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Dynamics of correlations in a quasi-two-dimensional dipolar Bose gas following a quantum quench
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We study the evolution of correlations in a quasi-two-dimensional dipolar gas driven out of equilibrium by
a sudden ramp of the interactions. On short time scales, rotonlike excitations coherently oscillate in and out of
the condensate, giving rise to pronounced features in the time evolution of the momentum distribution, excited
fraction, and the density-density correlation function. The evolution of these correlation functions following a
quench can thus be used to probe the spectrum of the dipolar gas. We also find that density fluctuations induced
by the presence of rotons following the quench, dramatically slows down the rate of spreading of correlations
in the system: Near the roton instability, correlations take infinitely long to build up and show deviations from
light-cone-like behavior.
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I. INTRODUCTION

Recent advances in ultracold atomic and molecular gases
have greatly expanded the potential of these systems as
tools for studying many-body physics [1]. For example, the
realization of quantum degenerate gases with large magnetic
dipole moments [2–6], ongoing efforts to trap and cool
polar molecules [7–10], experiments on Rydberg atoms [11],
trapped ions [12,13], and atoms in high finesse optical cavities
[14] have opened up the possibility of realizing ultracold
atomic systems with long-range interactions, such as the
anisotropic dipole-dipole interaction [15–18]. Concurrently,
better control over experimental parameters and high reso-
lution imaging techniques have introduced new probes for
exploring many-body physics, notable among which is the
ability to study the dynamics of correlations following a
nonadiabatic ramp (quench) of system parameters [19–27].
Remarkably, these quench experiments provide a wealth of
information about the low energy properties of the underlying
system such as the nature of the excitations, and the manner
in which correlations develop in a system. Here we study the
evolution of correlations in a quasi-two-dimensional (quasi-
2D) dipolar gas following a sudden quench of the interaction
strength, finding nontrivial dynamics even in this weakly
interacting system.

A novel property of quasi-2D dipolar superfluids is that in
addition to the phononlike mode at low energies Ek ∼ ck, the
low energy excitation spectrum also features a rotonlike mode
[Ek = � + �

2(k − kr)2/2m∗] for sufficiently strong dipolar
interactions [28,29]. The existence of rotonlike excitations
generally implies that the system has a tendency towards
developing crystalline order, and the softening of the roton
mode is often a route towards realizing correlated states
of matter such as supersolids and Wigner crystals in Bose
and Fermi systems [30–36]. Observing this mode therefore
constitutes an essential first step towards the study of many-
body physics in dipolar systems.

Here we investigate how the roton mode is revealed in the
spatio-temporal evolution of one- and two-body correlation
functions, following a sudden switching on of the dipolar
interactions. Our main result, summarized in Fig. 1, shows that
these correlations develop striking features that are directly

related to the underlying roton minimum in the dispersion.
This is because on time scales short compared to the collision
time, excitations are coherent, and the momentum distribution
develops oscillations at different k, at a frequency equal to the
energy of the excitation Ek . As the roton excitations oscillate
at nearly the same energy (Ek ∼ �), a cooperative effect
occurs whereby the amplitude of oscillations is enhanced. The
momentum distribution, which is readily measured following
time of flight, can therefore probe the roton gap.

In addition to providing information about collective exci-
tations [38], quench experiments raise fundamental questions
about the nonequilibrium dynamics of isolated quantum
systems [23,24,39]. One such question concerns the manner
in which correlations build up between initially uncorrelated
regions on short and long times following a quench. For lattice
systems interacting via short-range forces, Lieb and Robinson
showed that correlations evolve in a light-cone manner
[24,40–42], which has been recently confirmed both exper-
imentally and numerically [24]. However, questions remain
about continuum and lattice systems interacting with long-
range interactions. Recent work on trapped ion chains have
provided evidence for the breakdown of the light-cone picture
in systems with long-range interactions [43–45]. We show
that for the continuum system, for weak dipolar interactions,
correlations exhibit some features analogous to a light cone.
However, the dynamics show marked deviations from light-
cone evolution for strong dipolar interactions: correlations take
longer to build up, and one cannot associate a characteristic
velocity with their spread. This is due to the oscillation of
the system between a weakly interacting superfluid, and a
correlated state with locally ordered domains.

This paper is organized as follows: In Sec. II we present
the time-dependent Bogoliubov approach for studying the
evolution of correlations in weakly interacting quasi-2D
dipolar gases and discuss our results in Sec. III. In Sec. IV, we
compare our results with those of a fully self-consistent theory,
recently developed by Lin and Radzihovsky [46], where the
condensate fraction is considered as a time-dependent variable.
In Sec. V, we discuss the relevance of our work to ongoing
experiments on dipolar Bose gases, and summarize our results
in Sec. VI.

1050-2947/2014/90(4)/043617(7) 043617-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.043617


STEFAN S. NATU, L. CAMPANELLO, AND S. DAS SARMA PHYSICAL REVIEW A 90, 043617 (2014)

FIG. 1. (Color online) (Top) Evolution of the radial momentum
distribution nk in a quasi-2D dipolar gas (lz is the width of the cloud
in the direction perpendicular to the 2D plane), following a sudden
ramp of the dipolar interaction. Momentum distribution develops a
peak at the wave vector (black arrow) corresponding to the roton
minimum in the inset. The period of the oscillations is proportional
to the roton gap. Black curve is the corresponding equilibrium feature
for the same interaction where no prominent roton signature is found
[37]. Time (t) is given in units of 1/(νho = 2�

2/ml2
z ).

II. THEORY

We consider a quasi-2D dipolar Bose gas of mass m, at
zero temperature, confined in a harmonic potential of the form
U (z) = 1

2mω2
zz

2, and free in the x-y (transverse) directions.
Furthermore, we assume that the dipoles are polarized along
the z direction, which yields a dipolar interaction potential
of the form Vdip(R) = d2

|R|3 [1 − 3 cos2(θ )], where d is the
dipole moment, and cos(θ ) = z/|R|. Additionally, there is a
short-range interaction potential, which we model as Vc(R) =
gδ(R), where g = 4π�

2a/m, and a is the three-dimensional
(3D) s-wave scattering length. Effects of finite temperature
(T ) are small provided T � � [47].

We model the quasi-2D gas by making the Gaussian ansatz:
n3D(R = {r,z}) = n(r)�(z) = 1√

πl2
z

n(r)e−z2/l2
z , where r and z

are the radial and the axial co-ordinate, respectively, and lz is
a variational parameter which can be determined by solving
the Gross-Pitaevskii equation in the axial direction [48]. When
the confining potential greatly exceeds the interaction energy,
lz → √

�/mωz, while for weak axial confinement, lz ∼ ζ ,
the healing length of the condensate. Integrating out the z

direction, the Fourier transform of the resulting quasi-2D in-
teraction potential reads [48,49] V (k) = 1√

2πlz
(g + gdF ( klz√

2
)),

where k = √
k2
x + k2

y is the magnitude of the radial momentum,

gd = 2π
3 d2, and F (x) = 2 − 3

√
πxErfc(x)ex2

, where Erfc(x)
is the complimentary error function.

The Hamiltonian for a uniform quasi-2D dipolar Bose gas,
where the dipoles are aligned along the z axis reads

H =
∑

k

(εk − μ)a†
kak + 1

2�

∑
pqk

V (q)a†
p+qa

†
k−qakap, (1)

where εk = �
2k2/2m, ak is the bosonic annhilation operator at

momentum k and time t , � is the area, and μ is the chemical
potential.

We consider the evolution of the momentum distribu-
tion nk(t) = 〈a†

k(t)ak(t)〉, and the density-density correlation
function: g(2)(r,t) = ∑

q eiq·r〈ρq(t)ρ−q(0)〉, where ρq(t) =∑
k a

†
k+q(t)ak(t), following a sudden quench in the dimension-

less interaction parameter g̃ = gd/g. The former can be readily
probed in time of flight [50], while the latter can be studied
using high resolution imaging [23,24], Bragg spectroscopy
[51] or noise correlations [52].

A. Time-dependent Bogoliubov ansatz

In quasi-2D at zero temperature, there is a true Bose
condensate [53], and we can model the dynamics using a
time-dependent Bogoliubov approach. This theory is valid for
weak interactions, which are governed by the small parameter
a/lz � 1. Throughout we refer to “weak” dipolar interactions
as the regime where the underlying dispersion does not have
a roton feature and “strong” dipolar interactions as the regime
where it does. It is important to emphasize that the physics
of the roton mode in quasi-2D dipolar gases is not a feature
of strong density correlations (as in He-4 [54]), rather one of
geometric confinement [28]. Hence the condition a/lz � 1
is satisfied even for “strong” dipolar interactions, where the
roton mode is present.

We set the density of condensate atoms n0 = 〈ak=0〉2,
and write ak 	=0(t) = uk(t)bk + v∗

k (t)b†−k, where bk denotes the
bosonic annihilation operator for the noncondensed atoms
[55]. The bk operators have no time dependence, and are
formally treated as small. Substituting the expression for ak 	=0

into Eq. (1), and discarding all terms cubic or higher order in bk,

we arrive at uk(t = 0) =
√

1
2 (1 + εk+Vi (k)n0

Ei
k

) and vk(t = 0) =
−sgn(Vi(k))

√
1
2 ( εk+Vi (k)n0

Ei
k

− 1), where sgn(x) denotes the sign

of the argument, and Ei
k = √

εk(εk + 2Vi(k)n0), where the
index i, denotes the initial state. At future times, these
coherence factors uk(t) and vk(t) acquire complex values, but
will always satisfy |uk(t)|2 − |vk(t)|2 = 1.

For now we assume that the condensate is static, in other
words, n0 ≈ n. The advantage of this somewhat simplified
approximation is that it allows us to make analytic predictions
for the long-time behavior of the excited fraction. Later on
we present a fully self-consistent Bogoliubov theory which
takes into account the time dependence of the condensate
density via the relation n = n0(t) + ∑

k nk, where n is the
total density, which is a constant of motion. This allows us to
put better quantitative bounds on the validity of our theory for
experiments on quasi-2D dipoles.

The equations of motion for uk and vk are obtained from
the Heisenberg equations of motion for ak , and read [55]

i∂t

(
uk(t)
vk(t)

)
=

(
Ak Bk

−Bk −Ak

) (
uk(0)
vk(0)

)
, (2)

where we have introduced the functions Ak = εk + Vf (k)n0,
Bk = Vf (k)n0, and E

f

k = √
A2

k − B2
k is the Bogoliubov dis-

persion. As we consider a sudden quench, the evolution of uk

and vk depends only on the final Hamiltonian parameters,
denoted by the label f . Physically, the time-dependent
Bogoliubov approximation amounts to coherent oscillations
of quasiparticles in and out of the condensate at a frequency
proportional to the quasiparticle energy E

f

k . Absent collisions,
excitations at different momenta evolve independently of
one another. We note that Eq. (2) is the bosonic analog of
the time-dependent Bogoliubov deGennes equations, which
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describe the dynamics of Cooper pairs following an interaction
quench in a Fermi gas [56].

The evolution of the momentum distribution is given by
nk(t) = |vk(t)|2. We also define the excited fraction as nex(t) =∫

dknk(t). The density-density correlation function takes
the form g(2)(r,t) = n2

0 + n0
∑

k eik·r(2|vk(t)|2 + u∗
k(t)vk(t) +

uk(t)v∗
k (t)) [57]. The first term is the correlation between the

condensate atoms, while the second term involves correlations
between the condensed and noncondensed atoms. Terms which
involve correlations between the noncondensed atoms alone
(quartic in uks and vks) are negligible on length scales
r � ζ [55,58,59]. We define a dimensionless density-density
correlation function g̃(2)(t) = g(2)(t)l2

z /2n0.

III. RESULTS

We now present the results for the evolution of the
momentum distribution and the density-density correlation
function following a quench using the non-self-consistent
version of the Bogoliubov theory presented above. In the next
section, we will go beyond this approximation by making the
condensate density time dependent.

Although we can model arbitrary quenches, throughout
we consider an initial state prepared in equilibrium at zero
temperature, with c̃2 = gin0/νho = 1, where νho = 2�

2/ml2
z

and g̃i = gd/g = 0. The relevant parameter governing the
dynamics is the ratio of the strength of the dipolar and contact
interactions after the quench g̃f = gd,f /gf . Experimentally
this parameter can be varied by either tuning the contact
interaction or the magnetic dipole-dipole interaction via a
rapidly varying planar magnetic field in addition to the static
field along z [3,60]. As discussed by Giovanazzi et al. [60],
this latter protocol yields an effective (time-averaged) dipolar
interaction of the form 〈Vdip(R)〉 = d2

|R|3 (1 − 3 cos2(θ ))α(φ),

where α(φ) = (3 cos2(φ) − 1)/2, where φ is the tilting angle.
By controlling the angle φ, the dipolar interaction can be com-
pletely switched off and turned on. Henceforth, we keep g fixed
(gi = gf ), and produce a nonzero g̃f by suddenly switching on
the dipolar interaction gd , and study the subsequent evolution
of correlations. The final value of gf is chosen such that
the quasi-2D dipolar gas is mechanically stable (Ef

k � 0 for
all k) [48].

In Fig. 1, we plot the temporal evolution of the momentum
distribution nk(t) for a quench to strong dipolar interactions
(g̃f = 2.65). In addition to the usual divergence near k = 0,
which is associated with Bose condensation, the momentum
distribution develops a second peak associated with rotonlike
excitations. Furthermore (and somewhat surprisingly), at the
peak maximum, the occupation of rotons is substantially larger
than the equilibrium (zero temperature) occupation of these
modes at the same interaction strength.

In Fig. 2 (top) we plot the excited fraction obtained by
integrating the momentum distribution over all k. For weak
dipolar interactions, the excited fraction rapidly saturates to
a constant value whereas for stronger dipolar interactions,
it develops oscillations which become pronounced as g̃f is
increased.

Physically, this is understood as follows: After the quench,
the system responds by populating modes at different wave

FIG. 2. (Color online) (Top) Coherent evolution of the dimen-
sionless excited fraction ñex(t) = l2

z nex/2 for different values of
g̃f = gd/g. To compare the scale on the vertical axis, the total density
is nl2

z ∼ 3 for typical densities and axial trapping potentials. (From
bottom to top) g̃f = 1 (thin black), 2.1 (dotted green), 2.3 (dashed
blue), 2.5 (thick red). (Bottom left) Energy-momentum dispersion
curves for the values of g̃f in the top panel. (Bottom right) Data show
numerically extracted values of the roton gap from the oscillations in
the top plot (see solid red curve); solid line is the roton gap extracted
from the energy momentum dispersion. For g̃ < 2.3 the dispersion
does not have a sharp rotonlike feature.

vectors. For a nondipolar gas, as quasiparticles oscillate in and
out of the condensate, “fast” quasiparticles rapidly dephase
relative to one another, leaving only the “slow” modes, namely
the phonons. The energy scale separating the slow and fast
modes is (g + gd )n0, and consequently, the excited fraction
saturates to its asymptotic value on times τ = 1/(g + gd )n0.

As the dipolar interaction strength is increased [green,
dotted curve in Fig. 2 (top)], the excited fraction develops
undamped oscillations. This is due to the fact that for this
interaction strength, the dispersion develops a broad flat
shoulder [see green (dotted) dispersion curve]. As a result,
many modes oscillate at the same frequency, again giving
rise to undamped oscillations in nex. This broad shoulder is
the precursor to the roton minimum which appears for larger
interaction strengths.

Upon further increasing the dipolar interaction, (equiva-
lently g̃f ) the excited fraction shows pronounced, weakly
damped oscillations. This is because for strong dipolar
interactions, there are two distinct “slow” modes in the system:
phonons and rotons. These modes have different dispersions,
hence different density of states (DOS): the phonon DOS
n(ε) = kdk/dε vanishes as ε → 0, whereas the roton DOS
reads n(ε) = m∗(1 + kr/

√
2m∗|ε − �|), which diverges as

1/
√|ε − �|. For quenches to strong dipolar interactions, the

larger DOS for rotonlike modes implies that the system pref-
erentially occupies rotons following the quench. Furthermore,
unlike phonon modes which occupy a range of momenta
(0 < �k <

√
2m(g + gd )n0), all the roton modes have nearly

the same energy (Eroton ∼ �). This leads to a cooperative
amplification of the oscillations in the momentum distribution.
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FIG. 3. (Color online) (Top) Density-density correlation func-
tion for different values of r, for a quench to g̃f = 1 (left) and
g̃f = 2.6 (right), respectively. Arrows indicate the feature whose
dispersion we study in the bottom plot for different final values of
g̃f . (Bottom left) Temporal location of the dip feature (arrow) in
the density-density correlation (tdip) for different values of r and
different interactions: black g̃f = 1, green (dashed) g̃f = 2, blue
(dotted) g̃f = 2.2, red (dashed-dotted) g̃f = 2.6. (Bottom right) Data
points show the velocity of spreading of correlations in a quasi-2D
gas for quenches to different g̃f . Inset is a zoom-in for strong dipolar
interactions [ṽ = v/(lzνho/

√
2)]; the solid line is the characteristic

velocity of rotonlike modes v = 2�/�kr for different g̃f .

Not surprisingly, the time scale for these oscillations is roughly
τroton = 1/�. For quenches to strong dipolar interactions,
where τroton > τ , the time scale for the fast modes to dephase
relative to one another, the excited fraction also develops
oscillations. These can be readily probed in time of flight [27].
The dynamics of the roton modes in this bosonic dipolar gas
is analogous to that of Cooper pairs in an attractive Fermi gas,
driven out of equilibrium following an interaction quench [56].
In that case, the coherent oscillation of Cooper pairs leads to
oscillations in the superconducting pairing gap.

At long times, the excited fraction calculated using a saddle
point approximation takes the approximate analytic form
nex(t → ∞) ∝ cos(2�t + φ)/�̃2√ηtνho, where η = m/m∗,
�̃ = �/νho, and φ is an arbitrary constant phase factor.
The dynamics are described by damped oscillations at a
frequency equal to twice the roton gap, and an envelope
which decays algebraically as 1/

√
t . Indeed, the roton gap

extracted from fitting the numerical data for nex(t) to this long
time asymptotic formula is in near perfect agreement with
the gap obtained directly from the dispersion relation Ek =√

εk(εk + 2Vf (k)n0). Hence the roton gap can be directly
accessed from a sudden quench experiment.

We now turn to the evolution of the density-density corre-
lation function [23,24,43,44], which reads g̃(2)(t) − g̃(2)(0) =
− 1

π

∫
dkkJ0(kr) sin(Ef

k t)2εkB
f

k
εk+gin0

Ei
kE

f

k

, where J0 is the Bessel

function of the first kind.

In Fig. 3 we plot g(2)(r,t) for different values of r
following a quench to two different values of g̃f , starting
from g̃ = 0. For weak dipolar interactions (g̃f � 1), following
rapid oscillation on very short time scales, the density-density
correlation function develops a dip feature which disperses
to later times as r increases, and then rapidly relaxes to
its long time value [55,61]. For strong dipolar interactions,
density correlations display persistent oscillations, with a
frequency largely independent of r. The rapid oscillations
at very short times stem from the propagation of very fast
particles (Ek ∼ k2,klz  1), produced after the quench, and
are absent in systems with a bounded spectrum (arising from
a lattice) [24,55,61].

On longer time scales, correlations develop a dip feature,
associated with low energy excitations. The temporal location
of the dip feature (tdip) in the density-density correlations
[Fig. 3 (bottom left)] shows a linear dependence with r at
small g̃f . The slope of the curves at large r, plotted on the
bottom right panel, is the characteristic velocity of spreading
of correlations. Absent damping processes, quasiparticles
propagate ballistically, hence correlations display light-cone
behavior at large distances [39,41,55], which a velocity
v ∼ 〈∂Ek/∂k〉. At small g̃f , we expand the dispersion as
Ek ≈ √

c̃2(1 + 2g̃f )k, and approximate the Bessel function
J0(x) ≈ cos(x/

√
2), to obtain a velocity v ≈ 2lzνho, which is

indeed what we find numerically by taking the slope of the
black curve in [Fig. 3 (bottom left)].

Increasing dipolar interactions decreases the velocity, as
repulsive interactions lower the average group velocity of
the quasiparticles in a quasi-2D dipolar gas. Nonetheless, for
g̃ � 2.5, correlations still spread in a light-cone manner, and
one can associate a characteristic velocity with their spread.
For strong dipolar interactions, this velocity approaches v →
2�/�kr.

For quenches to even stronger dipolar interactions, the
dispersion of the dip develops a nontrivial steplike feature.
The width of the step grows with g̃f , becoming infinitely
wide at the roton instability threshold, indicating that near
the roton instability, correlations take infinitely long to build
up. Physically, this can be understood as follows: Following
the quench to strong dipolar interactions, the system develops
locally ordered domains, which are otherwise uncorrelated
with one another. These domains prevent correlations from
spreading through the system. The time scale over which these
domains appear and disappear is linked to the oscillations in the
roton occupation number, which is set by τroton. Correlations
spread rapidly when the domains are absent, and slowly when
the domains are present, giving rise to the steplike feature.
Near the roton-instability threshold, τroton diverges, and the
domains become extremely long lived, preventing correlations
from spreading altogether.

IV. SELF-CONSISTENT BOGOLIUBOV APPROACH

In this section we discuss in detail the limitations of the
approximation of a static condensate, employed to obtain the
results presented in Sec. IV. This approach is valid provided
that nex � n0 at all times during the evolution. While this
condition is met for weak interactions or short times, it is
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dramatically violated very near the roton instability threshold,
and a better modeling of the condensate is required.

In this section we compare our “static” treatment of the
time-dependent Bogoliubov approximation [55] of Sec. III to
a fully self-consistent Bogoliubov treatment of the dynamics,
developed by Lin and Radzihovski [46], where we let the
condensate density fluctuate in time according to

n0(t) = n − nex(t). (3)

Here n0 is the condensate fraction, n is the total density, which
is a constant of motion, and nex = ∫

dknk(t), as defined in the
main text.

As in Sec. III, we consider a quench from an initially
nondipolar gas from g̃i = gd/g = 0, to some finite value
g̃f > 0, keeping the contact interaction parameter g fixed.
At each time step (t) following the evolution, the condensate
fraction is varied according to Eq. (3), which is then used to
calculate uk(t + δt) and vk(t + δt) from Eq. (2). The updated
excited fraction is used to obtain a new condensate fraction,
and the procedure is repeated. This procedure becomes exact
in the limit of vanishing δt and we have verified that the time
steps (δt) are small enough that effects of finite step size are
negligible over the time scales we study.

The relevant parameter that controls the strength of the
excited fraction is η = 2/nl2

z , which we vary, along with the
quench amplitude g̃f . Equation (3) then becomes

ñ0(t) = 1 − ηñex(t), (4)

where ñ0 denotes the condensate fraction and ñex is the
dimensionless excited fraction, which is plotted in Fig. 4 for a
quench to g̃f = 2.5. Large η implies the gas is becoming more
2D − like.

Integrating the momentum distribution in Fig. 4, we find
that the dynamics of the excited fraction is qualitatively similar
to Fig. 2, even when the condensate fraction is assumed to be
a dynamical variable. Quantitatively, however, the amplitude
and frequency of the oscillations decreases as η is increased.
Although small oscillations are present even for η � 0.3,
the amplitude of the oscillations may be difficult to detect
experimentally. For the black (thin, solid) curve, the oscillation
frequency differs from that shown in the red (thick, solid)
curve by 10%. Recall that the oscillation frequency for the
red (thick, solid) curve is equal to twice the equilibrium roton
gap at g̃ = 2.5. Increasing the quench amplitude (g̃f ) causes
the oscillations in the excited fraction to become anharmonic,
and for larger g̃f values, one has to go to smaller η to
recover quantitative agreement with the non-self-consistent
results. The anharmonicity is to be expected as the different k

modes are now coupled to one another via the time-dependent
condensate fraction. Nonetheless, even at g̃ = 2.6, shown in
the bottom panel, the dynamics retains the qualitative features
obtained from the simple theory presented in the main text.

The parameter η is experimentally tunable either by tuning
the density or the axial trapping potential. Based on our
findings above, quench dynamics can probe details of the
underlying equilibrium dispersion, even for strong quenches
(g̃ ∼ 2.5), provided that η � 0.3. Despite the seemingly small
value of this parameter, this implies that the interparticle
spacing n−1/2/lz � 0.4. These conditions can be readily

FIG. 4. (Color online) (Top) Coherent evolution of the excited
fraction ñex(t) for different values of η at g̃f = gd/g = 2.5, ob-
tained by self-consistently solving for the condensate fraction using
Eq. (3). The red (solid, thick) curve is the non-self-consistent result
(assuming n0 ≈ n), also shown in Fig. 2 of the main text. The
green (dashed), blue (dotted), and black (thin) curves correspond to
η = 0.05,0.1,0.25, respectively. (Bottom) Same as top with g̃f = 2.6.

achieved in experiments even for moderate densities (n ∼
108 − 109 cm−2), for typical trapping potentials of ωz/2π ∼
100–1000 Hz [47].

On even longer time scales, beyond mean-field corrections
such as collisions between quasiparticles, and between quasi-
particles and condensate atoms (Landau and Beliaev damping
[62]), which are not captured by our self-consistent approach
will endow the excitations with a finite lifetime (τel), and drive
the system towards thermal equilibrium. At low temperatures
T � μ,�, Beliaev processes dominate, and their rates can
be estimated perturbatively in powers of a/lz. For quasi-2D
dipolar gases, however, these rates are strongly suppressed
for phonons and rotons, owing to the nature of the quasi-2D
dispersion [63–65].

V. DISCUSSION

We now discuss the relevance of our work to ongoing
experiments on quasi-2D dipolar gases. Experiments so far
have not been able to decisively verify the existence of the
roton mode, because the signatures of this mode in correlation
functions are rather weak [66]. Here we have proposed the use
of a sudden quench to amplify these signatures. The physical
reason for this is clear: On short time scales, excitations
coherent oscillate in and out of the condensate and the
fact that roton excitations all oscillate with nearly the same
frequency will lead to an amplification of the signal, similar
to what occurs in driven Fermi systems. In this respect, the
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bosonic dipolar gas behaves like a fermionic system. The main
advantage of our approach is its simplicity; the momentum
distribution following a quench can be readily measured in
ultracold systems, and directly provides access to the roton
gap, without the need for sophisticated spectroscopy.

Using a time-depedent Bogoliubov ansatz, we have shown
that this mode can indeed be identified following a quench,
and the roton gap energy can be measured from simple time-
of-flight measurements. To ensure that this is not an artifact of
our approximations, we have presented a fully self-consistent
theory, which allows the condensate density to fluctuate, and
identified the parameter regimes where the non-self-consistent
results are expected to be qualitatively and quantitatively
accurate. We predict that provided the interparticle spacing
n−1/2/lz � 0.4, the roton gap can be probed using a quench
to within 10%. While the quantitative magnitude of the effect
we predict is contingent upon experimental realities, quench
dynamics can complement other probes of excitations in
dipolar gases [67,68].

An important complication in most experiments is the
presence of weak harmonic confinement. In a trap, the
low lying collective modes are density oscillations, which
occur on frequencies proportional to ωr , the radial trap
frequency. The physics we describe here occurs on time scales
τroton = 1/� ∼ ms � τtrap ∼ 50 ms. On time scales much
shorter than the trap period, the overall condensate density
profile (which requires global mass transport) is relatively
unaffected, and a local density approximation can be used.
Using this approximation, we have verified that numerically
the oscillations in nex persist for a few cycles in τroton. On
longer times, comparable to the trap period, collective density
modes will wash out the oscillations in nex, and a better
modeling of the condensate dynamics and the interaction
between the condensed and noncondensed clouds is required.
While such a theory can be performed, should experiments
demand quantitative refinement, it is beyond the scope of the
present paper. However, owing to the separation of time scales

between τroton � τtrap in typical experiments, the oscillations
we find here should be observable, without complications
arising from trap effects. Furthermore, nearly homogeneous
Bose-Einstein condensates have been experimentally realized
by using box-shaped traps [69].

VI. SUMMARY AND CONCLUSIONS

In this work we have studied the nonequilibrium dynamics
of a quasi-2D dipolar Bose gas, following a sudden quench
in the interaction strength. Remarkably we find that quench
dynamics can probe the excitation spectrum of the dipolar
gas, which otherwise in equilibrium, displays no pronounced
spectral signature of the underlying roton mode. Physically,
the reason for this is that on time scales t ∼ τroton � τtrap,τel,
excitations coherently oscillate in and out of the condensate.
As roton excitations all oscillate at nearly the same frequency
�, this leads to a cooperative enhancement of the signal
in correlation functions. In this respect, our bosonic system
displays an interesting parallel with a Fermi gas with attractive
interactions, where the quench to attractive interactions leads
to an enhancement of the superconducting gap [56,70–73]. It
will be extremely interesting to study whether the nonequilib-
rium enhancement of rotons could be a route to realizing (albeit
metastable [74,75]), quantum crystalline phases of matter. We
hope that our work will not only motivate experiments to use
quantum quenches to look for roton physics, but also further
theoretical studies on the nature of spreading of correlations
in dipolar systems.
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