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Polarization of a quasi-two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling:
A variational study
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Motivated by the remarkable experimental control of synthetic gauge fields in ultracold atomic systems, we
investigate the effect of an artificial Rashba spin-orbit coupling on the spin polarization of a two-dimensional
repulsive Fermi gas. By using a variational many-body wave function, based on a suitable spinorial structure,
we find that the polarization properties of the system are indeed controlled by the interplay between spin-orbit
coupling and repulsive interaction. In particular, two main effects are found: (1) The Rashba coupling determines
a gradual increase of the degree of polarization beyond the critical repulsive interaction strength, at variance
with conventional two-dimensional Stoner instability. (2) The critical interaction strength, above which finite
polarization is developed, shows a dependence on the Rashba coupling, i.e., it is enhanced in case the Rashba
coupling exceeds a critical value. A simple analytic expression for the critical interaction strength is further
derived in the context of our variational formulation, which allows for a straightforward and insightful analysis
of the present problem.
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I. INTRODUCTION

The Rashba spin-orbit (SO) coupling [1], initially con-
sidered in semiconductor devices such as quantum wells
[2–7], has been recently reproduced in ultracold atoms [8–11]
by means of externally applied controlled laser beams. The
relevance of this achievement can be understood in relation
to the extremely high degree of control achievable in these
systems. In fact, the absence of interfering phonons present
in solid-state aggregates and the precise tunability of external
laser sources, make ultracold atoms invaluable candidates for
the experimental investigation of the most delicate aspects of
quantum mechanics, such as SO effects.

Following this success, a large number of theoretical
studies recently focused on the intricate effects of Rashba or
Dresselhaus [12] SO couplings in Bose-Einstein condensates
[13–21], in superfluid Fermions at the BCS-BEC crossover
[11,22–41], and in the quasi-ideal Fermi gas [42]. Yet, little is
known so far concerning the possible effects of SO couplings
in the repulsive atomic Fermi gas, a system which is widely
known for its intrinsic and peculiar polarization properties
[43–48].

In this manuscript we will consider a two-component
(2D) bi-dimensional atomic Fermi assembly in the presence
of Rashba SO coupling. Low-dimensional atomic Fermi
systems are of particular relevance in this context, in view of
possible spintronics applications, and are currently undergoing
experimental investigations [49,50], also in relation to their
nontrivial spin transport properties [51]. In the present system,
due to the nonlocal spin structure induced by the SO coupling,
a conventional Hartree-Fock approach based on single-particle
states whose spin is aligned along a fixed axis is not applicable.
We will thus introduce a suitable variational procedure, making
use of an appropriate functional form for the single-particle
orbitals, whose spin structure will depend on a variational
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parameter. This approach allows for a seamless connection
between spin-polarized and unpolarized regimes, through the
minimization of a unique energy function.

II. MODEL

The Hamiltonian of a uniform 2D repulsive Fermi gas in
the presence of Rashba spin-orbit coupling can be written as a
sum of a one-body (1B) and a two-body (2B) contribution:

Ĥ = Ĥ1B + Ĥ2B (1)

In the second quantization, the single-particle contribution is
defined as

Ĥ1B =
∫

d2r �̂†(r)ĥsp�̂(r), (2)

where the two-component quantum field operators,

�̂(r) =
(

ψ̂↑(r)

ψ̂↓(r)

)
and �̂†(r) = (ψ̂†

↑(r),ψ̂†
↓(r)), (3)

are defined in terms of the operators ψ̂†
σ (r) and ψ̂σ (r), which

construct and annihilate one particle with spin σ (σ = ↑,↓)
at the position r = (x,y). The single-particle operator ĥsp in
Eq. (2) accounts for both the kinetic energy and the Rashba
potential, and is defined as

ĥsp = p̂2

2m
σ0 + λR(p̂yσx − p̂xσy), (4)

where p̂x,y represents the momentum operator, σ0 is the 2D
identity matrix, and σx,y are the x,y Pauli matrices. The
quantity m represents the particle mass, while λR is the Rashba
coupling, accounting for the tunability of the Rashba [1] SO
coupling [the second term to the right in Eq. (4)]. Planck’s
constant � was set to 1 to simplify the notation.

As concerns the two-body contribution, at very low energy
only the s-wave scattering will be relevant, and the interaction
may be modeled—due to the Pauli principle—as a contact
potential acting only between particles of opposite spins. In
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second quantization the repulsive two-body interaction thus
takes the form:

Ĥ2B =
∫

d2r g ψ̂
†
↑(r)ψ̂†

↓(r)ψ̂↓(r)ψ̂↑(r). (5)

The coupling constant g is positive, and it may be experimen-
tally tuned by exploiting the Feshbach resonance mechanism
[52,53]. Since an effectively 2D atomic gas can be realized
by confining a three-dimensional (3D) system along the z

direction within a small thickness b, a direct relation exists
between the coupling constant g, the energetic and geometrical
properties of the system, and the 3D scattering length a, as
discussed in Refs. [54,55].

Regarding the total density of particles, which will be fixed
in our calculations, this is obtained as the expectation value of
the operator,

n̂ = 1

L2

∫
d2r {�̂†

↑(r)�̂↑(r) + �̂
†
↓(r)�̂↓(r)}, (6)

where L2 is the area of our 2D system. Analogously, the
spin polarization is derived from the expectation value of the
operator,

m̂ = 1

L2

∫
d2r {�̂†

↑(r)�̂↑(r) − �̂
†
↓(r)�̂↓(r)}. (7)

III. VARIATIONAL PROCEDURE

In the absence of SO coupling, a straightforward HF (or
mean-field) approach could be applied to our system [45,46].
In fact, in this particular case the Hamiltonian commutes with
the spin operators, and the single-particle wave functions can
be safely chosen as eigenstates of the third Pauli matrix σz. This
choice leads to a clear distinction between spin up (n↑) and spin
down (n↓) particle densities, and at any given value of g the HF
energy per volume can thus be expressed as a function of these
quantities: E(n↑,n↓). A minimization of this function at fixed
total density n = n↑ + n↓, leads to zero polarization (n↑ = n↓)
for g below the critical value gc = π/m, and full polariza-
tion (either n = n↑ or n = n↓) at g > gc (Stoner instability
[43–48,56]).

When including the Rashba SO coupling, however, the
above procedure is not directly applicable. The main problem
with a mean-field description based on σz single-particle
eigenstates is that the expectation value of the SO coupling
on both spin-up and spin-down wave functions is identically
zero. No SO energy contribution would thus be present in such
a mean-field approach.

A possible alternative, explored in recent studies of the 2D
electron gas with Rashba SO coupling [57–59], is to make
use of single-particle eigenfunctions of the Rashba coupling
[60]. Given the dependence of the SO coupling on momentum,
these orbitals retain a plane wave structure, accompanied by
a k-dependent spinorial form. These wave functions provide
information about the nonlocal spin structure induced by
the SO coupling, leading in general to nonzero SO energy
contributions. A straightforward use of Rashba eigenstates,
however, is not possible in our case, since the expectation
value of σz on Rashba eigenstates is zero. A different approach
must thus be tailored when aiming to study the polarization
properties of our system.

To combine the polarization properties of σz eigenstates
with the nonlocal structure induced by the Rashba coupling,
we introduce a variational many-body state |�VAR

ζ,n+〉, depending
on two variational parameters ζ and n+ whose meaning will
become clear in the following.

Physically, a favorable way of controlling the polarization
of a given system is that of applying an external magnetic field,
inducing a spin-dependent coupling. Following this idea, we
define an auxiliary Hamiltonian,

Ĥζ =
∫

d2r �̂†(r)ĥζ �̂(r), (8)

where ĥζ = ĥsp + v̂ζ and v̂ζ = ζσz. This Hamiltonian only
contains single-particle energy terms, and can favor, through
the parameter ζ , the alignment or antialignment of the spin
along the z axis, while still retaining the nonlocal Rashba
SO coupling. Hence, we explicitly construct our many-body
variational wave function as an eigenstate of Ĥζ :

Ĥζ

∣∣�VAR
ζ,n+

〉 = E
(0)
ζ,n+

∣∣�VAR
ζ,n+

〉
. (9)

The diagonalization of Ĥζ within the single-particle frame-
work leads to the single-particle eigenenergies,

ε±(k) = k2

2m
±

√
ζ 2 + λ2k2, (10)

corresponding to the single-particle eigenstates,

φ±
k (r) = c±,k

(
λ(ky+ikx )

ζ±
√

ζ 2+λ2k2

1

)
eik·r, (11)

where the normalization constants c±,k are defined to be real
and obey the equation:

c±,k =
(

λ2k2

(ζ ±
√

ζ 2 + λ2k2)2
+ 1

)−1/2

. (12)

Here k = (kx,ky) is a 2D wave vector. As seen, two solutions
exist for every fixed value of k, corresponding to two
distinct energy bands. These will be hereafter labeled as ±
for simplicity. We underline that these single-particle states
depend, through v̂ζ on the external parameter ζ . This has not
been fixed yet, and will be used in the following as a variational
parameter.

The variational many-particle wave function |�VAR
ζ,n+〉 is

constructed as an antisymmetrized product of the above
single-particle eigenstates, and is constrained to describe a
fixed density of particles n through the relation,

n̂
∣∣�VAR

ζ,n+

〉 = n
∣∣�VAR

ζ,n+

〉
. (13)

The total density of particles is equal to the sum of the densities
relative to the + and − bands (n = n+ + n−). The densities
of the ± bands (n±) can in turn be expressed in terms of the
relative Fermi energies εF

± , as

n± = 1

(2π )2

∫
d2k �(εF

± − ε±(k)), (14)

where �(x) is the Heaviside step function. Given the constraint
of fixed total density n, only n+ can be regarded as an
independent variable, controlling the relative +/− band
occupation in |�VAR

ζ,n+〉.
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Depending on the ζ value and the single-particle band
occupation, the system will be allowed to develop both a non-
local Rashba spin texture, or a spin-polarized configuration.
The relevant spin configurations will thus be spanned by our
theory, and the present approach will represent an extension
of the original variational procedure to a broader space of
configurations.

Once the variational wave function has been defined, the
energy is written as

EVAR(n+,ζ ) = 〈
�VAR

ζ,n+

∣∣Ĥ ∣∣�VAR
ζ,n+

〉
. (15)

This expression is a function of the parameter ζ and of the
single-particle band occupation n+, and its minimization at
fixed total density n leads to the optimal parameters ζ̄ and n̄+,
from which the wave function |�VAR

ζ̄ ,n̄+
〉 is determined. We also

stress that EVAR(n+,ζ ), differently from E
(0)
ζ,n+ , accounts for

the presence of the two-body interaction.
Finally, after the optimal wave function |�VAR

ζ̄ ,n̄+
〉 has been

obtained through the variational procedure, the polarization P

can be straightforwardly computed as

P (ζ̄ ,n̄+) = 〈
�VAR

ζ̄ ,n̄+

∣∣m̂∣∣�VAR
ζ̄ ,n̄+

〉
/n. (16)

As concerns the actual computation of EVAR(n+,ζ ), this
can be simplified by making use of the relation (9). Details and
analytical formulas regarding EVAR(n+,ζ ) and P are reported
and discussed in detail in the appendix.

IV. RESULTS

We present in this section the energy and polarization
properties of the system at T = 0, derived according to the
variational procedure introduced in Sec. III. In the following
we will express lengths in units of n−1/2, and energies in units
of n�

2

m
.

As already outlined in Sec. II (see appendix for details),
if ζ̄ = 0 no polarization is present in the system, since the
single-particle states on which |�VAR

ζ,n+〉 relies coincide in this
case with the Rashba eigenstates. On the other hand, if a
polarized state is energetically favored with respect to a spin
unpolarized configuration, a finite optimal ζ̄ will be found
within the variational procedure.

Clearly, depending on g and λR , different optimal n̄+ and ζ̄

values will be found, corresponding to different values of the
polarization.

Interestingly, the introduction of a ζ dependent |�VAR
ζ,n+〉

allows one to consistently achieve lower variational energies
with respect to using both Rashba states and σz eigenvectors
in the polarized regime. According to the variational principle
|�VAR

ζ,n+〉 is thus expected to provide a more accurate approxi-
mation to the polarized ground states.

To understand the behavior of |�VAR
ζ,n+〉 in relation to the

repulsive interaction we analyze n̄+ and ζ̄ as a function of
g and λR (see Fig. 1). Clearly, ζ̄ is identically zero below gc,
while increasing values of ζ̄ are found above gc. This indicates
a modification of the spin configuration of the system upon
increasing g, related to the development of a polarization. On
the other hand, we stress that an imbalanced occupation of
the + and − bands alone is not sufficient to induce a finite
polarization in the system. In fact, this quantity is closely

FIG. 1. (Color online) Optimal variational parameters n̄+ and ζ̄ ,
plotted in function of g for different values of λR . Units are specified
in the text.

related to occupation of Rashba single-particle bands, and thus
to the nonlocal spin structure of the system.

By analyzing the polarization P as a function of g and λR

we observe a first-order phase transition, analogous to that
found in the absence of SO, leading to finite polarization at
strong repulsion (see Fig. 2). While P is identically zero below
gc, a gradual polarization increase with respect to g, depending
on λR , is found upon introduction of the SO coupling, beyond
the critical point.

A slower convergence to the fully polarized state (P = 1)
is also observed for the larger λR , while a decrease of P with
respect to λR is found at fixed g. This suggests a clear tendency
of the SO coupling to effectively frustrate the spin alignment.
Moreover, large values of λR can even cause a complete loss
of polarization (P = 0). This remarkable effect is visible in
Fig. 2 for λR = 2.0, and can be understood analytically through
an expansion over ζ of the total energy EVAR(n+,ζ ) around
ζ = 0. Under the condition λR >

√
πn/m only the − band is

occupied (see, for instance, Fig. 1, upper panel), and one can
prove that, to leading order in ζ ,

EVAR(n+ = 0,ζ ) � C + nζ 2

2mλ2
R

− g

4

n2ζ 2

m2λ4
R

, (17)
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FIG. 2. (Color online) Polarization of the optimal variational
state, plotted in function of g for different values of λR . Solid black
lines indicate the phase transition (shifted in the case of λR = 2).
Units are specified in the text.

where C is constant with respect to ζ . Clearly, the Rashba
coupling varies the relative importance of the two-body and
one-body terms in the above equation, changing the convexity
of EVAR with respect to ζ . Hence, the value of ζ that minimizes
the energy becomes eventually zero for λR >

√
gn/(2m).

Moreover, a numerical study of EVAR(n+ = 0,ζ ) reveals that
ζ = 0 is a global minimum in this context, and should represent
the best approximation to the ground state, according to the
variational principle.

Since nonzero P is only possible at finite ζ , no spin polar-
ization will be present in the system when λR >

√
gn/(2m).

Equivalently, the critical value of g, beyond which finite
polarization is developed, will depend on the SO coupling,
and can be expressed as

gc,λR
=

{
2π/m if λR <

√
πn/m

2mλ2
R/n if λR >

√
πn/m.

(18)

The critical g will thus coincide with the value predicted in the
absence of SO coupling if λR <

√
πn/m, but it will be shifted

to higher values (stronger repulsion), for larger SO couplings
(see Fig. 3). As a whole, the Rashba coupling and the repulsive
two-body coupling thus constitute complementary tools for an
effective tuning of the system polarization, opening the way
to the development of partially polarized states and control of
the phase transition.

As a final remark, we stress that the present approach
reproduces, for λR → 0, the mean-field results presented by
Conduit [46] in the absence of SO. On the other hand, the
further inclusion of correlation terms was recently shown
[43,46] to produce a reduction of the critical coupling constant
gc, and a contextual smoothing of the transition. An analogous
behavior is thus expected also in presence of the Rashba
coupling, while the SO effects presented above should be
roughly preserved. In fact SO couplings have a one-body
structure, and their effects were recently shown to be only
marginally influenced by the correlation induced by the two-
body repulsion [57,61,62].

FIG. 3. (Color online) Critical repulsive interaction coupling
constant gc,λR

as a function λR . The dashed vertical line separates
the regimes of constant and variable gc,λR

. Units are specified in the
text.

V. CONCLUSIONS

The spin polarization of the two-dimensional Fermi gas in
the presence of contact repulsion and Rashba SO coupling
has been computed from a variational theory, based on the
optimization of the wave-function spinorial structure. As a
result, we observe no polarization below the critical repulsive
coupling g predicted in the absence of SO coupling, and
confirm the presence of a phase transition. Above criticality
the polarization is determined by a competition between the
repulsive interaction and the Rashba coupling. While the
two-body repulsion has a polarizing effect, the SO coupling
tends to frustrate the spin alignment, and can eventually lead
to a complete loss of polarization. This mechanism determines
a variability of the critical g as a function of λR , with a
consequent shift of the phase transition. Contextually, partially
polarized states can be obtained by tuning λR .
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APPENDIX: ANALYTICAL FORMULAS

We provide here an analytic computation of EVAR(n+,ζ )
defined in Eq. (15). To make use of the convenient single-
particle energy expressions given in Eq. (10), we first observe
that ĥsp = ĥζ − v̂ζ . The variational energy can thus be recast
into

EVAR(n+,ζ ) = E
(0)
ζ,n+ + 〈

�VAR
ζ,n+

∣∣Ĥ2B

∣∣�VAR
ζ,n+

〉 +
− ζ

〈
�VAR

h,n+

∣∣m̂∣∣�VAR
ζ,n+

〉
.

The eigenvalue E
(0)
ζ,n+ defined in Eq. (9) can be computed as

E
(0)
ζ,n+ = E

(0),+
ζ,n+ + E

(0),−
ζ,n+ , where E

(0),±
ζ,n+ are defined as the sum

of the single-particle energies [see Eq. (10)].
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Regarding the + band, the total single-particle energy
contribution is given by the expression,

E
(0),+
ζ,n+ = V

(2π )2

∫
d2k ε+(k) �(εF

+ − ε+(k))

= πn2
+

m
+ 1

2π

1

3λ2
R

[(
ζ 2 + 4πλ2

Rn+
)3/2 − ζ 3].

Regarding the − band, instead, one has to distinguish
between the cases εF

− > −ζ (single intersection with the −
band), and εF

− < −ζ (double intersection with the − band):

E
(0),−
ζ,n+ = V

(2π )2

∫
d2k ε−(k) �(εF

− − ε−(k))

= πn2
−

m
− 1

2π

1

3λ2
R

[(
ζ 2 + 4πλ2

Rn−
)3/2 − ζ 3

]
if εF

− > −ζ,

= n−
2λ2

R

(
π2n2

− − ζ 2 + λ2
R

)

− 1

2π

1

3λ3
R

[(
λ2

R + πn−
)3 − (

λ2
R − πn−

)3]
,

if εF
− < −ζ.

The dependence on n− can be easily removed from the above
equations through the relation n− = n − n+.

Analogously to E
(0),±
ζ,n+ , the expectation value of the two-

body interaction Ĥ2B (indicated as E(1)) and of the operator m̂

(indicated with M) are also defined as functions of n+ and ζ .

We provide here the analytical formulas for E(1) and P

distinguishing again between the two cases εF
− < −ζ and

εF
− > −ζ .

εF
− > −ζ :

E(1) = g

[
1

4
(n+ + n−)2 −

(
ζ

4πλ2
R

)2

× (√
ζ 2 + 4πλ2

Rn+ −
√

ζ 2 + 4πλ2
Rn−

)]
, (A1)

M = ζ

2πλ2
R

(√
ζ 2 + 4πλ2

Rn− −
√

ζ 2 + 4πλ2
Rn+

)
, (A2)

εF
− < −ζ :

E(1) = g

[
1

4
(n+ + n−)2 −

(
ζ

4πλ2
R

)2

×
(√

ζ 2 + 4πλ2
Rn+ − ζ − 2πn−

m

)]
, (A3)

M = ζ

2πλ2
R

(
ζ + 2πn−

m
−

√
ζ 2 + 4πλ2

Rn+

)
. (A4)

Since in both cases M contains ζ as an overall multiplicative
factor, no polarization is possible for ζ = 0, in line with the
observations of Sec. II. We remember, in this regard, that the
polarization P [see Eq. (16)] is related to M by P = M/n.
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