρ0 = 0 and ensuring the maximum overlap between
component 1 and component −1 and, second, by fully phase
separating the 0th component from the maximally overlapping
1 and −1 components. The interaction energy in both cases
becomes

Eint = N

∫ ∞

−∞

{
c0

2
ρ2 + c2

2

(
ρ2

1 + ρ2
−1 − 2ρ1ρ−1

)}
dx. (16)

Hence, the phase separation in a polar BEC, if it ever occurs,
is most likely to take place between the 0th component and
overlapping 1 and −1 components.

III. AN SO-COUPLED BEC IN A 1D BOX

To understand the effect of the different terms in the
expression for the interaction energy, (15), on phase separation,
we study an analytic model of a uniform (trapless) spinor BEC
in a 1D box of length 2L localized in the region −L < x < L.
In order to clearly establish the role of the different terms in
Eint in determining the ground-state structure of the F = 1
spinor BEC, first we consider one with zero magnetization
(M = 0).

We consider the miscible and immiscible profiles in the
case of a ferromagnetic BEC (c2 < 0). In the miscible case,
the densities are uniform and written as ρj (x) ≡ nj . Because
of the symmetry between j = 1 and j = −1, it is natural to
take n1 = n−1. Then the densities of the three components can
be written as

ρ1(x) = n1, −L < x < L, (17)

ρ0(x) = n0, −L < x < L, (18)

ρ−1(x) = n−1 = n1, −L < x < L. (19)

All densities are 0 for |x| � L. This is the general density
distribution for a miscible configuration which we use in this
study. In the absence of an SO coupling and Rabi term (γ =
� = 0), the interaction energy, (15), for a ferromagnetic BEC
in the 1D box becomes

Eint = NL
[
c0

(
4n2

1 + n2
0 + 4n1n0

) − |c2|8n1n0
]
, (20)

and the corresponding normalization condition is

2L(2n1 + n0) = 1. (21)

In the trapped case, as considered in Sec. II, the energies, (13)
or (15), are extensive properties and increase with the size
of the system. However, the energy density (energy per unit
length) of a uniform gas, as considered in this section, is an
intensive property [30] and does not depend on the system size
or the total length of the box, provided that a constant particle
density is maintained when the size is changed. Recalling that
the constants c0 and c2 are proportional to the number of atoms
N , Eq. (20), and all other energies in this section reveal the
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interesting feature

Eint

L
∼

(
N

L

)2

, (22)

also valid for nonspinor systems [30]. The minimum of energy,
(20), subject to the normalization constraint, (21), and for nj ’s
� 0, occurs at

n1 = n′
−1 = 1

8L
, n0 = 1

4L
, (23)

and the corresponding minimum energy is

E
min(M)
int = N

(c0 − |c2|)
4L

. (24)

In the immiscible case, where components j = 1 and
j = −1 are separated, let n′

1 be the density of component
1 from −L to 0 and n′

−1 = n′
1 be the density of component

−1 from 0 to L. This symmetric distribution is consistent
with the symmetry between component j = 1 and component
j = −1 in the mean-field equations, (8)–(10). The density of
component 0 distributed from −L to L is taken to be n′

0 as in
the miscible case, so that

ρ1(x) =
{
n′

1, −L < x < 0,

0, 0 � x � L,
(25)

ρ0(x) = n′
0, −L < x < L, (26)

ρ−1(x) =
{
n′

−1 = n′
1, 0 < x < L,

0, −L � x � 0.
(27)

All densities are 0 for |x| � L. This is the general density
distribution for an immiscible configuration, which we use in
this study for the ferromagnetic condensate. As mentioned
in Sec. II, for a ferromagnetic BEC, a phase separation
between the 1 and the −1 components is energetically the
most favorable among all possible phase separations. This is
the reason to choose the aforementioned distribution for the
immiscible profile. The interaction energy for this distribution
is

Eint = NL
[
c0

(
n′2

1 + n′2
0 + 2n′

1n
′
0

) − |c2|n′
1(n′

1 + 2n′
0)

]
, (28)

with the normalization condition

2L(n′
1 + n′

0) = 1. (29)

The condition of the minimum of energy in this case, again
subject to the normalization constraint, (29), and for nj ’s � 0,
is

n′
1 = n′

−1 = 1

2L
, n′

0 = 0, (30)

and the minimum value of the interaction energy E
min(I)
int

is the same as in the miscible case, given by Eq. (24):
E

min(M)
int = E

min(I)
int . Thus, from an energetic consideration, the

miscible and immiscible profiles are equally favorable in
a homogeneous ferromagnetic BEC in the absence of a
confining trap. Now, n′

1 = n′
−1 = 1/(2L) are the maximum

density values allowed for these two components of the
system with zero magnetization for the immiscible case. Any
general distribution with zero magnetization for the immiscible

profile will have, due to the inherent symmetry of the present
model between component j = 1 and component j = −1,
n′

1 = 1/(2L) − δ between x = −L and 0, n′
−1 = 1/(2L) − δ

between x = 0 and L, and n′
0 = δ between x = −L and

L, with δ � 0. The interaction energy corresponding to this
general distribution for the immiscible profile is

Eint = N

[
c0 − |c2|

4L
+ |c2|δ2L

]
. (31)

Hence, the interaction energy for this immiscible profile is
either more than (δ > 0) or equal to (δ = 0) the interaction
energy of the miscible one. Hence for a general distribution
(δ �= 0) the miscible profile with the lowest energy will be the
preferred ground state. The presence of a trapping potential,
however small it may be, will favor the miscible profile due to
an extra confining force to the center.

Now let us consider the phase separation in a polar BEC.
The interaction energy, (15), can be minimized if we choose

n1 = n−1 = 1

4L
, n0 = 0 (32)

in the case of a miscible profile [viz. Eqs. (17)–(19)] or
n1 = n−1 = 0, n0 = 1/(2L) in the case of an immiscible
profile [viz. Eqs. (25)–(27)]. This immiscible profile represents
effectively a single-component system. The value of the
minimum energy in both cases is

Emin
int = Nc0

4L
. (33)

As mentioned in Sec. II, the phase separation in the polar
condensate is most likely to occur between the 0th and over-
lapping 1 and −1 components. Therefore, we also consider the
profile where components 1 and −1 are miscible, and these two
are phase separated from the 0th component with the general
density distribution

ρ1(x) =
{
n′′

1, −L < x < −L + L′,
0, −L + L′ � x � L,

(34)

ρ0(x) =
{

0, −L < x < −L + L′,
n′′

0, −L + L′ � x � L,
(35)

ρ−1(x) =
{
n′′

−1 = n′′
1, −L < x < −L + L′,

0, −L + L′ � x � L,
(36)

where L′ < 2L, and all the densities are 0 for |x| > L. The
interaction energy for this distribution is

Eint = Nc0

2
[4(n′′

1)2L′ + 2(n′′
0)2L − (n′′

0)2L′], (37)

with the normalization condition

2n′′
1L

′ + 2n0L − n0L
′ = 1. (38)

The minimum of this energy, subject to the normalization
constraint, occurs at

L′ = L, n′′
1 = n′′

−1 = 1

4L
, and n′′

0 = 1

2L
. (39)

The minimum interaction energy for this density distribution
is the same as for the miscible profile, i.e., Emin

int = Nc0/(4L).
Similarly, it can be shown that for the profile where all three
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components are phase separated from each other, as well as
the rest of the possible phase-separated profiles, the interaction
energy is always greater than Nc0/(4L) due to a nonzero
contribution from the c2-dependent terms. So, the energy of
any general immiscible profile is either equal to or greater than
Nc0/(4L) due to a nonzero contribution from the c2-dependent
terms. The presence of a trapping potential, however weak it
may be, will make the miscible profile energetically more
favorable than all other possible immiscible profiles. Hence,
there can be no phase separation in the trapped ferromagnetic
and polar BECs.

Next let us consider the effect of SO coupling and the Rabi
term on phase separation. First, let us include an SO coupling
without the Rabi term (γ �= 0, � = 0) and discuss the effect
on a ferromagnetic BEC (c2 < 0). The presence of this term
leads to a constant phase gradient −α and α in φ1 and φ−1,
respectively [16]. The interaction energy of the miscible profile
[viz. Eqs. (17)–(19)] in this case is

Eint = NL
[
c0

(
4n2

1 + n2
0 + 4n1n0

) − |c2|8n1n0

+ 2α2n1 − 4γαn1
]
, (40)

where the 2Nα2n1L term arises from the derivatives of the
phases of φ1 and φ−1. Minimizing this energy with respect to
n1 and α, subject to the normalization constraint, (21), and
nj � 0 for j = 1,0,−1, we get

α = γ,n1 =
{

1
8L

+ γ 2

16|c2| , γ �
√

2|c2|/L,

1
4L

, γ >
√

2|c2|/L,
(41)

with the corresponding minimum energy

E
min(M)
int =

{
N

[
c0−|c2|

4L
− γ 2

4 − Lγ 4

16|c2|
]
, γ �

√
2|c2|/L,

N
[

c0
4l

− γ 2

2

]
, γ >

√
2|c2|/L.

(42)

The density n1 of Eq. (41) attains a saturation for γ >√
2|c2|/L. With further increase in γ the density n1 does not

change, as it has already achieved the maximum permissible
density for a state with M = 0 subject to the normalization
constraint, (21).

The interaction energy of the immiscible profile
[viz. Eqs. (25)–(27)] in this case is

Eint = NL
[
c0

(
n′2

1 + n′2
0 + 2n′

1n
′
0

) − |c2|n′
1(n′

1 + 2n′
0)

+ α′2n′
1 − 2γα′n′

1

]
, (43)

Minimizing this energy with respect to n′
1 and α′, subject to

the normalization constraint, (29), and nj � 0 for j = 1,0,−1,
we get

α′ = γ, n′
1 = 1

2L
, (44)

with the corresponding minimum energy

E
min(I)
int = N

[
c0 − |c2|

4L
− γ 2

2

]
. (45)

Comparing Eqs. (42) and (45), we find that the immiscible
profile has a lower energy than the miscible one for any nonzero
value of γ for a ferromagnetic BEC: E

min(I)
int(�) < E

min(M)
int(�) . Hence

the SO coupling will favor phase separation in a ferromagnetic
BEC.

Let us now discuss phase separation in a polar BEC in
the presence of SO coupling. The interaction energy of the
miscible profile [viz. Eqs. (17)–(19)] in this case is

Eint = NL
[
c0

(
4n2

1 + n2
0 + 4n1n0

) + 8c2n1n0

+ 2α2n1 − 4γαn1
]
. (46)

Minimizing it, subject to the normalization constraint, (21),
and nj � 0, we get

α = γ, n1 = n−1 = 1

4L
, n0 = 0. (47)

The value of the minimum energy for this miscible profile is

E
min(M)
int = N

[
c0

4L
− γ 2

2

]
. (48)

Similarly, the energy of the immiscible profile [viz.
Eqs. (25)–(27)] of the polar BEC is

Eint = NL
[
c0

(
n′2

1 + n′2
0 + 2n′

1n
′
0

) + c2n
′
1(n′

1 + 2n′
0)

+ α′2n′
1 − 2γα′n′

1

]
. (49)

Minimizing this energy, subject to the normalization con-
straint, (29), and nj � 0, we get

n′
1 = n′

−1 =
{

1
2L

, γ >
√

c2/(2L),

0, γ �
√

c2/(2L),
(50)

with the corresponding minimum energy given by

E
min(I)
int =

{
N

[
c0+c2

4L
− γ 2

2

]
, γ >

√
c2/(2L),

Nc0
4L

, γ �
√

c2/(2L).
(51)

This energy is higher than the energy of the miscible profile
given by Eq. (48): Emin(I)

int > E
min(M)
int . Similarly, it can be argued

that the energies of the other possible immiscible profiles with
n0 �= 0, like the distribution in Eqs. (34)–(36), are always
higher than N (c0 − 2γ 2L)/(4L) due to the increase in the
negative energy contribution from the γ -dependent term; i.e.,
this contribution is larger than −γ 2/2. Hence, the SO coupling
will favor miscibility in the case of a polar BEC.

Now let us analyze the role of the Rabi term (� �= 0). For
the sake of simplicity let us assume that γ = 0. The energy
contribution from the Rabi term is

Eint(�) =
√

2ρ0(x)�N

∫ ∞

−∞
[
√

ρ1(x) cos(θ0 − θ1)

+
√

ρ−1(x) cos(θ0 − θ−1)]dx. (52)

This expression is valid for nonuniform densities in general,
and not just in the case of uniform densities appropriate for
the 1D box. This term will lead to a decrease in the energy of
the system if

π

2
< |θ0 − θ1| <

3π

2
and

π

2
< |θ0 − θ−1| <

3π

2
. (53)

Assuming that θ0 = 0, the minimum of Eint(�) for the miscible
profile [viz. Eqs. (17)–(19)] occurs at

n1 = n−1 = 1

8L
, n0 = 1

4L
, |θ1| = |θ−1| = π. (54)
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The value of the corresponding minimum energy is E
min(M)
int(�) =

−N�. The minimum for the immiscible profile [viz.
Eqs. (25)–(27)] occurs at

n1 = n−1 = 1

4L
, n0 = 1

4L
, |θ1| = |θ−1| = π, (55)

with the corresponding energy minimum E
min(I)
int(�) = −N�/

√
2.

Also, the Eint(�) of the distribution represented by Eqs. (34)–
(36) is uniformly 0 and hence greater than −N�. Hence, the
Rabi term favors miscibility in the spinor BEC irrespective of
the nature of the spin interaction: ferromagnetic or polar. It
implies that in a ferromagnetic BEC the terms containing γ

(favoring phase separation) and � (favoring miscibility) will
have opposite roles as far as phase separation is concerned.

IV. A SPINOR BEC IN A HARMONIC TRAP

In the presence of a harmonic trap, we study the ground-
state structure of the spinor BEC by solving Eqs. (8)–(10)
numerically. We use the split-time-step finite-difference
method to solve the coupled equations, (8)–(10) [15,35]. The
spatial and time steps employed in the present work are
δx = 0.05 and δt = 0.000125. In order to find the ground
state, we solve Eqs. (8)–(10) by imaginary-time propagation.
The imaginary time propagation conserves neither the norm
nor magnetization. To fix both the norm and magnetization,
we use the method reported in Ref. [16]. Accordingly, after
each iteration in imaginary time τ = −it , the wave-function
components are transformed as

φj (x,τ + dτ ) = djφj (x,τ ), (56)

where dj ’s with j = 1,0,−1 are the normalization constants.
Now the chemical potentials of the three components are
related as

μ1 + μ−1 = 2μ0. (57)

Using this relation, one can derive the relation among the three
normalization constants [16]:

d1d−1 = d2
0 . (58)

Using Eq. (58) along with the normalization [viz. Eq. (6)]
and magnetization constraints [viz. Eq. (12)], dj ’s can be
determined as [16]

d0 =
√

1 − M2√
N0 +

√
4(1 − M2)N1N−1 + M2N2

0

, (59)

d1 =
√

1 + M − c2
0N0

2N1
, (60)

d−1 =
√

1 − M − c2
0N0

2N−1
, (61)

and here Nj = ∫ |φj (x,τ )|2dx. These normalization constants
ensure that the norm and magnetization are both conserved
after each iteration in imaginary time. The quasi-1D trap
considered here has ωx = 2π × 20 Hz and ωy = ωz = 2π ×
400 Hz. We consider 87Rb atoms with a0 = 5.387 nm and
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FIG. 1. (Color online) (a, b) Analytical (anal.) and numerical
(num.) densities ρj (x)l0 of a condensate of 87Rb atoms with c0 =
885.72l0 and c2 = −4.09l0 in a 1D box of length 40l0. The SO
coupling γ = 0 and 0.5 for (a) and (b), respectively. (c) The same for
a condensate of 23Na atoms with c0 = 241.28l0 and c2 = 7.76l0 in
the presence of an arbitrary SO coupling. Both the densities and the
spatial coordinates are in dimensionless units.

a2 = 5.313 nm as a typical example of a ferromagnetic BEC.
As a polar BEC, we consider 23Na, which has a0 = 2.646 nm
and a2 = 2.911 nm. The values of l0 are 2.41 and 4.69 μm for
87Rb and 23Na, respectively.

Before proceeding to the numerical solutions for the spinor
condensate in a harmonic trap, let us first compare the
analytic results for the condensate in a 1D box with the
corresponding numerical ones. For this purpose, we consider
the aforementioned oscillator lengths for 87Rb and 23Na in a
1D box of length 40l0. The nonlinearities (c0, c2) considered
for 87Rb and 23Na are, respectively, (885.72l0, − 4.09l0)
and (241.28l0, 7.76l0). In Fig. 1(a), analytic and numerical
densities for the 87Rb condensate in the absence of SO coupling
and the Rabi term, given by Eq. (23), are plotted. In Fig.
1(b), analytic and numerical densities for the 87Rb condensate
in the presence of SO coupling (γ = 0.5, � = 0), given by
Eq. (44), are shown. Finally, in Fig. 1(c), the same for the 23Na
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FIG. 2. (Color online) Ground-state structure of an 87Rb spinor
BEC with 10 000 atoms with � = 0. The SO coupling γ = 0, 0.25,
0.5, 1 for (a), (b), (c), and (d), respectively. All quantities in are
dimensionless.

condensate in the absence as well as the presence of an arbitrary
SO coupling, given by Eqs. (32) and (47), are illustrated. We
find that the numerical results are in good agreement with the
analytic predictions as shown in Fig. 1.

Now let us discuss harmonically trapped spinor conden-
sates. In Fig. 2 we present the densities of the ground state of
10 000 87Rb atoms with different SO couplings and without
the Rabi term. Without SO coupling, the ground-state solution
for 87Rb is miscible and ρ0(x) > ρ1(x) = ρ−1(x) for zero
magnetization (M = 0) [viz. Fig. 2(a)], which is in qualitative
agreement with the conclusion of the analytic study of the
uniform system in Sec. III given by Eq. (23). If the number of
atoms is sufficiently large, as the SO coupling γ is increased,
the density ρ0 starts decreasing slowly, which ultimately
makes the system immiscible as shown in Figs. 2(a)–2(d).
For a sufficiently strong SO coupling, ρ0 becomes 0 and
there is a maximum of phase separation between the two
remaining component densities, ρ1(x) and ρ−1(x). This is,
again, in agreement with the result of the analytic study on the
uniform system given by Eq. (44), which predicts zero density
for the 0th component. However, if the number of atoms is
smaller (N � 1000), the 0th component again vanishes with
an increase in the SO coupling γ above a critical value,
but there is no phase separation between component 1 and
component −1.

The state with ρ0(x) = 0 appears naturally with an increase
in the SO coupling, and in a zero-magnetization case this
guarantees an equal number of atoms for components 1 and
−1, resulting in ρ1(x) = ρ−1(−x). It is interesting to study the
fate of this state as the magnetization is increased (M > 0).
Keeping γ = 1 and � = 0 fixed, one can change the relative
proportion of ρ1 and ρ−1 by changing the magnetization M,
as shown in Figs. 3(a)–3(d), maintaining ρ0(x) = 0. With
increasing M the relative density of component −1 decreases
and the system changes from immiscible to miscible.

We have also studied the effect of an increase in the Rabi
term � on a state with ρ0(x) = 0 [viz. Fig. 2(d)], maintaining
magnetization M = 0. As discussed in Sec. III, the Rabi term
� favors miscibility of the system irrespective of the nature of
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FIG. 3. (Color online) Ground-state structure of an 87Rb spinor
BEC with 10 000 atoms and � = 0, γ = 1. Both the density and
the spatial coordinates are plotted in dimensionless units. The
magnetization M = 0.25, 0.5, 0.75, and 0.95 for (a), (b), (c), and
(d), respectively.

the spin-dependent interactions, while the SO-coupling term
γ favors a phase separation. Hence, when both γ and � are
nonzero, there is competition between these two terms, as one
favors phase separation, whereas the other favors miscibility.
To illustrate this, in Figs. 4(a) and 4(b) we plot the component
densities for � = 0.1 and 1, respectively, for N = 10 000 and
γ = 1. The increase in the Rabi term � from 0.1 to 1 has
transformed a phase-separated state to a miscible state. For a
smaller number of atoms, say N = 1000, we do not observe
any phase separation with the increase in the SO coupling γ .
Nevertheless, the increase in γ leads to a decrease in ρ0 as
shown in Fig. 4(c), where ρ0 is negligible in comparison to
overlapping ρ1 and ρ−1. Again, as � is increased in this case,
the density ρ0 first increases and ultimately ends up being
higher than those of the other two components [viz. Fig. 4(d)].
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FIG. 4. (Color online) Ground-state structure of an 87Rb spinor
BEC with 104 atoms with (a) N = 10 000, � = 0.1, γ = 1; (b) N =
10 000, � = 1, γ = 1; (c) N = 1000, � = 0.1, γ = 1; and (d) N =
1000, � = 1, γ = 1. Both the density and the spatial coordinates are
plotted in dimensionless units. The magnetization M = 0 in all the
cases.
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FIG. 5. (Color online) Ground-state structure of a 23Na spinor
BEC with (a) N = 10 000, � = 0, γ = 1 and, also, γ = 0; (b) N =
10 000, � = 0.5, γ = 1; (c) N = 10 000, � = 1, γ = 1; and (d) N =
10 000, � = 1.5, γ = 1. Both the density and the spatial coordinates
are plotted in dimensionless units. The magnetization M = 0 is 0 in
all cases.

In the case of the SO-coupled polar BEC 23Na, we do not
observe any phase separation, consistent with the discussion
of the uniform BEC in Sec. III. In the absence of the Rabi term
(� = 0), the density profile in the presence and absence of SO
coupling are the same as shown in Fig. 5(a). The introduction of
the Rabi term leads to a nonzero density of the 0th component
as shown in Fig. 5(b) for � = 0.5. For both ferromagnetic and
polar BECs, in the presence of both SO coupling and Rabi
terms, we observe the formation of structure in the ground

state, where the 0th component develops a train of dark notches
as shown in Fig. 4(c) for 87Rb and Figs. 5(b) and 5(c) for 23Na.
In 23Na, an increase in the Rabi term � leads to an increase
in ρ0(x) from 0, at the cost of ρ1(x) and ρ−1(x) as in the
case of 87Rb, and, ultimately, ends up with a solution where
ρ0(x) > ρ1(x) = ρ−1(x).

V. SUMMARY

We have studied SO-coupled F = 1 spinor BECs of 87Rb
(ferromagnetic) and 23Na (antiferromagnetic or polar) atoms
in quasi-1D traps. By comparing the energies of various
competing structures for the SO-coupled spinor BEC in a 1D
box, we have shown that any nonzero value of SO coupling will
lead to a phase separation between the mF = 1 and the mF =
−1 components in the case of a ferromagnetic BEC in the
absence of the Rabi term. On the other hand, for a polar BEC,
SO coupling makes the miscible profile energetically more
stable compared to various possible phase-separated profiles.
In the case of trapped SO-coupled BECs, we have numerically
studied the ground-state structures. In the ferromagnetic case,
above a critical number of atoms the BEC phase separates
if the SO coupling strength exceeds a critical value in the
absence of the Rabi term. The introduction of the Rabi term
favors miscibility for both ferromagnetic and polar BECs.
The present conclusions can be tested in experiments with
present-day technology.

ACKNOWLEDGMENTS

This work was financed by FAPESP (Brazil) under Contract
No. 2013/07213-0 and also supported by CNPq (Brazil).

[1] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye,
H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80,
2027 (1998).

[2] Y. Kawaguchi and M. Ueda, Phys. Rep. 520, 253 (2012).
[3] L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. A 65, 043614

(2002).
[4] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
[5] T. L. Ho, Phys. Rev. Lett. 81, 742 (1998).
[6] J. Higbie and D. M. Stamper-Kurn, Phys. Rev. Lett. 88, 090401

(2002); T. L. Ho and S. Zhang, ibid. 107, 150403 (2011);
Y. Deng, J. Cheng, H. Jing, C. P. Sun, and S. Yi, ibid. 108,
125301 (2012); J. Radic, T. A. Sedrakyan, I. B. Spielman, and
V. Galitski, Phys. Rev. A 84, 063604 (2011).

[7] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[8] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[9] X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev. Lett.

102, 046402 (2009).
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