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Decay of hydrodynamic modes in dilute Bose-Einstein condensates
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Expressions for the speed and lifetimes of the sound modes in a dilute Bose-Einstein condensate are obtained
using Bogoliubov mean field theory. The condensate has two pairs of sound modes which undergo an avoided
crossing as the equilibrium temperature is varied. The two pairs of sound modes decay at very different rates,
except in the neighborhood of the avoided crossing, where the identity of the longest-lived mode switches. The
predicted speed and lifetime of the longest-lived sound mode are consistent with recent experimental observations
on sound in an 87Rb Bose-Einstein condensate.
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I. INTRODUCTION

At very low temperature, the dynamical description of a
dilute Bose gas involves a kinetic equation for the dynamics
of thermal excitations coupled to the equation of motion of the
macroscopic phase of the Bose-Einstein condensate (BEC)
[1,2]. The thermal excitations of this system are found from
Bogoliubov mean field theory and can be interpreted as an
ideal gas of weakly interacting excitations or “bogolons.” The
bogolon energy spectrum is phononlike at low momentum and
particlelike at high momentum, with the extent of phononlike
region increasing at lower temperatures.

Spatial variations in the macroscopic phase of the conden-
sate determine the local value of the superfluid velocity, which
influences the dynamics of the bogolon gas. Correspondingly,
spatial variations in the density, which are partly determined by
distribution of bogolons, act to accelerate the superfluid flow.

The existence of a macroscopic condensate phase (or
superfluid velocity) adds an extra degree of freedom to the
BEC, allowing it to have six hydrodynamic modes. In terms of
plane-wave disturbances, two of the hydrodynamic modes are
transverse and associated with shear effects. In Refs. [1,3], we
used these modes to obtain values for the shear viscosity of a
condensed Bose gas as a function of equilibrium temperature
and density.

The remaining four modes are longitudinal propagating
modes or sound modes. The condensed Bose gas can support
two pairs of sound modes, which are analogous to first and
second sound in a superfluid [4]. First sound consists of in-
phase oscillations of the thermal excitations and superfluid
velocity while second sound is an out-of-phase oscillation.
The primary mechanism for decay of sound modes is collision
between the bogolons. Since each mode involves a different
amount of motion in bogolon gas, the sound modes may decay
at strikingly different rates.

The kinetic equation derived in Ref. [1], and used here,
differs from the Zaremba-Nikuni-Griffin (ZNG) kinetic equa-
tion [5,6] and is closer to the KD kinetic equation derived
by Kirkpatrick and Dormann [7]. The ZNG kinetic equation
simplifies the description of the thermal component of the BEC
by using an approximate particlelike Hartree-Fock excitation
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spectrum. This approximation creates problems for ZNG
predictions for transport properties at low temperature. For
example, the ZNG kinetic equation does not give the correct
sound speeds at T = 0 [8].

A further difference with both the ZNG and KD kinetic
equations is the collision operator used in these kinetic
equations. In both ZNG and KD theories, the collision
operator includes 2 ↔ 2 and 2 ↔ 1 type collisions between
excitations, but does not include 3 ↔ 1 type collisions, which
may sensibly affect transport properties. In [2], we show that
3 ↔ 1 collisions give a large contribution to the decay rate of
excitation number. In the sections below, we compute transport
properties for the BEC using the full spectrum of the linearized
collision operator with no approximations made to its form. To
our knowledge, this level of calculation has not been performed
with either the ZNG or KD kinetic equations.

In the following sections, we calculate the decay rates
of the sound modes as a function equilibrium temperature,
density, particle mass, and interaction strength. This requires
the computation of all of the current correlation functions that
normally determine transport coefficients [9]. Computation
of these correlation functions requires solving the eigenvalue
problem of the linearized collision operator [2]. We obtain
expressions for the decay rates of sound modes that can
be applied to any monatomic dilute Bose gas and we also
explicitly compare our results to a recent experiment on a
BEC of 87Rb atoms [10].

We begin in Sec. II by deriving the form of the kinetic
equation that will be used in subsequent sections. In
Sec. III, we solve the kinetic equation to second order in
the wave vector (a small parameter) for spatial variations
of thermodynamic variables in the BEC. In Sec. IV, we
obtain expressions for the decay rates in a form that can be
compared to a variety of monatomic BECs, and plot them as
a function of equilibrium temperature and density. In Sec. V,
we compare our results to a recent experiment. Finally, in
Sec. VI, we make some concluding remarks on possible tests
and applications of this calculation.

II. BOGOLON KINETIC EQUATION

Mean field theory describes the dynamics of a Bose-
Einstein condensate in terms of excitations (bogolons) and
in terms of the macroscopic phase that results from the broken
gauge symmetry. In a BEC, particle number is conserved
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but bogolon number is not conserved. The linearized (about
equilibrium) kinetic equation for a dilute atomic BEC in a box
can be written [1]

∂δNk(q,t)

∂t
= i

�

m
k·q (εk + �)

Ek

δNk(q,t)

+ iq·vs(q,t)N eq
k − Gk{h}, (1)

where � is Planck’s constant, �k is the bogolon momentum,
εk = �

2k2

2m
, � is the equilibrium condensate order parameter,

Ek =
√

(εk + �)2 − �2 is the bogolon energy, and N eq
k =

(eEk/kBT − 1)−1 is the equilibrium Bose-Einstein distribution
for bogolons at temperature T . The distribution N eq

k is a
stationary state of Eq. (1). The quantity δNk(q,t) gives the
deviation of the bogolon distribution from equilibrium for
spatial variations with wave vector q. It can be written in
the following form:

δN (k,q,ω) = N eq
k F eq

k h(k,q,ω), (2)

where h(k,q,t) is a small quantity that decays to zero as the
gas relaxes to equilibrium. The linearized collision operator
Gk{h} is defined in terms of h(k,q,t) (see Appendix A). In the
hydrodynamic regime where spatial variations have very long
wavelength, the wave vector q = |q| is a very small parameter.

The broken gauge symmetry in the Bose-Einstein conden-
sate gives rise to a macroscopic phase φ(q,t) whose spatial
variation determines the superfluid velocity. As shown in [1],
the equation governing the dynamics of the microscopic phase
takes the form

∂2φ(q,t)

∂t2
= −i

g

m

1

(2π )3

∫
dkq·kδNk(q,t) − i

g

�
q·vs(q,t)neq,

(3)

where g = 4π�
2a/m is the coupling constant, a is the s-wave

scattering length of the atoms in the gas, and neq is the total
particle-number density.

In order to obtain the dispersion relation for the hydrody-
namic modes of the Bose-Einstein condensate, we consider
one frequency component of the kinetic equations and write

δNk(q,t) ∼ eiωt δNk(q,ω). (4)

Then, the bogolon kinetic equation (1) takes the form

ωδNk(q,ω) = �

m
k·q (εk + �)

Ek

δNk(q,ω)

− i
�

m
q2φ(q,ω)N eq

k + iGk{h}, (5)

where we have used the fact that vs(q,ω) = −i �

m
qφ(q,ω).

Equation (3) takes the form

ω2φ(q,ω) = i
g

m

1

(2π )3

∫
dkq·kδNk(q,ω) + q2 g

m
φ(q,ω)neq.

(6)

Equations (5) and (6) are the bogolon kinetic equations that
describe hydrodynamic behavior of a dilute BEC.

If we eliminate the phase between Eqs. (5) and (6),
the kinetic equation for the bogolon distribution can be

written

ωh(k,q,ω)

= q·kBkh(k,q,ω) + q2

ω2 − v2
Bq2

g�

m2

1

F eq
k

× 1

(2π )3

∫
dk1q·k1N eq

k1
F eq

k1
h(k1,q,ω)

+ i

∫ ∞

0
dk1

∫
d	1

√
k2

1N
eq
k1
F eq

k1

k2N eq
k F eq

k

C(k,k1)h(k1,q,ω), (7)

where C(k,k1) can be expanded in spherical harmonics Ym

 (k̂)

and takes the form

C(k,k1) =
∞∑


=0


∑
m=−


C
(k,k1)Ym

 (k̂)Ym∗


 (k̂1). (8)

This form of the collision operator is discussed in Appendix A.
The collision operator C(k,k1) is a symmetric operator and has
a complete set of orthonormal eigenfunctions. Also, we have
introduced the quantities

vB =
√

gneq

m
and Bk = �

m

(εk + �)

Ek

. (9)

The equilibrium particle density, in the so-called Popov
approximation (see [6], Chap. 5) can be written

neq ≈ n
eq
0 + 1

(2π )3

∫
dk

(εk + �)

Ek

N eq
k1

, (10)

where neq
0 is the density of particles that have condensed into

the state with k = 0. We will use this relation between the
particle density and the condensate density in our computations
of equilibrium quantities. There is some experimental evidence
[5] that the approximation in Eq. (10) limits our theory to tem-
peratures below about 0.6TC . In order to simplify notation, and
without loss of generality, we shall assume that the superfluid
velocity vs and the wave vector q are directed along the z axis.

The definition of hydrodynamic modes is determined by
properties of the collision operator. This becomes clear if we
consider Eq. (7) for a spatially homogeneous gas (q = 0). Let
us expand h(k,q,ω) in the form

h(k,q,ω) = 1√
k2N eq

k F eq
k

∞∑

=0


∑
m=−


hm

 (k,q,ω)Ym


 (k̂). (11)

Then, for q = 0 and Eq. (7) reduces to

ωhm

 (k,0,ω) = i

∫ ∞

0
dk1C
(k,k1)hm


 (k1,0,ω). (12)

The right-hand side of Eq. (12) behaves as a linear operator,
and we denote its eigenfunctions and eigenvalues as ψβ,
(k)
and λβ,
, respectively (Appendix A). Since the eigenfunctions
ψβ,
(k) form a complete set, h
(k1,0,ω) can be expanded in
terms of them. For the case when h
(k,0,ω) = ψβ,
(k), where
ψβ,
(k) is an eigenvector of C
(k,k1) with eigenvalue λβ,
, then
ω = iλβ,
 and the mode hm


 (k,0,t) ∼ ψβ,
(k)e−λβ,
t decays at a
rate determined by the eigenvalue of the collision operator. The
hydrodynamic modes are modes with eigenvalue λβ,
 = 0 and
to zeroth order in q, they do not decay at all. The decay rate of
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the hydrodynamic modes is determined by terms that depend
on q. The derivation of the decay rates of hydrodynamic modes
is the topic of subsequent sections.

III. EXPAND KINETIC EQUATION IN POWERS OF q

The hydrodynamic modes in a BEC describe the dynamics
of quantities that are conserved during collisions (bogolon
momentum and energy in the BEC) and they describe the
dynamics of the macroscopic phase. The wavelength of
hydrodynamic modes is long compared to the microscopic
scattering lengths in the gas and, for a hydrodynamic mode, the
rate of decay depends on the wavelength of the inhomogeneity.
For long-wavelength inhomogeneities (small q), we can obtain
the speed and lifetime of a hydrodynamic mode by expanding
the dispersion relation for the mode in powers of q. Thus, we
write ω and h(k,q,ω) in the form

ω = ω(0) + qω(1) + q2ω(2) + · · · (13)

and

h(k,q,ω) = 1√
k2N eq

k F eq
k

[�(0)(k,ω) + q�(1)(k,ω)

+ q2�(2)(k,ω) + · · · ]. (14)

Since the hydrodynamic modes are fourfold degenerate for
q = 0, the zeroth-order term �(0)(k,ω) will, in general, be a
superposition of all four hydrodynamic eigenfunctions of the
collision operator C(k,k1) discussed in Appendix A. Consider-
ing only hydrodynamic modes (the nonhydrodynamic modes
decay on a faster timescale), the zeroth-order term takes the
form

�(0)(k,ω) =
1∑


=0


∑
m=−


�0,
,mψ0,
(k)Ym

 (k̂), (15)

where

ψ0,0(k) = D0,0Ek

√
k2N eq

k F eq
k and ψ0,1(k) = D0,1k

√
k2N eq

k F eq
k . (16)

The coefficients �0,
,m are determined by the perturbation theory and D0,0 and D0,1 are normalization coefficients. When Eqs. (13)
and (14) are substituted into Eq. (7), we obtain

(ω(0) + qω(1) + · · · )[�(0)(k,ω) + q�(1)(k,ω) + · · · ]

= qkzBk[�(0)(k,ω) + q�(1)(k,ω) + · · · ] + q3

(ω(0) + qω(1) + · · · )2 − v2
Bq2

g�k

m2

√
N eq

k

F eq
k

1

(2π )3

∫ ∞

0
dk1

∫
d	1k1,z

√
k2

1N
eq
k1
F eq

k1

× [�(0)(k1,ω) + q�(1)(k1,ω) + · · · ] + i

∫ ∞

0
dk1

∫
d	1 Ĉ(k,k1)[�(0)(k1,ω) + q�(1)(k1,ω) + · · · ]. (17)

We can now examine this equation at each order in q.

A. Zeroth order

When we obtain the dispersion relation of the hydrody-
namic modes as a perturbation expansion in powers of q, we
must take into account the fact that at zeroth order the modes
are fourfold degenerate. To zeroth order in q, Eq. (17) takes
the form

ω(0)�(0)(k1,ω) = i

∫ ∞

0
dk1

∫
d	1 C(k,k1)�(0)(k1,ω). (18)

The degeneracy of the zeroth-order dispersion relation is lifted
by terms of higher order in q in the perturbation expansion. We
will find that the matrix that is needed to lift the degeneracy
at first order in q is not symmetric. Therefore, we need
to introduce “left” and “right” zeroth-order eigenstates. We
denote the zeroth-order right eigenstates as

�
(0)
R (k,ω) =

1∑

=0


∑
m=−


�R
0,
,mψ0,
(k)Ym


 (k̂), (19)

and the left eigenstates as

�
(0)
L (k,ω) =

1∑

=0


∑
m=−


�L
0,
,mψ0,
(k)Ym


 (k̂). (20)

In Eq. (18), �(0)(k,ω) = �
(0)
R (k,ω), and we find that∫ ∞

0
dk1

∫
d	1C(k,k1)�(0)

R (k1,ω) = 0 (21)

because the states ψ0,
(k) (for 
 = 0,1) are eigenstates of
C
(k,k1) with eigenvalues λ0,
 = 0. Therefore, ω(0) = 0 for
these hydrodynamic modes, as expected.

B. First order

If we keep terms that are first order in q in Eq. (17), we
obtain

ω(1)�
(0)
R (k,ω) = kBk

[√
4π

3
Y0

1(k̂)

]
�

(0)
R (k,ω)

+ 1

(ω(1))2 − v2
B

g�k

m2

√
N eq

k

F eq
k

[√
4πY0

0(k̂)
]

× 1

(2π )3

∫ ∞

0
dk1k1

∫
d	1

[√
4π

3
Y0

1(k̂1)

]

×
√

k2
1N

eq
k1
F eq

k1
�

(0)
R (k1,ω)

+i

∫ ∞

0
dk1

∫
d	1C(k,k1)�(1)(k1,ω), (22)
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where we used the fact that kz = k

√
4π
3 Y0

1(k̂) and 1 =√
4πY0

0(k̂). We can then use the orthonormality of spherical
harmonics to simplify subsequent calculations.

If we multiply on the left by �
(0)
R (k,ω) and integrate over

dk and d	, we can use the orthonormality of the spherical
harmonics and of the states ψβ,
(k) (see Appendix A) to
obtain

ω(1)
[
�L

0,0,0�
R
0,0,0 + �L

0,1,0�
R
0,1,0 + �L

0,1,1�
R
0,1,1 + �L

0,1,−1�
R
0,1,−1

]
= 1√

3
〈ψ0,1|B̂k̂|ψ0,0〉�L

0,1,0�
R
0,0,0 + 1√

3
〈ψ0,0|B̂k̂|ψ0,1〉�L

0,0,0�
R
0,1,0

+ 1√
3

1

2π2

[
1

(ω(1))2 − v2
B

]
g�

m2
〈ψ0,0|k̂|�〉 1

D0,1
�L

0,0,0�
R
0,1,0, (23)

where 〈k|�〉 =
√

N eq
k

F eq
k

and 〈ψ0,1|B̂k̂|ψ0,0〉 ≡ ∫ ∞
0 dk ψ0,1(k)

Bkkψ0,0(k). Note that the terms involving Bk require an
integration over a product of three spherical harmonics.

We can now write Eq. (23) in the form

�̄L

⎛
⎜⎜⎜⎜⎝
−ω(1) α + γ

(ω(1))2−v2
B

0 0

α −ω(1) 0
0 0 −ω(1) 0
0 0 0 −ω(1)

⎞
⎟⎟⎟⎟⎠ �̄T

R = 0, (24)

where

�̄L = (
�L

0,0,0,�
L
0,1,0,�

L
0,1,1,�

L
0,1,−1

)
(25)

and �̄T
R = (

�R
0,0,0,�

R
0,1,0,�

R
0,1,1,�

R
0,1,−1

)T
are row and column matrices (T denotes transpose), respec-
tively,

α = 1√
3
〈ψ0,1|B̂k̂|ψ0,0〉, (26)

and

γ = g�

m2

1√
3

1

2π2
〈ψ0,0|k̂|�〉 1

D0,1
. (27)

It is clear from Eq. (24) that the longitudinal modes (�0,0,0 and
�0,1,0) decouple from the transverse modes (�0,1,±1).

If we set the determinant of the matrix in Eq. (24) to zero,
we obtain

(ω(1))2

[
(ω(1))2 − α2 + γα

(ω(1))2 − v2
B

]
= 0. (28)

The two solutions with ω(1) = 0 correspond to the transverse
modes and indicate that transverse modes are nonpropagating
modes. In addition, there are four solutions to the equation

(ω(1))2 − α2 + γα

(ω(1))2 − v2
B

= 0. (29)

These give the speeds of the two pairs of longitudinal modes. It
is straightforward to show that the speeds of the “slow” modes
are

ω
(1)
2 = −ω

(1)
1 = 1√

2

√
v2

B + α2 −
√(

v2
B − α2

)2 + 4αγ

(30)

and the speeds of the “fast” modes are

ω
(1)
4 = −ω

(1)
3 = 1√

2

√
v2

B + α2 +
√(

v2
B − α2

)2 + 4αγ .

(31)

In Appendix B, we obtain the limiting value of these sound
speeds at low temperature. At T = 0 K, ω

(1)
2 = 1√

3
vB and

ω
(1)
4 = vB , where vB = √

gneq/m is the Bogoliubov speed of
sound.

From Eq. (24), we see that the zeroth-order modes ψ1,±1

decouple from the zeroth-order modes ψ0,0 and ψ1,0. The
modes ψ1,±1 are zeroth-order transverse hydrodynamic modes.
The decay rates for these transverse modes are straightforward
to obtain and have been discussed in [1,3]. The decay rates for
the longitudinal modes are derived and analyzed in subsequent
sections.

IV. DECAY RATES FOR LONGITUDINAL MODES

Although there are only two longitudinal eigenfunctions of
the collision operator, due to the presence of the macroscopic
phase there are four longitudinal hydrodynamic modes whose
dispersion relations, to second order in q, are given by ω =
±ω

(1)
j q + ω

(2)
j q2 with j = 1,3 [see Eqs. (30) and (31)]. To

compute the second-order contribution ω
(2)
j , we first must solve

for �(1)(k,ω).
Let us return to Eq. (22) and write �

(0)
R (k,ω) in terms of the

zeroth-order longitudinal modes so that

�
(0)
R (k,ω) = �R

0,0,0ψ0,0(k)Y0
0(k̂) + �R

0,1,0ψ0,1(k)Y0
1(k̂). (32)

Expressions for �R
0,0,0 and �R

0,1,0 are given in Appendix C. If
we note the form of the collision operator given in Eq. (8),
we see that the state �(1)(k1,ω) has contributions from three
different spherical harmonics and can be written

�(1)(k,ω) = �
(1)
0,0(k,ω)Y0

0(k̂) + �
(1)
1,0(k,ω)Y0

1(k̂)

+�
(1)
2,0(k,ω)Y0

2(k̂). (33)

We now proceed to obtain these three contributions.
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To obtain �
(1)
0,0(k), first multiply Eq. (22) by d	1Y0∗

0 (k̂) and integrate to get

ω(1)ψ0,0(k)�R
0,0,0 = 1√

3
Bkkψ0,1(k)�R

0,1,0 + 1

(ω(1))2 − v2
B

g�k

m2

√
N eq

k

F eq
k

1√
3

1

D0,1

1

2π2
�R

0,1,0 + i

∫ ∞

0
dk1C0(k,k1)�(1)

0,0(k1,ω). (34)

It is useful to write �
(1)
0,0(k,ω) and the equation for �

(1)
0,0(k,ω) in abstract notation so that �

(1)
0,0(k,ω) = 〈k|�(1)

0,0(ω)〉. Then, Eq. (34)
takes the form

ω(1)|ψ0,0〉�R
0,0,0 = 1√

3
B̂k̂|ψ0,1〉�R

0,1,0 + 1

(ω(1))2 − v2
B

g�

m2

1√
3

1

2π2

1

D0,1
k̂|�〉�R

0,1,0 + iĈ0

∣∣�(1)
0,0(ω)

〉
. (35)

Note that Ĉ0|ψ0,0〉 = 0, so the expression for |�(1)
0,0(ω)〉 takes the form

∣∣�(1)
0,0(ω)

〉 = i

Ĉ0

[
1√
3
B̂k̂|ψ0,1〉 + 1

(ω(1))2 − v2
B

g�

m2

1√
3

1

D0,1

1

2π2
k̂|�〉

]
�R

0,1,0. (36)

Next, we obtain an expression for |�(1)
1,0(ω)〉. Multiply Eq. (22) by

∫
d	 Y0∗

1 (k̂) and follow steps similar to those used to obtain

|�(1)
0,0(ω)〉. We obtain

∣∣�(1)
1,0(ω)

〉 = i

Ĉ1

[
1√
3
B̂kk̂|ψ0,0〉�R

0,0,0

]
. (37)

Finally, multiply Eq. (22) by
∫
d	 Y0∗

2 (k̂) and integrate to obtain

∣∣�(1)
2,0(ω)

〉 = i

Ĉ2

[
2√
15

B̂kk̂|ψ0,1〉�R
0,1,0

]
. (38)

Note that the operators Ĉ−1

 , in these expressions, always act on states that are orthogonal to the hydrodynamic eigenfunctions so

the expressions are well defined. We can now use these results to find ω(2).

A. Solve for ω(2)

If we retain terms of order q2 in Eq. (17), we can write

ω(2)�(0)(k,ω) + ω(1)�(1)(k,ω)

=
√

4π

3
Y0

1(k̂)kBk�
(1)(k,ω) + 1

(ω(1))2 − v2
B

1

2π2
√

3

g�k

m2
Y0

0(k̂)

√
N eq

k

F eq
k

×
∫ ∞

0
dk1

∫
d	1k1Y0

1(k̂1)
√

k2
1N

eq
k1
F eq

k1
�(1)(k1,ω) − ω(1)ω(2)[

(ω(1))2 − v2
B

]2

1

2π2
√

3

g�k

m2
Y0

0(k̂)

√
N eq

k

F eq
k

×
∫ ∞

0
dk1

∫
d	1k1Y0

1(k̂1)
√

k2
1N

eq
k1
F eq

k1
�(0)(k1,ω) + i

∫ ∞

0
dk1

∞∑

=0


∑
m=−


C
(k,k1)Ym

 (k̂)�(2)


,m(k1,ω). (39)

We now multiply Eq. (39), on the left, by

�
(0)
L (k,ω) = �L

0,0,0ψ0,0(k)Y0∗
0 (k̂) + �L

0,1,0ψ0,1(k)Y0∗
1 (k̂) (40)

and integrate over
∫
dk d	. Since we require that the zeroth-

order states be orthonormal, we have

�L
0,0,0�

R
0,0,0 + �L

0,1,0�
L
0,1,0 = 1. (41)

Also, note that �L
0,0,0�

R
0,0,0 = �L

0,1,0�
R
0,1,0 = 1

2 , and

�L
0,0,0�

R
0,1,0 = 1

2
ω(1)

α
(see Appendix C). The last term in

Eq. (39) drops out because Ĉ
|ψ0,
〉 = 0 for 
 = 0,1. The term
that involves ω(1), on the left-hand side of Eq. (39), makes no
contribution for the same reason.

From the definition of the first-order states in Eqs. (36),
(37), and (38), we then obtain

ω(2) = i

1 + S

{
1

6
〈ψ0,0|B̂k k̂

1

Ĉ1
B̂kk̂|ψ0,0〉

+1

6
〈ψ0,1|B̂kk̂

1

Ĉ0
B̂k̂|ψ0,1〉+ 2

15
〈ψ0,1|B̂kk̂

1

Ĉ2
B̂kk̂|ψ0,1〉

+ 1

12π2

1

D0,1

1

(ω(1))2 − v2
B

g�

m2
〈ψ0,1|B̂k k̂

1

Ĉ0
k̂|�〉

}
,

(42)
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where

S =
[

(ω(1))2

[(ω(1))2 − v2
B]2

]
g�

m2α

1√
3

1

2π2

1

D0,1
〈ψ0,0|k̂|�〉. (43)

The quantity (ω(2)q2)−1 gives the lifetime of the sound modes
in the BEC. The lifetimes depend on the speed of the sound
modes and generally will be different for the two different
types of sound that can propagate in a BEC. The first three
terms on the right-hand side (rhs) of Eq. (42) are correlation
functions of a type similar to those that appear in lifetimes
of gases above the condensation temperature TC . Above TC ,
they determine the thermal conduction, bulk viscosity, and
shear viscosity, respectively [12]. The last term on the rhs is
a consequence of the macroscopic phase due to broken gauge
symmetry in the BEC below the condensation temperature.

B. Lifetimes and speeds in dimensionless variables

In order to obtain numerical values for the sound speeds
and lifetimes, we rewrite Eqs. (42) and (43) in terms of
dimensionless variables. We introduce a dimensionless mo-
mentum vector c so that k =

√
2mkBT

�2 c. Then, Ek = kBT Ec,

where Ec =
√

(c2 + b2)2 − b2 and b = �
kBT

. Also, note that
the collision operator and its eigenvalues have units of inverse
time. In [2] it was shown that λβ,
 = γdλ

0
β,
, where λ0

β,
 are
dimensionless eigenvalues and

γd = 8ma2(kBT )2

π�3
. (44)

In order to preserve the normalization of the eigenfunctions,
we must have∫ ∞

0
dk ψβ,
(k)ψβ ′,
(k) =

∫ ∞

0
dc ψβ,
(c)ψβ ′,
(c) = δβ,β ′ .

(45)

This requires that the dimensionless eigenfunction ψβ,
(c)
satisfy the relation ψβ,
(k) = ( �

2

2mkBT
)1/4ψβ,
(c). If we note that

ψ0,1(k) = D0,1k
2
√
N eq

k F eq
k and ψ0,0(k) = D0,0kEk

√
N eq

k F eq
k

(see Appendix A), then the normalization condition gives

D0,1 =
(

2mkBT

�2

)−5/4

D1

with D1 =
[∫ ∞

0
dc c4N eq

c F eq
c

]−1/2

(46)

and

D0,0 =
(

2mkBT

�2

)−3/4

(kBT )−1D0

with D0 =
[∫ ∞

0
dc c2E2

cN eq
c F eq

c

]−1/2

. (47)

The critical temperature is TC = 2π�
2

mkB
( neq

ζ (3/2) )
2/3 (we use the

ideal gas relation).

1. Sound speeds

The sound speeds are given in Eqs. (30) and (31). We can
write

vfast

vB

= 1√
2

√√√√1 + α2

v2
B

+
√(

1 − α2

v2
B

)2

+ 4αγ

v4
B

(48)

and

vslow

vB

= 1√
2

√√√√1 + α2

v2
B

−
√(

1 − α2

v2
B

)2

+ 4αγ

v4
B

. (49)

From the definition of α and γ , it can be shown that

α = vT√
3
D0D1

∫ ∞

0
dcBcc

4EcN eq
c F eq

c (50)

and

γ = 1√
3

vT v2
B

neqλ3
T

D0

D1

4√
π

∫ ∞

0
dc c2EcN eq

c , (51)

where vT = √
2kBT /m is a “thermal” speed and Bc = c2+b

Ec
.

The ratio of vT to the Bogoliubov speed vB can be written as

vT

vB

= 1

(neqa3)1/6ζ (3/2)1/3

√
T

TC

. (52)

These dimensionless sound speeds in Eqs. (48) and (49) are
plotted in Fig. 1 for three different densities: (a) neqa3 = 10−4,
(b) neqa3 = 10−5, and (c) neqa3 = 10−6. The speeds in Fig. 1
are scaled in terms of the Bogoliubov speed vB = √

gneq/m.
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b
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T TC

0.0
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2.5

c

FIG. 1. Propagation speeds of the fast (solid line) and slow
(dashed line) longitudinal modes at (a) na3 = 10−4, (b) 10−5, and
(c) 10−6 in units of vB = √

gneq/m.
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The sound speeds undergo an avoided crossing which moves
to lower temperature as the density decreases.

2. Decay rate

We can write Eq. (42) in the form

ω(2) = i

1 + S
�

8m

[
ζ (3/2)

neqa3

]2/3
TC

T

[
1

6
C1 + 1

6
C0 + 2

15
C2

+ 1

(ω(1))2 − v2
B

2neqa3

3
√

πζ (3/2)

(
T

TC

)3/2

C ′
0

]
, (53)

where now

S = (ω(1))2[
(ω(1))2 − v2

B

]2

γ

α
(54)

and we have introduced the four dimensionless correlation
functions

C1 =
∞∑

β=1

1

λ0
β,1

[
D2

0

∫ ∞

0
dc

√
N eq

c F eq
c BcEcc

2ψβ,1(c)

]2

, (55)

C2 =
∞∑

β=0

1

λ0
β,2

[
D2

1

∫ ∞

0
dc

√
N eq

c F eq
c Bcc

3ψβ,2(c)

]2

, (56)

C0 =
∞∑

β=1

1

λ0
β,0

[
D2

1

∫ ∞

0
dc

√
N eq

c F eq
c Bcc

3ψβ,0(c)

]2

, (57)

and

C ′
0 =

∞∑
β=1

1

λ0
β,0

[∫ ∞

0
dc

√
N eq

c F eq
c Bcc

3ψβ,0(c)

]

×
[ ∫ ∞

0
dc

√
N eq

c

F eq
c

cψβ,0(c)

]
. (58)

Above the condensation temperature, C1 and C2 determine
the thermal conductivity and shear viscosity, respectively, and
C0 determines the bulk viscosity. The correlation function C ′

0
does not contribute above the transition temperature. In Fig. 2,
we plot these four correlation functions for density neqa3 =
10−5. We find that C1 and C2 are two orders of magnitude
greater than C0 and C ′

0 in the condensate. Therefore, decay
processes in the condensate appear to be dominated by the
shear viscosity and thermal conductivity.

In Fig. 3, we plot the dimensionless lifetime of the sound
modes, scaled to the parameter mq2

�
, which has units of time.

The dimensionless lifetimes are plotted for the same three
densities as the sound modes, and exhibit very interesting
behavior. At the temperature of the avoided crossing in the
sound speeds, the lifetimes are comparable and at a minimum.
On each side of the avoided crossing, one of the modes has
a much larger lifetime than the other. We note that the mode
with the longest lifetime is always the mode with its speed
closest to vB .

One can gain insight into the behavior of the lifetimes by
considering the character of each mode. In Fig. 4, we show the
relative amplitude of four hydrodynamic quantities: density,
superfluid velocity, bogolon energy density, and bogolon
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FIG. 2. Dimensionless correlation functions for the BEC. Shown
in panel (a) are C2 (solid line) and C1 (dashed line). Shown in
panel (b) are 103 × C0 (solid line) and 103 × C ′

0 (dashed line).

momentum density, for both the fast mode (solid line) and
the slow mode (dashed line). In order to show quantities on
a comparable scale, they are measured in natural units: neq

for density, (vB) for superfluid velocity, g(neq)2 for bogolon
energy density, and mneqvB for bogolon momentum density,
and they are normalized so that the sum of all four amplitudes
adds to one for each of the two types of sound mode (fast and
slow). Negative values indicate out-of-phase motion for that
quantity.

The amplitudes shown in Fig. 4 are calculated by inserting
the expression for δN (k,q,ω) given by �

(0)
R (q,ω) for each

sound mode [see Eq. (32)] into the expressions for bogolon
momentum density [J(q,ω) = 1

(2π)3

∫
dk �kδN (k,q,ω)], bo-

golon energy density [E(q,ω) = 1
(2π)3

∫
dk EkδN (k,q,ω)],

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

T TC

Τd

10 410 5

10 6

FIG. 3. Dimensionless lifetimes τ ∗
d = (�q2/m)τd for fast lon-

gitudinal modes (solid line) and slow longitudinal (dashed line)
modes. Curves are shown for three values of density (na3). Physical
relaxation times may be obtained by τd = m/(�q2)τ ∗

d . For 87Rb at
q = 0.35 μm−1, the coefficient is m/(�q2) = 11.18 ms.

043615-7



ERICH D. GUST AND L. E. REICHL PHYSICAL REVIEW A 90, 043615 (2014)

0.0
0.1
0.2
0.3
0.4
0.5

R
el
.A
m
p.

a b

0.00 0.05 0.10 0.15 0.20
T TC

0.4
0.2
0.0
0.2
0.4
0.6
0.8

R
el
.A
m
p.

c
0.00 0.05 0.10 0.15 0.20

T TC

d

n vS

Ebog. Jbog.

FIG. 4. The relative amplitudes of the (a) density (in units of neq),
(b) superfluid velocity (in units of vB ), (c) bogolon energy density
[in units of g(neq)2], and (d) bogolon momentum density (in units of
mneqvB ) for the fast mode (solid line) and the slow mode (dashed line).
For each mode, the sum of these four amplitudes is normalized to one.
Positive values indicate in-phase motion and negative values indicate
out-of-phase motion. The density in these plots is neqa3 = 10−5.

and condensate phase [Eq. (6)]. Superfluid velocity amplitudes
are then calculated from the relation vs(q,ω) = − i�

m
qφ(q,ω)

and density amplitudes are given by δn(q,ω) = − i�
g

ωφ(q,ω),
which can be derived from the Hugenholtz-Pines relation [1].

At temperatures below the avoided crossing, the fast mode
(solid lines) consists of approximately 50% density waves
and 50% superfluid velocity waves, and there is very little
participation from the bogolon gas. The fast mode is also very
long lived in this region of temperatures with a speed very
close to vB . We interpret this as Bogoliubov sound which is
the interplay between density and phase that can occur at zero
temperature with no decay.

In contrast, the slow mode (dashed lines) at temperatures
below the avoided crossing involves significant bogolon
motion in addition to density and superfluid velocity waves.
Collisions between bogolons are the primary method of
relaxation for the BEC, and so we expect this sound mode
to decay rapidly. Indeed, the slow mode has a much smaller
lifetime below the avoided crossing, as can be seen in Fig. 3.
The slow mode is more similar to classical sound in this region,
involving waves in density, momentum density, and energy
density.

At temperatures above the avoided crossing, the fast and
slow modes essentially exchange characters, the slow mode
becoming like Bogoliubov sound, and the fast mode becoming
like classical sound. Note however, that in the fast mode, all
waves are in phase, while in the slow mode, the bogolon
momentum is out of phase with the superfluid velocity, and the
bogolon energy density is out of phase with the density. This
fact allows one to distinguish the modes at all temperatures.
This result, at temperatures above the avoided crossing, is
consistent with ZNG theory which is applicable at these higher
temperatures (see [6], Chap. 15, and [11]).

The presence of a separate “density” wave and “temper-
ature” wave, such as occurs in superfluid 4He, is not found
in the dilute BEC. In superfluid 4He, the clear separation in

characteristics of the two types of sound is a consequence
of the small compressibility of liquid 4He. In the highly
compressible gaseous superfluid, we find instead a separation
into “Bogoliubov sound” and “classical sound.”

V. COMPARISON TO EXPERIMENT

We now compare our results for the sound speed and life-
time of sound modes to those observed in a 87Rb BEC [10,13].
The wavelength of the sound mode observed in [10] was about
18 × 10−6 m (q = 0.35 μm−1) while the scattering length of
87Rb atoms is about 5.6 × 10−9 m [14]. We will assume the
particle density of the 87Rb gas is neq = 9.71 × 1019 m−3

which, using the expression for the critical temperature of
an ideal BEC in a box, gives Tc = 2π�

2

mkB
[ neq

ζ (3/2) ]
2/3 = 3.90 ×

10−7 K (this is the condensation temperature reported by [13]).
The mean field theory used here is expected to give good results
for T < 0.3Tc [1].

Given the value of the density neq and the scattering
length a, the Bogoliubov speed is vB ≈ 1.887 mm/s. This
agrees with sound speeds observed in the experiment [10],
although the dependence of sound speed on temperature was
not investigated in the experiment.

The lifetime τd of hydrodynamic modes is given by τd =
i/(ω(2)q2). The lifetimes of the longitudinal modes for the 87Rb
BEC are plotted in Fig. 5 as a function of temperature. The
dashed line shows the lifetime for modes with speeds ω

(1)
1 and

ω
(1)
2 (the slow modes). The solid line shows the lifetime for

modes with speeds ω
(1)
3 and ω

(1)
4 (the fast modes). We find that

the lifetime of one sound mode (dashed line) ranges from 18 μs
to 11 ms over the temperature interval 1.0 nK � T � 80 nK,
while the lifetime of the other sound mode (solid line) ranges
from 60 μs to 14 ms in that same temperature interval. The
lifetimes of both sound modes drop in the neighborhood of the
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Τ d
m
s 16 18 20 22 24 26 280
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150

T nK

Τ d
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FIG. 5. Physical lifetimes τd for 87Rb at q = 0.35 μm−1 in
the fast longitudinal (solid line) and slow longitudinal (dashed
line) modes. Uncertainty bands are obtained by assuming density
neq = 9.757 × 1019 m−3 with a 10% uncertainty, a = (103 ± 5)a0,
and assuming a 1% error in the total correlation function. Note
the experimental value of 9 ms was obtained for a temperature of
T = 21 ± 20 nK. Given our assumed uncertainties, this corresponds
to either T = 11 ± 1 nK or T = 67 ± 5 nK.
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sound speed avoided crossing and in that temperature regime
the identity of the long-lived mode switches.

The lifetimes obtained here for a dilute 87Rb Bose-Einstein
condensate use the condensation temperature TC = 3.90 ×
10−7 K reported in [13] and assume the condensate has a
spatially uniform density at equilibrium. That is the only
input, other than the mass and scattering length of 87Rb. The
identity of the longest-lived longitudinal mode switches at
temperatures in the neighborhood of the avoided crossing in
the sound speeds.

In [10], a one-dimensional (1D) sound mode was created
in a harmonic trap with frequencies f1 = f2 = 224 Hz and
f3 = 26 Hz. There were about 〈N〉 = 5 × 105 atoms in the
trap giving a critical temperature TC = h

m
( 〈N〉f1f2f3

1.202 )1/3 ≈
3.9 × 10−7 (the value used here). The sound mode, in the
experiment, that we consider here ([10], Fig. 5) had a wave
vector q = 0.35 μm−1 and a lifetime of about τd ∼ 9 ms. The
temperature of the BEC was T = 21 ± 20 nK [15], which
places the experiment within the temperature regime shown in
Fig. 5. The peak density was 3.05 × 1020 particles/m3 [15],
which is slightly higher than that used in our calculation (we
chose a density consistent with TC) for a gas with uniform
density). Based on the theoretical results, We estimate that the
temperature of the experiment was either T = 11 ± 1 nK or
T = 67 ± 5 nK.

Because our computations are done for a BEC in a box
with uniform density neq = 9.71 × 1019 m−3 (and critical
temperature TC = 3.90 × 10−7 K), while the density of a
BEC in a trap varies slightly in the region that supports the
sound wave, we estimated the change in our decay rates if the
density were changed by 10%. The uncertainty in our result,
due to a 10% uncertainty in the density, is shown in Fig. 5
by the faint dashed lines that on either side of out result for
neq = 9.71 × 1019 m−3. The uncertainty in the density does
not significantly change our prediction for the temperature at
which sound waves in [10] were measured.

The value of the sound mode lifetime, predicted by the
bogolon kinetic equation (1), is consistent with that reported
in [10]. It would be of great interest to explore this temperature
regime more thoroughly to determine if there is a variation in
lifetime similar to that predicted by the theory. Such a variation
could provide a sensitive measure of the temperature for a BEC
with a small thermal fraction [15].

VI. CONCLUDING REMARKS

We have used Bogoliubov mean field theory to obtain the
speed and lifetime of first and second sound in monatomic
BECs. The speeds of the two types of sound undergo an
avoided crossing at low temperature and attain limiting values

of vB and
√

1
3vB at T = 0 K, in agreement with results obtained

by Lee and Yang in [8]. We find that the two types of sound have
very different lifetimes and that the identity of the long-lived
sound mode switches at the temperature of the sound speed
avoided crossing.

We find that the two sound modes in the BEC can be
interpreted as either a Bogoliubov sound mode that consists
primarily of a density wave and a phase (superfluid velocity)
wave, or a classical sound mode that consists of waves

in density, superfluid velocity, bogolon energy density, and
bogolon momentum density. The sharp distinction between a
density mode and a temperature mode that occurs in a liquid
superfluid is not seen in the gaseous and compressible BEC.

Below the temperature of the avoided crossing, the fast
sound mode is similar to Bogoliubov sound and has a long
lifetime, while the slow sound mode is similar to classical
sound and decays quickly. Above the temperature of the
avoided crossing, the fast sound mode is similar to classical
sound and, at these low temperatures, has a short lifetime,
while the slow sound mode is similar to Bogoliubov sound
and, at these low temperatures, is longer lived. We also find
that the slow sound mode involves out-of-phase motion at all
temperatures, and the fast sound mode consists of in-phase
motion.

As the temperature is increased beyond the avoided cross-
ing, the slow sound speed continues to decrease, reaching
zero at the transition temperature TC . The fast sound speed
continues to increase as the temperature rises, becoming equal
to the speed of sound of a monoatomic Bose gas [12] at
temperatures above TC .

The values of the sound speed and lifetime of the long-lived
sound mode are in agreement with those measured in a
recent experiment on a 87Rb BEC, although there is a large
uncertainty in the temperature of the experiment. The fairly
rapid variation that we find in the lifetime of the sound modes
with temperature may provide a new means of estimating
temperature for systems with very small thermal fraction.

It would also be interesting to see if any of the signatures of
the avoided crossing could be observed as the temperature of
the BEC is varied. Most prominent would be a sudden inability
to sustain any sound modes at the temperature of the avoided
crossing. More difficult, although feasible, is the possibility of
resolving the two sound-mode frequencies directly by using
periodic driving forces.
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APPENDIX A: LINEARIZED BOGOLON
COLLISION OPERATOR

From Ref. [2], the collision operator can be written

Gk1{h} = −N eq
1 F eq

1

[
M(k1)hk1 +

∫
dk2

N eq
2

F eq
1

K(k1,k2)hk2

]
(A1)

with

M(k1) =
∫

dk3
N eq

3

F eq
1

{
2A0TA(1,3) + A0

F eq
3

N eq
3

TB(1,3)

+B0QA(1,3) + B0QB(1,3) + 1

3

F eq
3

N eq
3

QC(1,3)

}
,

(A2)
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K(k1,k2)

=
{

2A0TA(1,2) − 2A0
F eq

2

N eq
2

TB(1,2) − 2A0
F eq

1

N eq
1

TB(2,1)

+B0QA(1,2) − 2B0
F eq

2

N eq
2

RA(1,2) + 2B0QB(1,2)

−B0
F eq

2

N eq
2

QC(1,2) − B0
F eq

1

N eq
1

QC(2,1)

}
. (A3)

The functions appearing in the above expressions are
defined as

A0 = 4πN0g
2

(2π )3�V
, B0 = 4πg2

(2π )6�
,

TA(k1,k2) =
∫

dk3�(1 + 2 − 3)
(
W 12

1,2,3

)2F eq
3 ,

TB(k1,k2) =
∫

dk3�(1 − 2 − 3)
(
W 12

3,2,1

)2F eq
3 ,

TB(k2,k1) =
∫

dk3�(2 − 1 − 3)
(
W 12

3,1,2

)2F eq
3 ,

QA(k1,k2) =
∫

dk3dk4�(1 + 2 − 3 − 4)
(
W 22

1,2,3,4

)2F eq
3 F eq

4 ,

RB(k1,k2) =
∫

dk3dk4�(1 + 2 − 3 − 4)
(
W 22

1,3,2,4

)2N eq
3 F eq

4 ,

QB(k1,k2) =
∫

dk3dk4�(1 + 2 + 3 − 4)
(
W 31

4,3,2,1

)2N eq
3 F eq

4 ,

QC(k1,k2) =
∫

dk3dk4�(1 − 2 − 3 − 4)
(
W 31

1,2,3,4

)2F eq
3 F eq

4 ,

(A4)

where �(1 + 2 − 3 − 4) ≡ δ(k1 + k2 − k3 − k4)δ(E1 +
E2 − E3 − E4) [with similar definitions for �(1 + 2 − 3) and
�(1 + 2 + 3 − 4), etc.],

W 12
1,2,3 = u1u2u3 − u1v2u3 − v1u2u3 + u1v2v3

+ v1u2v3 − v1v2v3, (A5)

W 22
1,2,3,4 = u1u2u3u4 + u1v2u3v4 + u1v2v3u4 + v1u2u3v4

+ v1u2v3u4 + v1v2v3v4, (A6)

and

W 31
1,2,3,4 = u1u2u3v4 + u1u2v3u4 + u1v2u3u4 + v1v2v3u4

+ v1v2u3v4 + v1u2v3v4. (A7)

The Bogoliubov factors uk and vk are given by uk =
1√
2

√
(1 + (εk+�)

Ek
) and vk = 1√

2

√
( (εk+�)

Ek
− 1). The function

M1(k1) = M1(k1) and the function K(k1,k2) depend on k1,
k2, and k̂1·k̂2. Because of the properties of K(k1,k2) [2], we
can write

G
{
δNk1 (q,ω)

} = −N eq
k1
F eq

k1

∫ ∞

0
dk2

∫
d	2

√
k2

2N
eq
k2
F eq

k2

k2
1N

eq
k1
F eq

k1

× C(k1,k2)hk2 (q,ω), (A8)

where C(k1,k2) is symmetric under the interchange of k1

and k2.

The eigenvalues λβ,
 and eigenstates ψβ,
,m(k1) of the
operator C(k1,k2), satisfy the conditions∫

dk2C(k1,k2)ψβ,
,m(k2) = λβ,
ψβ,
,m(k1) (A9)

and ∫
dk1ψβ,
,m(k1)C(k1,k2) = λβ,
ψβ,
,m(k2). (A10)

The eigenvalues λβ,
 are independent of m due to the angular
symmetry of the collision operator.

The collision operator Gk1{h}, acting on four conserved
quantities h = Ek , h = kx , h = ky , and h = kz, gives zero.
We can combine the expressions for kx and ky and write the
eigenfunctions with specific values of 
 and m. Note that kx +
iky = −k

√
8π
3 Y1

1(k̂) and kx − iky = k

√
8π
3 Y−1

1 (k̂).
The four hydrodynamic eigenfunctions of C(k1,k2)

can be written ψ0,0,0(k1) = ψ0,0(k)Y0
0(k̂1), ψ0,1,0(k1) =

ψ0,1(k)Y0
1(k̂1), ψ0,1,1(k1) = ψ0,1(k)Y1

1(k̂1), and ψ0,1,−1(k1) =
ψ0,1(k)Y−1

1 (k̂1), where ψ0,0(k) = D0,0Ek

√
k2N eq

k F eq
k and

ψ0,1(k) = D0,0k
√

k2N eq
k F eq

k . The quantities Dβ,
 are normal-
ization constants, and the corresponding eigenvalues λβ,
 are
independent of m and degenerate so that λ0,0 = λ0,1 = 0 and
λ0,1 is threefold degenerate.

More generally, all the eigenfunctions of C(k1,k2) can be
written in the form

ψβ,
,m(k) = ψβ,
(k)Ym

 (k̂). (A11)

The eigenstates can be orthonormalized so that∫ ∞

0
dk1

∫
d	1ψ

∗
β1,
1,m1

(k1)ψβ2,
2,m2 (k1) = δβ1,β2δ
1,
2δm1,m2

(A12)

and
∫ ∞

0 dk1ψ
∗
β1,


(k1)ψβ2,
(k1) = δβ1,β2 . We can also write

C(k1,k2) =
∞∑


=0


∑
m=−


C
(k1,k2)Ym

 (k̂1)Ym∗


 (k̂2)

=
∞∑

β=0

∞∑

=0


∑
m=−


λβ,
ψβ,
,m(k1)ψ∗
β,
,m(k2), (A13)

where C
(k1,k2) = ∑∞
β=0λβ,
ψβ,
(k1)ψ∗

β,
(k2).
We can express the operator C
(k1,k2) in “bra-ket” notation

as

Ĉ
 =
∞∑

β=0

λβ,
|ψβ,
〉〈ψβ,
|, (A14)

so that 〈k1|Ĉ
|k2〉 = C
(k1,k2) and 〈k|ψβ,
〉 = ψβ,
(k), where
〈k1|k2〉 = δ(k1 − k2) and

∫ ∞
0 dk|k〉〈k| = 1̂, where 1̂ is the unit

operator.

APPENDIX B: DIMENSIONLESS VARIABLES AT VERY
LOW TEMPERATURES

At very low temperature, most particles have thermal
wavelength much longer than the scattering length a. If
we let Ea = kBTa ≡ �

2

2ma2 denote the energy of a particle
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with wavelength a, and let Ta denote the corresponding
temperature of those particles. The coupling constant g can
be written g = 4π�

2a
m

= 8πkBTaa
3 and � = gn

eq
0 = kBTaX =

8πkBTaσ , where n
eq
0 are the density particles in the condensate,

σ = a3n
eq
0 , and X = 8πσ . The bogolon energy can be written

in terms of dimensionless units as Ek = kBTa

√
κ4 + 2κ2X,

where κ = ka and X = 8πa3n
eq
0 .

At very low temperatures, only the lowest-energy bogolons
contribute to the dynamics of the BEC. For these bogolons,
κ � X, and the bogolon energy spectrum is approximately
linear in k. We can expand the bogolon energy for κ � X to
obtain Ek 
 kBTa

√
2Xκ . Using this approximation to Ek we

can compute the sound speeds in Eqs. (30) and (31) in the limit
T →0. We find α = 1√

3
vB + O(T 2) and γ ∼ O(T 4). Thus, at

T = 0 K, ω
(1)
2 = 1√

3
vB and ω

(1)
4 = vB , where vB =

√
gneq

m
is

the Bogoliubov speed of sound.

APPENDIX C: EIGENVECTORS OF FIRST-ORDER
EQUATIONS

It is useful to look at the first-order eigenvalue equation
from another point of view. The solutions to Eq. (24) give the
eigenvalues of the matrix

W =
(

0 α + γ

[(ω(1))2−v2
B ]

α 0

)
. (C1)

This matrix is not symmetric so its left and right eigenvectors
will be different, although the eigenvalues will be the same

for “left” eigenvalue problem and for the “right” eigenvalue
problem. The eigenvalues of W are

�1 = −
√

α

√
α[v2

B − (ω(1))2] − γ√
v2

B − (ω(1))2

(C2)

and �2 = +
√

α

√
α[v2

B − (ω(1))2] − γ√
v2

B − (ω(1))2
.

Since the matrix W is not a symmetric matrix, its left and
right eigenvectors

�̄L = (
�L

i �L
ii

)
and �̄R =

(
�R

i

�R
ii

)
(C3)

will not be the transpose of each other. We can solve the
eigenvalue problem for the matrix W to obtain the left and
right eigenvectors, and we find

�̄L = 1√
2

(
ω(1)

α
1
)

and �̄R = 1√
2

(
α

ω(1) ,

1

)
. (C4)

The left and right eigenvectors are normalized so �̄L�̄R = 1.
It is straightforward to show that when (ω(1))2 = (ω(1)

1 )2 =
(ω(1)

2 )2, then �1 = ω
(1)
1 and �2 = ω

(1)
2 . When (ω(1))2 =

(ω(1)
3 )2 = (ω(1)

4 )2, then �1 = ω
(1)
3 and �2 = ω

(1)
4 .
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